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Abstract—Program-in chip-out (PICO) is a system for auto-
matically synthesizing embedded hardware accelerators from
loop nests specified in the C programming language. A key issue
confronted when designing such accelerators is the optimization
of hardware by exploiting information that is known about
the varying number of bits required to represent and process
operands. In this paper, we describe the handling and exploitation
of integer bitwidth in PICO. A bitwidth analysis procedure is
used to determine bitwidth requirements for all integer variables
and operations in a C application. Given known bitwidths for all
variables, complex problems arise when determining a program
schedule that specifies on which function unit (FU) and at what
time each operation executes. If operations are assigned to FUs
with no knowledge of bitwidth, bitwidth-related cost benefit is
lost when each unit is built to accommodate the widest operation
assigned. By carefully placing operations of similar width on
the same unit, hardware costs are decreased. This problem is
addressed using a preliminary clustering of operations that is
based jointly on width and implementation cost. These clusters are
then honored during resource allocation and operation scheduling
to create an efficient width-conscious design. Experimental results
show that exploiting integer bitwidth substantially reduces the
gate count of PICO-synthesized hardware accelerators across a
range of applications.

Index Terms—Application-specific design, architecture
synthesis, bitwidth, clustering, embedded system, hardware
accelerator, operation scheduling, resource allocation.

I. INTRODUCTION

A S THE COST of complex chips decreases, the markets for
personal digital assistants, MP3 players, cellular phones,

toys, games, network routers, and other specialized high-per-
formance electronic devices is growing explosively. Many of
these devices perform computationally demanding processing
of images, sound, and video or packet streams. To reduce cost
and power consumption, the electronic components of these de-
vices are now often realized as a single application-specific inte-
grated circuits (ASICs). In many such ASICs, specialized non-
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programmable hardware accelerators (NPAs) execute parts of
the application that would run too slowly if implemented in soft-
ware on an embedded programmable processor. Rapid low-cost
design, low production cost, low energy consumption, and high
performance are important in these designs.

In order to reduce design time and design cost, the Hewlett-
Packard Laboratories program-in chip-out (PICO) project is fo-
cused on automating the design of NPAs from high-level speci-
fications. Source code (in a subset of C) for a performance-crit-
ical loop nest is used as a behavioral specification of an NPA.
The PICO system compiles the source code into a custom hard-
ware design in the form of a parallel special-purpose processor
array. The system produces a VHDL design for the array, its
control logic, its interface to memory, and its interface to a host
processor.

PICO’s goal is to synthesize hardware systems having
minimal cost over a range of computational rate requirements.
This paper presents analysis and optimization techniques that
are needed to synthesize cost-effective hardware when function
units (FUs) process program operations having differing integer
precision requirements. Techniques have been developed to
provide required bitwidth information on all program variables
and to optimize hardware using this bitwidth information.

Our paper was based on an existing PICO system that had no
capability for analyzing or optimizing bitwidths. We needed an
approach that provided accurate bitwidth information for use
during hardware optimization. While some bitwidth informa-
tion was directly available by inspecting the code (e.g., the size
of a constant), other information could only be provided by the
user. Thus, a facility for acquiring user-provided bitwidths was
needed. Further, it was unreasonable to expect that a user deco-
rate the bitwidth of every temporary within a program. Not only
is this process tedious, many temporaries are created throughout
the optimization process and the user is not even aware of their
existence. Thus, we needed to develop a bitwidth analysis ap-
proach to determine the required bitwidth for all program data.
In our approach, users define the bitwidth of selected variables
through declarations in the source code. With knowledge of
these declarations, opcode semantics, and widths of known con-
stants, bitwidth analysis derives the required width for all pro-
gram variables, expressions, and operations. The bitwidth anal-
ysis approach that is presented here is simple, efficient, and pro-
duces reasonably accurate results.

