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Abstract—Cryptographic cores are known to leak information
about their private key due to runtime variations, and there
are many well-known attacks that can exploit this timing chan-
nel. In this paper, we study how information theoretic measures
can quantify the amount of key leakage that can be exacted
from runtime measurements. We develop and analyze 22 Rivest–
Shamir–Adleman (RSA) hardware designs—each with unique
performance optimizations, timing channel mitigation techniques,
or discretization/randomization countermeasures. We demon-
strate the effectiveness of information theoretic measures for
quantifying timing leakage through correlation analysis of infor-
mation theoretic measurements and attack results. Experimental
results show that mutual information is a promising technique for
quantifying timing leakage for RSA, advanced encryption stan-
dard, and elliptic curve cryptography ciphers, i.e., the mutual
information correlates to being able to successfully guess the
value of the private key. This is an important step toward a
hardware security metric which allows designers to reason about
security alongside traditional hardware design metrics like area,
performance, and power.

Index Terms—Hardware security, cryptographic function, tim-
ing channel, information flow, security metric.

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are important functions
for securing systems and information. These algorithms

are constructed in a manner that makes them functionally dif-
ficult to break. For example, Rivest–Shamir–Adleman (RSA)
(perhaps the most common asymmetric encryption algo-
rithm) uses a trapdoor or one-way function related to prime
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factorization that makes it computationally difficult to attack
when you do not know the private key. While these crypto-
graphic algorithms are mathematically secure in a functional
sense, their implementations may contain security vulnera-
bilities due to side channels. For example, researchers have
demonstrated that it is easy to recover the secret key by looking
at the amount of time the algorithm takes to execute (timing
side channel) [1] or the amount of power it consumes while
performing the computation (power side channel) [2].

There are a substantial number of demonstrated attacks on
cryptographic systems using different types of side channels.
Kocher [1] was first to analyze the timing channels in several
cryptographic algorithms. Schindler [3] identified the timing
channel in an RSA implemented using Chinese remainder the-
ory. The RSA implementation in the OpenSSL library was
reported to leak timing information even in a noisy network
environment [4]. More recently, the elliptic curve cryptogra-
phy (ECC) system in OpenSSL has also been disclosed to
leak information from timing channel [5]. Yarom et al. [6]
successfully launched an attack on constant time RSA by
exploiting cache timing channel. The RSA blinding tech-
nique also failed to prevent timing leakage in a software RSA
implementation [7].

Recently researchers proposed techniques to analyze hard-
ware designs for timing channels or developed new or modi-
fied hardware languages that completely eliminated a specified
timing side channel. Zhang et al. [8] proposed a typing
extension on top of Verilog that eliminated timing chan-
nels. Li et al. [9] developed a hardware description language
that mitigated timing channels through careful finite state
machine generation. Oberg et al. [10] proposed a framework to
detect timing channels in hardware designs, including caches,
cryptographic cores, and System on Chip (SoC) systems.

These approaches generally take a qualitative “all or noth-
ing” approach to timing channel security. In other words, they
take (sometimes substantial) measures to completely eliminate
the timing channel, or they simply detect that a side channel
does or does not exist. And when there is a side channel,
the techniques say nothing about the severity of that chan-
nel. Many times it is not possible or necessary to build a
completely secure system (i.e., completely eliminate the side
channel). This may be too costly in terms of performance,
power, area, or design time; or it is not crucial to make the
system 100% secure, e.g., the information being protected does
not need the utmost levels of protection. Thus, cryptographic
systems often allow for some amount of information leakage.
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For example, it may be ok to leak the position of the highest
nonzero key bit if that will enable the design to execute sub-
stantially faster. Thus, we argue for more quantitative metrics
that can assess the severity of the leakage, and enable the
designer to tradeoff the security benefits alongside traditional
design metrics (e.g., area and performance).

Quantitative metrics can help designers more precisely
measure the security of a design. They can answer design
questions, such as “is one implementation of a cryptographic
function more secure than another?” and “how effective is
a particular security mitigation technique?” These provide
insights for making important design decisions. For example,
a pipelined version of a design leaks 20% less timing informa-
tion or adding some security mitigation technique will cause
15% more area overhead while making the design 40% more
secure. Deriving effective metrics allows security be integrated
as an important decision variable for hardware design space
exploration.

Information theoretic notions developed by Shannon [11]
provide powerful tools for quantifying channel capacity of
a transmission medium. For example, Clark et al. [12] used
entropy to quantify the amount of information leakage from
“while” language. Zhang and Lee [13] revealed information
leakage of advanced encryption standard (AES) cryptographic
implementation from cache architectures using mutual infor-
mation analysis. Köpf and Dürmuth [14] studied the amount
of information leakage versus performance and established
boundaries on the amount of information flow.

This paper investigates how information theoretic metrics
can be used to quantify timing information flows in crypto-
graphic core implementations. Specifically, this paper makes
the following contributions.

1) Proposing metrics that enable designers to reason about
the security of their hardware design with respect to
timing side channels.

2) Demonstrating how information theoretic methods, such
as entropy and mutual information quantify timing
leakage across different cryptographic hardware archi-
tectures, such as RSA, ECC, and AES.

3) Presenting experimental results that reveal the effects
of synthesis optimization, mitigation techniques, coun-
termeasures (discretization and randomization) on the
reduction in RSA timing channel leakage using infor-
mation theoretic measures and timing attacks.

4) Validating and verifying the correlation between infor-
mation theoretic measures and the ability to launch a
timing attack, which allows information theoretic met-
rics to help designers to tradeoff security alongside
traditional design metrics, such as area and performance.

The remainder of this paper is organized as follows. In
Section II, we describe the threat model. In Section III, we
cover timing attacks on RSA and our method for quantifying
timing flow. Section IV discusses architecture optimization,
mitigation techniques, and countermeasures for creating differ-
ent RSA architectures. Section V presents experimental results
on RSA timing channel. Section VI presents timing channel
evaluation about AES and ECC ciphers. We briefly review
related work in Section VII and conclude in Section VIII.