Hardware optimization using bitwidth information is a very
complex problem. When each FU processes only a single pro-
gram operation, the precision of each FU can be precisely tai-
lored to the needs of this single operation. In this case, optimiza-
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tion is simplified to a task of hardware pruning. However, when
FUs process multiple operations, the benefits of width-sensitive
optimization are often diluted. When a single FU processes a
mix of narrow and wide operations, it must support the widest
operation that executes on it irrespective of the width of the
narrowest operation. If operations are assigned to FUs with no
knowledge of bitwidth, hardware is wasted as narrow and wide
operations are assigned to FUs. It is, therefore, desirable to care-
fully assign operations of similar width to a common FU.

In the approach described here, all FUs use the standard C lan-
guage representations for processing operands of varying width.
This exploits most of the advantage available in treated exam-
ples, and is consistent with PICO’s high-level synthesis heuris-
tics and low-level synthesis capabilities. FUs are customized
only in the number of bits that they process. Operands are refor-
matted using zero fill, sign extension, and truncation. In support
of this approach, we define the bitwidth of a variable to be the
number of bits required to represent the variable over the range
of values it can take on. If the variable is a signed integer, its
bitwidth is the number of bits required in two’s complement. If
unsigned, then its bitwidth is the number of bits required to hold
the largest attainable positive value.

The task of synthesizing hardware requires the solution of
complex optimization problems. These arise when operations
of varying width are assigned to a heterogeneous set of FUs,
each potentially capable of executing multiple operation types,
e.g., an arithmetic logic unit (ALU). A key goal for PICO is
to provide a family of hardware solutions that vary in both cost
and performance. Low-performance solutions should be less ex-
pensive while high-performance solutions cost more. In order
to achieve this objective, processors are synthesized so as to be
adequately powerful to process data at a given computation rate
yet minimum in cost. If costs are to diminish as the chosen pro-
cessing rate is decreased, a strategy is needed to use the same
hardware unit to process more than one program operation when
low processing rates are adequate. This implies that each FU
may potentially processes program variables of differing width.

A scheduler chooses the FU and time at which each opera-
tion takes place. The machine cost is strongly dependent upon
how well the scheduler makes these choices. To make sched-
uling aware of width, we employ a new technique,width clus-
tering, in which operations with similar bitwidths are grouped
into clusters before scheduling. Width clustering takes into ac-
count each operation’s type and width and uses this information
to identify width clusters that help minimize FU cost.

By binding operations of the same type to a common FU, cost
is reduced as the FU is specialized (e.g., an adder as opposed
to an ALU). The scheduler can channel expensive operations
like divides into a common FU to avoid proliferation of expen-
sive FUs. By binding operations of the same width to a common
FU, cost is reduced as FUs that process only narrow operands
are themselves narrow. When FUs process operands of similar
width, the costs of the registers and switches that connect FUs
are also reduced. However, difficulty arises because these cri-
teria often compete.

Width clustering addresses these complex tradeoffs before
scheduling begins as it groups operations into clusters. Width
clusters guide resource allocation and scheduling to produce

a more efficient design. Clusters are formed by analyzing the
types and widths of all operations. Operations that may share re-
sources to reduce cost are placed in the same width cluster. After
clusters are formed, hardware resources are allocated separately
for each cluster. This allocation is then used by a scheduler that
uses these resources to satisfy all computational needs. During
scheduling, the binding of operations is restricted to FUs from
their own cluster. This produces a cost-sensitive binding of op-
erations to resources based on operation bitwidth and type.

We believe that width clustering represents a first attempt to
synthesize hardware over a range of computation rates while
exploiting both type and width information for each operation.
Width clustering produces efficient hardware by selecting hard-
ware from a complex and heterogeneous library of FUs each ca-
pable of executing one or more operation types. Results indicate
substantial improvements in the cost of generated hardware.