II. THREAT MODEL

Cryptographic cores are usually integrated into a SoC to
accelerate security functions. Our threat model assumes the
attacker can measure encryption time, e.g., an untrusted IP
core or malicious software/firmware in the SoC could mon-
itor or use the cryptographic cores in order to recover the
secret key through runtime measurements. Our threat model
applies to any hardware components, where the attacker can
extract secret information through timing information. We use
RSA as an example throughout this paper, but the idea can
extend to other components, where the pertinent information
is a function of the computation time.

We assume the attacker knows the algorithmic details of
the cryptographic core of hardware IP under attack. We fur-
ther assume that the attacker has control over some inputs,
(e.g., the plaintext) and can observe certain outputs, e.g., the
ciphertext and “ready_out,” “completed” or equivalent signal
noting the end of the computation. Essentially, we assume that
the attacker has the ability to somehow measure the encryption
time.

Our experiments are performed using different RSA archi-
tectures running on an FPGA. We add control logic around
these RSA cores to provide input data, and determine the num-
ber of clock cycles required for each encryption operation. Our
threat model can be extended beyond this experimental setup.
It is applicable to any arbitrary hardware design, such as AES
or ECC that leaks information through a timing channel.

III. BACKGROUND

A. Information Theoretic Metrics

1) Entropy: It measures the uncertainty of a variable. Using
p(x) to denote the probability mass function (pmf) of random
variable X, the Shannon Entropy is defined as

H(X) = −
∑

x∈X

p(x) log p(x). (1)

2) Mutual Information: It quantifies the reduced uncer-
tainty of a variable X given the ability to observe another
variable Y . It is a measurement of how much information
variable Y contains about variable X. The mutual information
between X and Y is defined as

I(X; Y) = H(X) + H(Y) − H(X, Y), x ∈ X, y ∈ Y

= H(X) − H(X|Y) (2)

where H(X|Y) is the conditional entropy of X given Y .

B. Timing Channel in RSA

RSA is a public key cipher that maintains a key pair for
encryption and decryption. Given a public key e, secret key
d, modulus n, and plain text m, the cipher text c is encrypted
and decrypted as follows:

c = me mod n

m = cd mod n. (3)

Modular exponentiation is the basic operation of RSA.
Algorithms 1 and 2 illustrate how modular exponentiation is
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Algorithm 1 Modular Exponentiation cd mod n Calculated
Using Square-and-Multiply From R-2-L

1: m[0] := 1
2: s[0] := c
3: for i := 0 to w − 1 do
4: if d[i] == 1 then
5: m[i + 1] := m[i] * s[i] mod n
6: else
7: m[i + 1] := m[i]
8: end if
9: s[i + 1] := s[i] * s[i] mod n

10: end for
11: Return m[w]

Algorithm 2 Modular Exponentiation cd mod n Calculated
Using Square-and-Multiply From L-2-R

1: s[w] := 1
2: for i := w − 1 to 0 do
3: if d[i] == 1 then
4: m[i] := s[i + 1] * c mod n
5: else
6: m[i] := s[i + 1]
7: end if
8: s[i] := m[i] * m[i] mod n
9: end for

10: Return m[0]

calculated through repeated square-and-multiply from right to
left (R-2-L) and from left to right (L-2-R), respectively.

Both algorithms perform modular multiplication when the
key bit under consideration has a binary value of 1 (corre-
sponding to lines 4 and 5 in Algorithm 1 and lines 3 and
4 in Algorithm 2). By comparison, a simple assignment is
performed when the current key bit has a value 0 (lines 6
and 7 in Algorithm 1 and lines 5 and 6 in Algorithm 2).
Thus, the key bit values cause a timing variation in a sequen-
tial implementation. Furthermore, the messages (inputs) to the
modular multiplication lead to variations in modular exponen-
tiation time. These runtime differences create a timing channel
that an attacker can use to ascertain information about the key.

To demonstrate the existence of a timing channel, we cre-
ate hardware designs for both the L-2-R and R-2-L algorithms
and measure their execution time for different messages and
keys. Fig. 1 shows the runtime measurements in terms of
the number of clock cycles. The two graphs at the top of
Fig. 1 show the runtime distributions for different messages
using a single key (0x00971f1fbd396d4a4557ca2efa360475).
The graphs at the bottom of Fig. 1 present the runtime
distributions for different keys using the same message
(0x134001e5135cb206920021e5135cb206). The key and the
message affect the computation of the modular exponenti-
ation in different manners; the key dictates the control of
each iteration and the message contributes to time to per-
form the modular multiply and modular square calculations.
From Fig. 1, we can see that the runtimes for different mes-
sages range from 93 399 to 94 630 clock cycles; R-2-L and

Fig. 1. RSA modular exponentiation time distribution for R-2-L and L-2-R
algorithms. Modular exponentiation time in x-axis is in clock cycles.

L-2-R have the mean values of 94 242 and 93 750 clock cycles,
respectively. The runtimes for different keys range from 78 801
to 105 983 clock cycles with the frequency below 8; R-2-L
and L-2-R have the mean values of 93 090 and 92 598 clock
cycles, respectively. This shows that both the message and
key can cause variations in the runtime of the RSA algorithm,
which makes it susceptible to a timing attack.

We will show how secret key can be recovered through sim-
ple yet effective statistical analysis of runtime measurements
in Sections III-C and III-D.

C. Kocher’s Timing Attack

Kocher [1] was the first to provide a comprehensive theo-
retical analysis of a timing attack using variance analysis. The
attack is based on the assumption that the runtimes for pro-
cessing different key bits are independent, i.e., given a number
of messages, the runtime observations for different key bits
compose independent random variables.