II. NPA SYNTHESIS IN THE PICO SYSTEM

The overall structure of PICO is shown in Fig. 1. A C loop
nest is identified by the spacewalker (a design space exploration
tool) as the application component to be synthesized and pro-
vided to the loop parallelizer to begin the process. Both the
number of processors and the computational rate for of each pro-
cessor are specified by the spacewalker as input to the synthesis
process. These parameters collectively determine the computa-
tional rate at which the loop nest can be processed and are spec-
ified either automatically by PICO’s spacewalker or manually
by a user. PICO designs a nonprogrammable processor array
for the given loop nest consistent with this computational rate
specification. The register transfer level design (in VHDL) is
written to an output file. PICO also generates performance and
gate count measurements for the NPA. See [1] for a full descrip-
tion PICO’s NPA synthesis capabilities.

We now provide an overview of PICO by briefly describing
each of its components.

Spacewalker:PICO’s spacewalker is a complex heuristic
engine that drives system synthesis. In general, multiple
application components must be accelerated on one or more
customized hardware processors. Processors take on more
than one form including the PICO-NPAs discussed here as
well as PICO very long instruction words (PICO-VLIWs)
(VLIWs customized to specific application requirements) [2].
A limited chip area is available for these diverse needs. Further,
given a desired computation rate, the hardware cost or chip
area required by a suitable accelerator is not known until the
synthesis process is at least partially completed. To synthesize a
complex system having optimal performance and cost, PICO’s
spacewalker selects candidate performance goals for specific
application components and it requests that these components
are synthesized to evaluate their cost. The merits of this choice
can than be evaluated at the system level and the choice can be
adopted or adjusted before full system synthesis proceeds. This
paper focuses exclusively on techniques for optimizing a loop
nest to produce a single PICO-NPA at a candidate computation
rate as requested during spacewalking.

Loop Parallelizer: The loop parallelizer is given a nest of
counted loops and analyzes and exploits parallelism within that
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Fig. 1. PICO NPA design system.

nest by generating a high-level plan called an iteration schedule.
The iteration schedule determines a temporal (what time) and
spatial (what processor) plan for all loop iterations. In order
to maximize scheduling freedom, the loop parallelizer perfec-
tizes the input loop nest. To perfectize a loop, out-of-loop state-
ments are moved into a loop body and executed conditionally
with appropriate predicate guards. The guarding expressions are
crafted to ensure that these out-of-loop statements execute with
true guarding predicate only on iteration when they would have
originally executed. The resulting perfect nest of counted loops
is flattened into a single loop with a trip count that is the product
of the loop trip counts in the original nest. In this form, the iter-
ation scheduler gains additional freedom in organizing the loop
nest for parallel execution and parallelism is limited only by the
code’s essential data dependences.

A valid iteration schedule must satisfy the following proper-
ties; each processor’s loop code executes a precisely specified
subset of all loop iterations and every loop iteration is executed
on some processor. This plan is symmetric among processors. A
single loop body is generated that is executed in a lock-step par-
allel manner on all processors. The plan has the property that all
dependence constraints can be met both within each processor
and among processors at the requested computation rate.

Processor Synthesis:The process of creating a customized
data path from the loop body is shown in the processor synthesis
box in Fig. 1. The goal is to achieve the requested throughput for
the given code with minimum hardware cost. This is performed
by first allocating a set of FUs and then software pipelining
the loop code. Software pipelining generates loop schedules
for PICO NPAs. Software pipelining creates a single program
schedule for all iterations that can be initiated at a constant rate
called the initiation interval (II). The software pipeliner can bind
multiple operations to each FU. The FU’s hardware realization

will be determined after scheduling and it will be made as wide
as the widest of these operations.

We now describe the modules that are used within processor
synthesis.

Code Optimization:This phase is performed by Elcor, a
retargetable VLIW compiler [3]. After classical optimizations,
if-conversion removes any branching within the loop body.
The resulting branch-free loop body is suitable for software
pipelining.

Bitwidth Analysis: This phase infers the bitwidth required to
represent every value computed in the loop. Our approach is
presented in Section III.

Width Clustering: The set of operations is partitioned into
subsets of operations having similar width using the heuristics
discussed in Section IV.

Clustered FU Allocation and Scheduling:Before software
pipelining begins, a set of resources must be allocated that are
suitable for executing the loop at the given single-processor rate.
Rather than allocating a single set of resources where each re-
source can be used to execute any compatible operation, re-
sources are allocated in clusters. Within each operation cluster,
we allocate (by solving a small mixed integer linear program) a
set of FUs that is powerful enough to perform the cluster oper-
ations at the desired II [4]. Each cluster of FUs is then charac-
terized by a machine description for use by the Elcor software
pipeliner.

Hardware is synthesized by first generating a software
schedule that decides on which FU and at what time each
operation occurs and then by more mechanically generating
a data path during data-path synthesis. Each processor in the
array is heavily pipelined. The computation of a single iteration
typically requires more than the II cycles, so that there will be
several iterations in the pipeline at any given time. The software
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pipeliner schedules operations so that dependences among
operations are satisfied both within each iteration and for any
carried dependences between iterations. Moreover, resource
conflicts must be avoided: the scheduler ensures that two
operations are not scheduled on the same FU at the same time.
For simplicity and consistency with PICO’s current low-level
hardware synthesis capability, we assume that all FUs are fully
pipelined and able to begin a new computation on every cycle.
It follows that a given FU can be assigned at most II operations
from the loop body.

Data-Path Synthesis:The scheduler makes many difficult
heuristic decisions regarding how resources are to be used.
By finalizing these decisions, the synthesis of the registers,
switches, and interconnect needed to maintain and transport
operands within and among FUs within a processor becomes
somewhat more mechanical. Data-path synthesis generates a
customized data path for a single processor and then replicates
that data path for all processors. Each data path is connected
where needed with sibling processors to yield an array of
processors capable of executing the all iterations at the desired
aggregate rate.

III. B ITWIDTH ANALYSIS

Bitwidth analysis infers the bitwidth of every variable in a
program segment. The analysis operates on the assembly-level
internal representation in Elcor. Each reference to a register as
a source or destination operand is tagged with its computed
bitwidth. The results of bitwidth analysis are used by architec-
ture synthesis to infer the sizes of the hardware components for
the hardware accelerator.

PICO uses initial bounds on the bitwidth for specific vari-
ables and iterative constraint propagation to identify adequate
bitwidths for all variables. Initial bounds have multiple sources.
First, conventional C variable types (bool, char, and short) pro-
vide important bitwidth information. The exact widths of all
constants are directly known. We also give the user more fine-
grained control over bitwidths of variables: a pragma specifying
an arbitrary bitwidth (e.g., 5 bits) may be optionally supplied
after each variable declaration in the C source code. Values read
from or written to an external location, such as memory, are ideal
candidates for user bitwidth annotation. These values are not
analyzable and the compiler must assume the worst case in the
absence of user intervention.

Another source of initial bounds is the PICO loop parallelizer,
which introduces a number of variables into the code as it trans-
forms the original program to parallel form. Bounds on these
values are generally known by the loop parallelizer and their re-
quired widths are, therefore, known. However, these widths are
not readily visible by direct inspection of the code after loop
parallelization. The loop parallelizer inserts additional pragmas
within resultant code to provide this information.

These bounds on bitwidths for all program variables provide
a starting point for iterative constraint analysis. Iterative con-
straint analysis can refine or narrow the bitwidths for many
values by repeatedly propagating width constraints through the
program. The width of a variable is constrained by two factors.

TABLE I
OPCODETRANSFERFUNCTIONS FORCOMMON INTEGEROPCODES

Form of an operation is dest= src1 opc src1. We used; s1, ands2 to represent
the widths of dest, src1, and src2, respectively.

First, the width is limited by the amount of useful data available
when the variable is defined. This is referred to as thedef con-
straint. For example, 16 bits are not necessary to hold the result
of adding two 3-bit numbers—4 bits is enough. Second, a value
need not retain more bits than the number needed by its uses.
This is referred to as theuse constraint. For example, a 32-bit
quantity contains unneeded data if it is only used in 10-bit add
operations.