Let T denotes the vector that contains the total run-
time observations for processing N messages and ti (i =
0, 1, . . . , w − 1) denote the vector that contains the runtimes
for the computation corresponding to the ith key bit. Then, we
have

var(T) = var

(
w−1∑

i=0

ti

)
=

w−1∑

i=0

var(ti). (4)

The attack makes guesses of the current key bit (assuming it
could be either zero or one) and obtains the runtime vectors t0i
and t1i through observation. For a correct guess tci (c ∈ {0, 1}),
the var(T) will decrease by var(tci ) to var(T − tci ). For the
incorrect guess, t1−c

i is independent from the correct runtime
observations, and var(T − t1−c

i ) should theoretically increase
var(T) by var(t1−c

i ). In a real attack, the runtime observa-
tion vectors are not perfectly independent from each other.
However, a correct guess tends to decrease the variance by
a larger amount than a wrong guess. The attack takes the
guess value that results in a larger reduction in variance as
the key bit.
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Fig. 2. Sliding window methods using 3-bit-window. The upper part shows
the Nonoverlapping Sliding Window method and the bottom part shows the
Overlapping Sliding Window method.

D. Sliding Window Timing Attack

Kocher’s timing attack method is based upon the assumption
that the runtime distribution for individual key bits is inde-
pendent. It is possible to guess more than one bit per guess
iteration as long as this independence condition still holds. We
extend Kocher’s timing attack to a Sliding Window method.
In this method, we consider l-bits per guess iteration, where
l is the window size. This yields to 2l potential guesses at
each guess iteration. A guess that gets all l bits correct should
result in the most significant decrease in variance while there
should be a smaller decrease in the variance as the number of
incorrectly guessed key bits increases.

In this following, we will introduce the Nonoverlapping
Sliding Window method (with window sizes of 1–3) and
Overlapping Sliding Window method (with a window size of 3)
to perform timing attack and analysis. We show that small win-
dow sizes increase the accuracy over Kocher’s method while
running in a reasonable amount of time.

The upper part of Fig. 2 shows the Nonoverlapping Sliding
Window method using a 3-bit-window. The first window con-
siders bits 0-to-2 of the key, resulting in eight guesses:
000, 001, . . . , 111. The correct guess among the eight leads to
the largest decrease in variance while the completely wrong
guess should have the smallest decrease in variance. The deci-
sion on the current key bits can be made by observing and
comparing the decrease in variance. Then we proceed to the
next window that covers the next three bits of the key.

The bottom part of Fig. 2 illustrates the Overlapping Sliding
Window attack. Here, we determine the guess for the 3-
bit-window as before, but the successive windows provide
multiple guess results for the same bit. Thus, each key bit
has three (or more depending on the window size) guesses
corresponding to the number of windows covering it. We use
majority vote to decide the current key bit. Note that the begin-
ning and ending key bits have fewer than three guesses as they
are a boundary condition.

The sliding window methods can improve the attack success
rate. However, this comes at the cost of additional attack time
as the window size increases. This is because the attack time is
linear to the number of guess iterations, which increases expo-
nentially with the window size. We focus on how many guess
iterations are required for guessing each key bit on average. In
order to make a decision on each key bit, 1-bit-window needs
two guess iterations. With a window size of l, the attack has

to perform 2l guess iterations for each window, each key bit
requires 2l/l iterations on average. If the attack time is one unit
for Kocher’s attack, the attack time for the Nonoverlapping
Sliding Window (window_size = l) method can be described as

costsliding = 2l / 21 / l = 2l−1/l (5)

and the cost for the Overlapping Sliding Window method is

costoverlap ≈ l ∗ 2l−1/l = 2l−1. (6)

It is worth noting that window size selection should sat-
isfy the independence assumption, i.e., the distributions of
processing time for each window should be independent.
Equations (5) and (6) show that the attack complexity grows
exponentially as the window size increases. Therefore, we
limit the window size to satisfy that l is significantly smaller
than w, where l is window size and w is key length.

E. Quantifying Timing Information Flow in RSA

In this section, we characterize the timing information leak-
age and establish a quantitative analysis model for the RSA
timing channel.

We use T to denote the set of RSA encryption times under
different keys (K) and messages (C). For a given key k ∈ K
and message c ∈ C, we have a specific runtime observation
t ∈ T . Since the keys and messages are discrete variables, we
use the pmf to describe the distribution of the RSA runtime
measurements as

L(K, C) = p{T = t | C, K}, c ∈ C, k ∈ K. (7)

The pmf describes the timing characteristics of the RSA
architecture. For example, Fig. 1 shows that different RSA
implementations can have variations in runtime distribution.
We can quantify the timing channel capacity of an RSA
architecture in terms of its entropy

H(T) = −
∑

k∈K,c∈C

p(T = t) log p(T = t). (8)

The entropy quantifies the average amount of informa-
tion revealed by runtime measurements. It only takes runtime
observations into account, ignoring the effect of the key on
the runtime. Although entropy provides a coarse-grain way to
evaluate the timing channel capacity, it is incapable of quan-
tifying how much information is leaking from each key bit in
RSA architecture.

We use mutual information to disclose this bit-level timing
channel characteristics about key information leakage. Given
a set of keys, there will be corresponding runtime observations
for these keys. We employ mutual information to measure the
amount of information revealed from runtimes about the key
bits

I(ki; T) = H(ki) + H(T) − H(ki, T) (9)

where ki denotes the value of the ith key bit and T is the
observed runtime for the entire key.

This shows how much information from the ith key bit leaks
through the execution time or equivalently how much the exe-
cution time depends on the ith bit of the key. It also reveals
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Fig. 3. Basic RSA algorithm implemented with two nested loops. The outer
loop calculates modular exponentiation and the inner loop performs modular
multiplication.

the timing characteristics of the RSA architecture with respect
to individual key bits. Although we quantify timing channel
in RSA hardware in much detail throughout the paper, mutual
information analysis can also apply to other ciphers, such as
AES and ECC. We will present timing channel evaluation for
these ciphers in the following sections.