The individual operations are connected via define-use and
use-define chains such that every define of a variable is con-
nected to the operations that consume that value and the re-
verse. We repeatedly apply the def and use constraints to get
ever tighter restrictions on variable widths until we converge to
a stable solution. This approach is a natural extension to stan-
dard forward and backward dataflow analysis techniques [5].

The iterative constraint propagation is best explained by
breaking it down into its three constituent components: opcode
transfer functions, forward analysis, and backward analysis.
Each is discussed in the remainder of this section followed by
an example of the entire process.

A. Opcode Transfer Functions

At the individual operation level, there is an opcode-specific
calculation that determines the flow of information through the
operation. For example, when two 6-bit quantities are added,
it is known the result is not larger than 7 bits. Similarly, when
an add has a 10-bit result, it is known that the inputs need not
be larger than 10 bits. Such functions, referred to asopcode
transfer functions, are determined for every opcode in the com-
piler’s instruction set. They are broken down into forward op-
code transfer functions to specify the rules for computing output
widths of an operation given its input widths and backward op-
code transfer functions to specify the rules for computing input
widths of an operation given its output widths.

The opcode transfer functions for some commonly occurring
integer arithmetic opcodes are presented in Table I. The forward
transfer function for add states that the destination width is the
maximum of the two source widths plus one. In essence, a single
carry-out bit from the larger number could be generated; hence,
one additional bit is required. The backward transfer function
for add states that the width of both sources is equal to the width
of the destination. Since an add only propagates information
from the low-order bits to the high-order bits, an-bit result
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is only dependent on the low-order bits of the inputs. For in-
teger divide, the destination is no wider than the dividend. How-
ever, a maximal positive value for a particular bitwidth could be
divided by a negative one, thereby increasing the required width
of the result by one in two’s complement format. Conversely for
divide, the destination width places no constraints on the source
widths. Hence, the only conclusion is that the sources are uncon-
strained, represented asmax width in Table I. The table presents
the transfer functions for a variety of other opcodes that are de-
rived through similar analyzes.

B. Forward Analysis

Forward analysis repeatedly applies the def constraint to limit
the output widths of all operations. Information is propagated
from operation inputs to their outputs via the forward opcode
transfer functions. The forward propagation phase is applied it-
eratively across all operations in the program until a fixed point
is reached.

The algorithm for forward analysis is presented in Fig. 2. The
algorithm maintains two sets of widths for all of the register
references in the program segment (or region) being analyzed:
current wideth (CW) and forward width (FW). CW is the last
set of stable widths that were computed. Initially, CW is deter-
mined from the variable declaration information received from
the PICO frontend. FW is the set of working widths that are
computed during forward analysis. FW is initialized differently
for each type of operand. For source operands that are defined
externally (a live-in register, memory location, or literal), the
CW value is used as the initial value. These operands are never
computed in the code. Thus, forward analysis cannot make any
conclusions about the widths of these operands. For all other
source and destination operands, FW is set to uncomputed, rep-
resented as zero in the algorithm.

The middle portion of the algorithm in Fig. 2 shows the it-
erative forward analysis process. The source widths (FW)
for an operation are calculated by determining the widest defi-
nition of the source to reach the operation under consideration.
Note that the minimum between the widest reaching definition
and the CW is always taken, so that the width is never increased
beyond its last stable constraint. The destination widths are then
computed by applying the forward opcode transfer function.
The process continues until a fixed point is reached. When the
fixed point is achieved, the FW widths represent the next stable
and more constrained set of widths. Hence, CW is updated with
FW where there are differences.

C. Backward Analysis

Backward analysis is analogous to forward analysis with the
direction of all constraint propagation reversed. The use con-
straint is repeatedly applied to limit the input widths of each
operation given constraints on the output widths. Information
is propagated from an operation outputs to its inputs using the
backward opcode transfer functions.