IV. RSA HARDWARE ARCHITETURES

In this section, we will create 22 different RSA archi-
tectures, divided into two categories. The first category is
generated by using different synthesis optimizations, which
will be discussed in more detail in Section IV-A. The second
group employs different timing channel mitigation techniques
or discretization/randomization countermeasures, which will
be covered in Sections IV-B and IV-C.

A. RSA Performance Optimization Architecture

Hardware optimizations can have a significant impact on
timing. For example, architectures exploiting parallelism or
pipelining require a smaller number of clock cycles than those
that work in a sequential manner. We are interested in under-
standing if and how these different optimizations affect the
amount of information leaked through runtime. In order to
evaluate our method, we use high-level synthesis (HLS) to do
different hardware optimizations. Optimizations are typically
specified using pragmas that tell the HLS tool how to optimize
particular regions of the code, e.g., pipeline and unroll. In this
paper, we use the Xilinx Vivado HLS tool to generate five dif-
ferent RSA architectures using various optimization strategies
(e.g., to generate hardware with different performance and area
tradeoff).

We implement Algorithm 1 in synthesizable C code, which
consists of two nested loops as shown in Fig. 3. The outer loop
(L1) performs computations from lines 3 to 10 in Algorithm 1.
The inner loop (L2) performs the modular multiply or modular
square in lines 5 or 9. While there are many pragmas for
optimization in HLS, we focus on pipeline and unroll due to
their importance and impact on final architecture of hardware.
The pipeline pragma is used to pipeline the iterations of loops.
The unroll pragma allows multiple iterations of the loop to be
executed at the same time.

Using these two pragmas, we generate 16 different archi-
tectures using different HLS directives. However, only five of
them are relatively unique, i.e., the others are similar to these
five and not interesting enough to discuss. The Optimization

group of Table I summarizes these five designs. The dashed
symbol indicates no optimization is performed for that loop.

The Sequential design does not have any optimization; it
is largely sequential. The second design pipelines the modular
multiply (L2). The Unroll design unrolls the modular multiply
loop. The Pipeline&unroll-1 design partially unrolls and
pipelines the modular multiply loop. The Pipeline&unroll-2
design unrolls the modular multiply loop and pipelines the
modular exponentiation loop.

B. RSA Timing Mitigation Architecture

Mitigation techniques make changes to the algorithm itself
in order to reduce timing-based leakage. These mitigation tech-
niques typically fall to two categories, either making runtime
measurements constant or random [4], [15]. Other possible
defenses attempt to decouple runtime measurements from
messages. These include performing dummy modular mul-
tiplication even when the key bit is zero [4], moving the
modular square into the conditional branch statements [4],
inserting additional reduction in the Montgomery algorithm
even if unnecessary [15], and introducing some random num-
bers into RSA computation (i.e., RSA blinding) to make
the runtime observation unrelated to the message [4]. In our
analysis, we consider several RSA implementations with built-
in mitigation techniques. These designs include the L-2-R-
multiply always (L-2-R-always), Power-ladder, Montgomery-
multiplication (Montgomery), Parallel, Exponent-blind, and
Base-blind designs.

The L-2-R-always algorithm inserts a dummy multiply in
the else statement of the conditional branch. This reduces the
key dependent delay difference and helps mask the timing
feature that causes key leakage. The Power-ladder algorithm
carefully redesigns the algorithmic flow. It moves the modu-
lar square operation into the conditional branch and always
performs both modular multiply and square regardless of the
current key bit. For these previous two architectures, the
runtime of a modular multiplication operation is not con-
stant; there is timing variation for different messages. The
Montgomery algorithm uses a different modular multiplier
(i.e., MontMult). The runtime of a modular multiplication
operation using this new multiplier is entirely determined by
the modulus. Although there is still a timing difference caused
by the conditional branch in the algorithm flow, it eliminates
the timing difference resulting from different messages. Thus,
the variance of the runtimes is consistently zero for both
key bit guesses, making it impossible to determine the cor-
rect key bit. The Parallel design uses two modular multipliers
to implement modular multiply and modular square, respec-
tively. There is no data dependence between the conditional
branch statement and modular square, these two components
run in parallel. Because modular multiply always costs equal
or less time than modular square, modular square execution
time masks conditional branch statement execution time. The
Parallel architecture reduces timing variation by increasing
parallelism but it does not eliminate the timing difference
resulting from different messages and keys. The Exponent-
blind algorithm introduces a random number to protect the
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TABLE I
DESIGN OVERHEADS FOR DIFFERENT RSA ARCHITECTURES

private key, which is based on Fermat’s theorem to guarantee
the correctness of modular exponentiation. It decouples and
fuzzes the correlation between the private key and the runtimes
significantly. The Base-blind algorithm introduces a random
number to mask the messages, which makes the runtime
observation unrelated to the messages. The Mitigation group
of Table I summarizes the different designs with mitigation
techniques used in our analysis.

C. Discretization and Randomization Countermeasure

1) Discretization Countermeasure: A simple yet effect way
to hide timing variation from observations is to make the total
runtime for processing all messages and keys constant. This
completely eliminates the timing side channel. However, it
comes at a high performance penalty since all executions will
have the worst case execution time. A more intelligent alterna-
tive is to quantize the RSA computation times. This enforces
that the execution times are bounded to multiples of some
predefined time quantum [16]. This method can help reduce
computation cost but does not fully eliminate timing leakage.
We refer to this quantile method [16] or bucket method [14]
as the discretization countermeasure. It can be implemented
by a simple module to delay the computation to force them to
complete at certain times. This aggregates “close” completion
times to a few discrete values, and thus makes it harder to dis-
criminate between them. One can think of this as eliminating
several lower bits of the timer used to measure the execution
time. There is clearly a loss of information that could possibly
make the attack more difficult.

In order to understand the effect of discretization counter-
measure on key leakage, we use the Sequential design as a
baseline in our implementations. The worst case execution
time is used as the runtime for the Constant design. Then
we set the execution time interval to different number of
clock cycles. For example, when setting the time interval to
100 clock cycles, a runtime of 94 887 clock cycles will be

Fig. 4. Timing attack framework.

delayed to 94 900 after discretization. In our implementations,
we set the interval sizes to 100, 150, 200, and 300 clock
cycles. Different discretization designs and their correspond-
ing average runtimes are shown in the Discretization group of
Table I.

2) Randomization Countermeasure: Another frequently
used technique for fuzzing the timing observation is to
randomize the computation time in order to decouple the
correlation between the key bits and runtime. This can be
implemented by incorporating a random number generator for
delay control.

In order to understand the effect of randomization counter-
measure on key leakage, we also use the Sequential design as a
baseline in our implementations. We employ linear feedback
shift registers (LFSRs) to add random delay to RSA com-
putation time. The LFSR lengths are set to 4, 6, 8, 9, and
10 bits for different implementations. Different randomization
designs and their corresponding average runtimes are shown
in the Randomization group of Table I (LFSRn refers to n-bit
LFSR).

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our timing attack framework consists of three modules:
1) test vector generation; 2) RSA timing measurement; and
3) statistical analysis. Fig. 4 illustrates our experimental setup.
We implement different RSA architectures on the Xilinx
VC707 FPGA board. We focus on 128-bit RSA cores for
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ease of result interpretation though the quantitative analysis
method applies to RSA cores of arbitrary key length. In the
test vector generation module, we use OpenSSL to generate
RSA key pairs (key and modulus) and produce random mes-
sages with Python’s pseudo-random number generator. In the
statistical analysis module, we compute the variances of run-
time measurements to guess each key bit using both Kocher’s
and sliding window timing attack methods. We calculate the
mutual information between the key bits and total runtime to
quantify information leakage.

B. Quantitative Analysis of Optimized RSA Architectures

We first analyze five different RSA cores optimized for
performance (see the Optimization group of Table I in
Section IV-A). We collect runtime samples of 6000 different
key pairs for each architecture. In order to understand the rela-
tionship between hardware architecture and key information
leakage, we perform mutual information analysis using (9).
The results are shown in Fig. 5.

From Fig. 5, we can see that the Sequential architecture
leaks about 0.7 bits of information on average while the Unroll
architecture has 0.8 bits of leakage. Although the unroll direc-
tive allows loop parallelism in modular multiplication by using
extra hardware resources and operations, it introduces more
unique runtimes, increasing H(T) and mutual information sig-
nificantly. The Pipeline design reduces information leakage
to 0.5 bits. Pipeline&unroll-1 further reduces this leakage to
around 0.36 bits. All these designs are implemented using one
modular multiply function, so modular multiply and modu-
lar square operations execute sequentially. The pipeline and
unroll directives in HLS change the structure of inner loop for
these designs. The general trend is that implementation level
parallelism reduces the amount of leakage.

The Pipeline&unroll-2 design only leaks information about
the highest nonzero key bit. This design has a special
architecture—the synthesis tool generates two modular mul-
tipliers, one for modular multiply and the other for modular
square. These two modular multipliers run in parallel, and
each key bit iteration completes in the same number of clock
cycles. In addition, their modular multiply and control logic
times are also constant, diminishing the effect from different
messages. We can see that for most of the key bits, the leakage
is nearly zero but the curve increases dramatically at the end.
That is due to the fact that architecture stops its execution after
reaching the most significant 1 bit of the key. Thus, we can
accurately determine where the highest nonzero key bit resides
by observing the total runtime of the algorithm. For example,
the longest runtime will have a 1 in the most significant bit.
If the most significant bit is 0, it will have a shorter runtime
since the algorithm will terminate sooner. In other words, the
distribution of high key bits has a significant effect on I(ki; T)

by dominating the total runtime. Another way of viewing this
is using (2) to derive the following:

I(ki; T) = H(T) − H(T|ki). (10)

Here, the entropy of the total runtime H(T) is constant for all
the key bits given the total runtime measurements; the decrease

in conditional entropy H(T|ki) contributes to the increase in
I(ki; T). While the decrease in the conditional entropy means
that the uncertainty of total runtime T given ki decreases, it
also indicates that the higher key bits have a deterministic
effect on the total runtime.

Note that there is sharp decrease in mutual information for
higher key bits of all designs, this is due to the fact that the
distribution of values for the higher key bits contributes to
the decrease of I(ki; T). Although the highest key bit domi-
nates the total runtime for each individual key, the distribution
characteristics of higher key bits make H(T|ki) increase signif-
icantly. Besides, there is no information leakage for the first
two key bits in any of the architectures. This is due to the
fact that these two bits are the same across all of the different
keys due to the requirements on how RSA keys are generated
(i.e., the lowest key bit must be odd). The mutual information
between a constant and another variable is constantly zero.

We conduct timing attack using Kocher’s method on each
design with 500 key pairs. The attack results are shown in
Fig. 6. Fig. 6 shows that the attack success rates decrease
for the higher key bits, which corresponds to the sharp
decrease trend for mutual information results in Fig. 5. The
Pipeline&unroll-2 design is difficult to attack; the attack suc-
cess rate is around 50%, which is close to a random guess.
This is not surprising given that this architecture has very lit-
tle leakage as discussed earlier. Correspondingly the mutual
information in Fig. 5 is nearly zero. Note that the most signif-
icant bits have a higher attack success rate, which corresponds
to the strong up-tick in the mutual information at the higher
key bits. Visually the remainder of the attacks follow a similar
trend.