The algorithm for backward analysis is presented in Fig. 3.
It is very similar in structure to the forward analysis algorithm.
Thus, only a few differences are pointed out here. The back-
ward width (BW) is the set of working widths that are computed
during backward analysis. The initialization process for BW sets

Fig. 2. Iterative algorithm for backward bitwidth analysis.

the width of destination operands that are either memory loca-
tions or live-out registers to CW. These operands have no con-
sumers. Thus, backward analysis cannot derive any information
about their widths. All other operands have their BW set to un-
calculated or zero. The backward analysis is iteratively applied
across all operations until a fixed point is reached.

D. Example

To illustrate the application of bitwidth analysis, consider the
example in Fig. 4. The original code consists of four instruc-
tions: two sequential instructions, a third within a loop, and a
fourth after the loop. For this example, the trip count of the loop
is unknown. The initial widths provided by the user are anno-
tated above each variable in the original code. Forward prop-
agation applies the def constraint to propagate right-hand side
constraints to the left-hand side for each instruction. For I1, the
addition of a 3-bit and a 2-bit quantity produces at most a 4-bit
result, hence the width of is 4 bits. For I2, the 4-bit value for
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Fig. 3. Iterative algorithm for backward bitwidth analysis.

is propagated downward from I1. Then, the forward opcode
transfer function for multiplication states thatbits multiplied
by bits yields at most bits (see Table I). Thus, the width
of is calculated as 15 bits. Similar propagation is applied to the
other instructions. Since I3 is within a loop, the forward propa-
gation iterates until reaching a fixed point in whichis 32 bits.
This result is best possible since the loop iterates an unknown
number of times.

Backward analysis is applied next. The constraint of the final
output being no more than 16 bits is propagated. This affects
the width of and in I4 and I3 because the 16-bit output
requires only 16-bit inputs. Note that the with ofis reduced
even though it is a live-in variable. I1 and I2 are not affected by
the backward propagation because they already contain stronger
width constraints.

In this example, a second iteration of forward analysis after
backward analysis completes yields no further improvement. In
fact, we have tried and failed to find a case in which applying

an outer loop to the analysis process is useful. We suspect that
forward iteration to convergence followed by backward to con-
vergence achieves the best solution with this approach.

IV. WIDTH-SENSITIVE ARCHITECTURESYNTHESIS

The architecture synthesis process makes all decisions
needed to define efficient hardware for a given input loop
nest. In this section, we describe techniques that we have
incorporated into architecture synthesis that allow it to use
bitwidth information to further improve the efficiency of the
generated hardware.

The algorithms for architecture synthesis presented here are
based on heuristics that divide a very complex problem into mul-
tiple simpler problems that are solved in a phased sequence.
A truly optimal strategy jointly makes all design decisions in
an environment where it can establish that the selected deci-
sions are superior or equal to any other design choice. Optimal
search algorithms typically require the traversal of a combina-
torial search space.

The use of bitwidth information is one example of the
ongoing incorporation of additional design complexity into
PICO’s architecture synthesis approach. This complexity is
exhibited in a number of ways. Bitwidth information adds
complexity to PICO’s architecture synthesis input. If this new
information is to be exploited, algorithms will have to be up-
graded to take this information into account. The optimization
criteria used during architecture synthesis grow more complex
as PICO’s architecture synthesis process tries to more faithfully
model variable width hardware cost and, finally, the incorpora-
tion of variable width hardware greatly adds to the diversity of
designs that must be considered. Multiple design choices that
were coequal when widths were fixed now represent distinct
potentially optimal choices.