Based on our analysis, the Pipeline design introduces
10% more area overhead while achieving 33% performance
improvement and its timing channel leakage reduces to 0.5
bits. Although the Unroll design causes 163% more area over-
head to achieve 23% performance improvement, its timing
channel leakage increases to 0.8 bits. The Pipeline&unroll-
1 design has 167% more area overhead while achieving
31% performance improvement; its timing channel leakage
decreases to 0.36 bits. The Pipeline&unroll-2 design reduces
the key leakage to 0 except for the highest nonzero key bit
at an extremely high design cost. In the following section,
we explore mitigation techniques that reduce timing channel
leakage at much lower design overheads.

C. Quantitative Analysis of Mitigated RSA Architectures

In this section, we focus on the architectures implemented
with different mitigation techniques. These are discussed in
Section IV-B and summarized in the Mitigation group of
Table I. We collect runtime samples using the same 6000 key
pairs as Section V-B. Fig. 7 shows the mutual information
analysis results.

The L-2-R design has mutual information of 0.63 bits.
The Base-blind design has mutual information of around 0.62
bits. The Exponent-blind design reduces key information leak-
age to 0.46 bits. The L-2-R-always and Power-ladder designs
have mutual information of 0.11 and 0.18 bits, respectively.
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Fig. 5. Mutual information between different key bits and the total runtimes for RSA architectures generated from HLS.

Fig. 6. Percentage of key bits guessed correctly for optimized RSA architectures, i.e., generated from HLS shown in the optimization group of Table I.

The Montgomery design reduces key information leakage to
0.04 bits; the synthesis tool generates an architecture with con-
stant modular multiplication and constant control logic clock
cycles, removing the effect of different messages on timing.
But two modular multiply operations still run in a sequen-
tial way without changing the conditional branch structure.
Different keys still result in timing variation and thus key
bit leakage is not completely eliminated. The Parallel design
reduces the key information leakage to 0.11 bits.

Then we conduct Kocher’s attack on these designs using
the same 500 key pairs as Section V-B, the results are shown
in Fig. 8. The designs with mitigation techniques are more
difficult to attack than the L-2-R design. The Power-ladder
design is easier to attack than the L-2-R-always design. The
Montgomery design and the Parallel design have success rates
around 50%, which are less than the L-2-R-always and Power-
ladder designs. The Exponent-blind design is harder to attack
than the designs without mitigation techniques. The success
rate of the Exponent-blind design is lower than the Power-
ladder design, but its mutual information is higher than the
Power-ladder design. The increase in mutual information for
the Exponent-blind design is caused by the random number,
which introduces additional uncertainty. It also indicates more
powerful timing attacks probably exist for the Exponent-blind
design (we validate that the Nonoverlapping Sliding Window
method using 3-bit-window can improve the success rate). The
Base-blind design is used to decouple the correlation between
the messages and the runtimes without influencing the key
leakage and the attack results significantly. Meanwhile, the
Parallel design costs 91% area overhead as compared to the
L-2-R design, but is three times faster than the L-2-R design
while reducing mutual information to only 0.11 bits.

When comparing attack success rates with the mutual infor-
mation results in Fig. 7, we can see three trends. First, a

higher mutual information value indicates a higher likelihood
of successful attack. Second, there is an increase in the most
significant bits in both mutual information results and attack
success rate results for most of the mitigation designs. Third,
success rate decreases in higher bits location for the L-2-R,
Power-ladder, L-2-R-always, and Parallel designs, which cor-
responds to related mutual information analysis results in
Fig. 7. Thus, mutual information analysis results can well
reflect timing channel characteristics of mitigation designs.

D. Quantitative Analysis of Discretized and Randomized
RSA Architectures

1) Discretized Architecture: Intuitively speaking, dis-
cretization countermeasures lead to less timing variation
because of coarse-grain time intervals, which reduces timing
channel leakage. In this section, we focus on the architec-
tures with discretization countermeasures summarized in the
Discretization group of Table I.

We use mutual information to measure information leak-
age with the same 6000 key pairs, and use Kocher’s method
to attack each design with 100 different key pairs. The
experiment results are shown in Figs. 9 and 10. We can
see that mutual information results decrease gradually while
time intervals increase. And the timing attack success rates
decrease, too. Because the Constant design leaks no infor-
mation, mutual information for each key bit is 0 and the
success rate is around 50%. The Constant design leads to 13%
performance and 1% area overhead penalty to eliminate tim-
ing channel. However, discretization countermeasures improve
timing channel security by sacrificing performance slightly.
For example, the Interval-300 design results in less than 1%
performance penalty to achieve timing channel leakage of
0.013 bits from our mutual information analysis.



MAO et al.: QUANTITATIVE ANALYSIS OF TIMING CHANNEL SECURITY IN CRYPTOGRAPHIC HARDWARE DESIGN 1727

Fig. 7. Mutual information between different key bits and the total runtimes for mitigated RSA architectures.

Fig. 8. Percentage of key bits guessed correctly for RSA architectures with mitigation techniques.

Fig. 9. Mutual information between different key bits and the total runtimes for RSA with discretization countermeasures.

Fig. 10. Percentage of key bits guessed correctly for RSA architectures with discretization countermeasures.

Fig. 11. Mutual information between different key bits and the total runtimes for RSA with randomization countermeasures.

2) Randomized Architecture: We then use mutual informa-
tion to measure information leakage with the same set of key
pairs, and use Kocher’s method to attack each design with

100 different key pairs. The mutual information results are
shown in Fig. 11 and the attack results are shown in Fig. 12.
However, mutual information increases while the timing attack
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Fig. 12. Percentage of key bits guessed correctly for RSA with randomization countermeasures.

Fig. 13. Mutual information between different key bits and the total runtimes for RSA with randomization countermeasures using new attack method.

Fig. 14. Percentage of key bits guessed correctly for RSA architectures with randomization countermeasures using new attack method.

success rate deceases with the increase of LFSR length. This
is because the LFSR introduces uncertainty (i.e., additional
information) to the RSA runtime. The additional uncertainty
will make the design harder to attack and affect the accuracy
of mutual information measurement under a limited number
of samples.

A frequently used method to attack designs protected by
randomization countermeasures is to collect multiple samples
under the same input condition and take the average of mul-
tiple measurements to average away the random noise. We
use this method to attack the RSA architectures protected by
LFSR and estimate information leakage under this new attack.

We use the same 6000 key pairs, repeat the measurement
for each key eight times and take all the runtime measure-
ments for each key pair to calculate mutual information.
Correspondingly, we apply each message eight times and take
the mean as the runtime for the message in our attack as
well. The mutual information and attack results are shown in
Figs. 13 and 14, respectively. Under this new attack method,
mutual information results increase (or decrease) while the
timing attack success rates increase (or decease). This change
in the trend is because there is an increase in the number of
samples for estimating mutual information and multiple sam-
ples for the same key pairs can now more precisely reveal

the inconsistency in runtimes caused by randomization. Such
inconsistency will cause collisions in mutual information esti-
mation and lead RSA architectures with a large LFSR, which
are harder to attack, to have lower mutual information. In
terms of design overheads, the LFSR9 design reduces mutual
information to around 0.35 bits with only 0.3% performance
and 1.6% area overhead penalty, and the LFSR10 design
reduces mutual information to around 0.34 bits with only 0.6%
performance and 1.8% area penalty.

In conclusion, mitigation designs such as the L-2-R-always
and Power-ladder designs balance the conditional branch
structure to minimize timing difference. The Montgomery
design implements modular multiplication in the Montgomery
field to eliminate the timing difference resulting from different
messages. The Parallel architecture reduces timing varia-
tion by increasing parallelism to mask the timing difference
caused by unbalanced conditional branches. The Discretization
countermeasures reduce the timing difference by binning the
runtimes into groups. The Exponent-blind design and ran-
domization countermeasures decouple the correlation between
the key bits and the runtimes by introducing additional ran-
domness. Our information theoretic method can also help
to understand the effectiveness of different techniques on
mitigating timing channels according to our analysis.
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Fig. 15. Mutual information between different key bits and the total runtimes for RSA using sliding window attack methods.

Fig. 16. Percentage of key bits guessed correctly for RSA using different sliding window attack methods.

E. Sliding Window Attack Analysis

Based on the independence assumption made for the slid-
ing window methods in Section III-D, it is reasonable to
decouple the correlation of each window on the runtimes.
In this section, we present mutual information analysis and
attack results for the sliding window methods. We first focus
on the Nonoverlapping Sliding Window method. Its mutual
information equation is as follows:

I(ki; T) = H
(
k[s:(s+l−1)]

)+ H(T) − H
(
k[s:(s+l−1)], T

)

l
(i ∈ [s : (s + l − 1)]; s = s + l; 0 ≤ s < w) (11)

where s denotes the key bit location, l denotes the window
size (it is specified to be 1–3 in this paper) and w denotes the
key length. We can see that there is only one guess and mutual
information result for each key bit in the Nonoverlapping
Sliding Window method.

We then test the Overlapping Sliding Window method with a
window size l of three. There will be three guesses and mutual
information results for each key bit as shown in Section III-D.
In our analysis, we need to calculate I1(ks; T), I2(ks; T), and
I3(ks; T) due to the overlap in windows. Then, its mutual
information is calculated as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(ks; T) = H
(
k[(s−2):s]

)+ H(T) − H
(
k[(s−2):s], T

)

3

I2(ks; T) = H
(
k[(s−1):(s+1)]

)+ H(T) − H
(
k[(s−1):(s+1)], T

)

3

I3(ks; T) = H
(
k[s:(s+2)]

)+ H(T) − H
(
k[s:(s+2)], T

)

3
I(ks; T) = max{I1(ks; T), I2(ks; T), I3(ks; T)}

(s = s + 1; 0 ≤ s < w).

(12)

We employ (11) and (12) to quantify the information leak-
age from the Sequential design under the sliding window

Fig. 17. Probability distribution of Spearman tests. The above line is at 0.1
significance level and the below line is at 0.05 significance level.

attacks using the same 6000 key pairs. The results are shown
in Fig. 15. We can see that the mutual information result
increases with the window size increasing. When using 1-
bit, 2-bit, and 3-bit windows, the mutual information results
are 0.7, 0.77, and 0.81 bits, respectively. When using the
Overlapping Sliding Window method, the mutual information
is about 0.82 bits.

Then we perform timing attack based on sliding window
methods using 500 different key pairs. Fig. 16 shows the
average accuracy for the key guesses. The results show that 1-
bit-window method correctly guesses 73% of the key bits. The
2-bit-window and 3-bit-window methods increase attack suc-
cess rates to 82% and 87%, respectively. And the Overlapping
Sliding Window method has about 98% accuracy.

We can also see that as the mutual information results go
higher with the window size increasing, the attack success
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Fig. 18. Mutual information between different key bits and the total runtimes for ECC, RSA, and AES implementations.

rates increase too. Both mutual information and attack success
rate indicate that sliding window attacks aggravate key leak-
age. Mutual information is capable of reflecting and assessing
information leakage of the RSA timing channel in the circum-
stances of sliding window attacks as validated by the attack
results.

F. Correlation Analysis

To better determine the connection between mutual infor-
mation and leakage, we rely on Spearman’s ρ, as a cor-
relation measure between mutual information (shown in
Figs. 5, 7, 9, 11, 13, and 15) and attack success rate (shown
in Figs. 6, 8, 10, 12, 14, and 16) for each key bit position
across all the designs. In this paper, we deal with each key
bit position separately lest too much trouble in independence
analysis between the key bits.

Spearman’s ρ is nonparametric, which means that the
measure does not assume data comes from a particular
parametrized distribution. High correlation is achieved when
one variable is a monotonic function of the other regardless
of what this function may be. While significance of ρ may
be computed according to several distribution-based measures,
we compute it using an exact permutation test for each key bit
from position 2 to 127 (the least significant two key bits are
removed because their values are constant). Fig. 17 shows all
the p values of the Spearman tests. We see that 117 key bit
positions (93% of the key bit positions) have p less than 0.1,
where at the α = 0.1 level we reject the null hypothesis that
the mutual information and success rate are uncorrelated. We
see that 110 key bit positions (87% of the key bit positions)
have p less than 0.05, where at the α = 0.05 level we reject
the null hypothesis that the mutual information and success
rate are uncorrelated. This allows us to say that for a greater
value of the mutual information we have much confidence to
see a greater success rate—indicating greater information leak-
age. In other words, both success rate and mutual information
are capable of characterizing timing leakage for cryptographic
hardware architectures. Based on the timing channel leak-
age of these architectures given different situations, mutual
information is positively correlated with the attack success
rate.

Given that it may not completely conform to independence
condition between different key bits in reality, we can still
rely on statistical tools to implement proper correlation cal-
culation. For example: 1) using the average of the dependent

data points as [17] do; or 2) analyzing each dependent key bit
position separately across all the designs as this paper shown;
or 3) setting up statistical model such as hierarchical model or
random effects model with respect to the dependence, we do
not discuss this in more detail here, leaving it an open problem
to discuss and solve in future.

VI. ASSESS TIMING CHANNEL IN OTHER CIPHERS

Mutual information is also capable of capturing timing leak-
age in other ciphers, such as AES and ECC. We use AES,
RSA (the Parallel design) and ECC cores from opencores.org
for illustration. The mutual information results are shown in
Fig. 18.

Timing channel in AES results from the unbalanced con-
ditional modular reduction in the xtime primitive in the
MixColoumns operation [18]. However, when we measure the
mutual information between the key bits and runtimes using
an AES core from [19], the result is 0. This indicates that
there is no timing channel in this AES implementation. This
is because the xtime primitive has been balanced to constant
runtime, there is no key-dependent timing variation as in [18].

The most important computation in ECC is point scalar mul-
tiplication. The binary implementation of scalar multiplication
using double-and-add algorithm has a conditional branch state-
ment structure similar to RSA. When the key bit is one, the
key bit iteration performs both point add and point double cal-
culation; otherwise it performs point double only. The key bits
have a significant effect on the runtimes of scalar multiplica-
tion. Such unbalanced conditional branch structure contributes
to timing difference. For the ECC implementation from [19],
we use (9) to measure the mutual information between the
key bits and the runtimes using 6000 keys. The results are
shown in Fig. 18. The mutual information is around 0.04 bits,
which is pretty low. It indicates that there is a timing channel,
but it can be difficult to attack. This ECC implementation has
a timing channel characterization similar to the Montgomery
RSA design. This is because the ECC implementation uses
point add and point double with constant times, and the ECC
input points have no effect on the timing variation [19]. So we
cannot attack the ECC design by testing different input points
using Kocher’s method. Only the key has an effect on timing
variation, which means we can still attack the ECC by testing
different keys (e.g., the brute-force method).

Mutual information can assess the ECC timing channel
information leakage in this test. However, a full overview of
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timing channel characterization in different ECC implementa-
tions requires a thorough quantitative analysis of multiple ECC
designs with different parameters and mitigation techniques.
We will leave it to explore in depth in future work.

VII. RELATED WORK

There are numerous works that use information theoretic
methods to ascertain the security of a system by analyzing
the behavior of the software. Denning [20] is amongst the
first to relate security and information theory. McLean [21]
first described the flow model security property; it is later
formalized quantitatively by Gray [22] as an applied flow
model, which relates noninterference to the maximum rate of
flow between variables. Clark et al. [12] used different infor-
mation theoretic measures to bound the information leaked
from while programs. McIver and Morgan [23] used condi-
tional entropy to calculate the channel capacity of a program.
McCamant and Ernst [24] presented a technique to more
precisely quantify how much information is revealed by the
public output of C-like programs. Heusser and Malacaria [25]
introduced quantitative information analysis for C code and
show that the information leakage vulnerabilities in the Linux
Kernel. Information theory measures, e.g., the worst case
mutual information [26] and min-entropy [27], are used at the
system level to determine the difficulty of breaking into the
system. None of these techniques deal with hardware designs
as we describe in this paper.

There are numerous efforts focusing on using mutual infor-
mation as a distinguisher function for side channel analysis
(power, EM, and fault analysis [28]–[30]). Batina et al. [28]
and Gierlichs et al. [31] performed a comprehensive study
on mutual information analysis on the power attacks. These
are inspired by Standaert et al. [32], who use mutual infor-
mation to measure the amount of side-channel leakage for a
cryptographic function implementation. They all use mutual
information to attack the design. None of these works attempts
to characterize the effects of hardware optimization, mitigation
techniques, and countermeasures on the timing channel as we
do in this paper.

Perhaps the most similar work to ours is that done by
Köpf and Dürmuth [14]and Köpf and Basin [33]. They provide
a bound on the information leakage through a timing channel
based upon the number of observations. They use conditional
entropy to derive that bound. This is similar in spirit to what
we do in this paper in that we are trying to derive a metric for
security. However, we are looking at orthogonal variables—
they look at the effect of the number of measurements on
the leakage, while we are trying to understand how a design
itself effects the leakage and how different attacks effect the
leakage.

VIII. CONCLUSION

In this paper, we demonstrate the possibility of using the
mutual information as a metric to quantify the amount of
information a hardware architecture leaks through a timing
channel. This paper reveals that the mutual information and
success of the attack is correlated, i.e., a design with higher
mutual information is more likely to expect higher attack

success rate. This paper suggests that mutual information is
a promising metric for quantifying the information leakage
through timing side channel.
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