A number of papers have presented cleverly contrived integer
linear programming formulations of the special-purpose hard-
ware synthesis problem [6], [7]. These formulations represent
the necessary design decisions by using a large number of
integer variables. These efforts have implicit architectural limi-
tations that constrain the search space as defined by the formu-
lation so that solution is tractable. No doubt, they can be ex-
tended in architectural scope and to accommodate bitwidth in-
formation. The concern with these methods is the runtime of
the solver: as the complexity of the available choices for ar-
chitecture synthesis and the optimization criteria continue to
increase, optimal search algorithms experience exponentially
growing runtimes and, in practice, they are unacceptably slow.

Prior to the incorporation of bitwidth analysis, PICO had a
heuristic two-phase strategy for architecture synthesis. In this
strategy, a first phase identifies a set of FUs of smallest cost
that is capable of executing the loop body at the requisite com-
putation rate. This minimization implicitly assumes that inter-
connect cost is less important than FU cost. The second phase
schedules all operations on a specific FU and at a specific mo-
ment in time, thus, completely specifying the higher level ar-
chitecture. The FU cost minimization uses an integer linear pro-
gramming formulation that is practical due to the simplicity of
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Fig. 4. Example application of bitwidth analysis.

the search space (there are no integer variables) and the em-
pirical observation that optimal solutions can be found quickly
[1]. The scheduling pass is heuristic due to the very large search
space and the lack of efficient and provably optimal decision
making criteria.

The need to consider jointly operation width and operation
type affects both the composition of the FUs in the synthesized
processor as well as the detailed binding of each operation to one
of these FUs. The software pipeliner is responsible for solving
a difficult combinatorial search problem and uses heuristics to
identify an operation schedule that meets resource and depen-
dence constraints. Rather than adding complexity to the sched-
uler, we have developed a clustering phase that is invoked before
scheduling. It is designed to restrict the scheduler in such a way
that efficient width-sensitive designs are produced.

In general, clustering is a process of partitioning the set of
operations and the set of FUs into subsets before scheduling
and constraining the scheduler to bind operations to FUs of the
same cluster. Operation clustering has traditionally addressed
the problem of compiling programs for predefined hardware
clusters of FUs and register files [8].

PICO balances the competing costs of supporting opera-
tion width and operation type by width clustering. In width
clustering, the set of operations is first partitioned into subsets
having similar type or similar width. After operation clusters
are formed, FUs are allocated separately for each cluster.
Width clustering promotes the use of narrow FUs for narrow
operations and it also channels expensive operations into a
single cluster to avoid proliferation of expensive FUs.

Width clustering consists of the following three steps:

1) virtual FU (VFU) assignment;
2) VFU clustering;
3) creation of clustered machine description.

Each is discussed in the remainder of this section. An example
then follows.

A. Virtual FU Assignment

A VFU assignment is a preliminary binding of operations to
FUs that is directed by the cost of implementing the operations
with known width on heterogeneous FUs. It is derived without
using any data dependence information. VFU assignment pro-
vides a sample binding from which further clustering decisions

Fig. 5. Algorithm for VFU assignment.

are made. It does not constrain the actual bindings that finally
are made. Pseudocode for the VFU assignment algorithm is pro-
vided in Fig. 5 and pseudocode for its supporting procedures is
provided in Fig. 6.

The VFU assignment has a number of inputs. A set of oper-
ations that must be implemented along with IIs are provided.
Each operation has a width that is determined
using bitwidth analysis. PICO uses a library of FUs each with a
specific opcode repertoire and a cost that varies with the FU’s
width. The VFU assignment procedure uses a cost function

that is defined for each FU. The cost depends
on both the function to be implemented as well as the width
of the FU implementation. These costs are calibrated from an
existing standard cell library that can generate actual FUs of
appropriate width and repertoire.

VFU assignment begins in the procedure in Fig. 5.
The input parameter region is an object that holds all required
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(a)

(b)

Fig. 6. Support functions for VFU assignment. (a) Algorithm for candidate
VFU list construction. (b) Algorithm for recursive VFU assignment.

information about the region of the input program containing
the loop nest for which hardware is to be synthesized. II spec-
ifies the initiation interval for the desired schedule. As we dis-
cuss later, two distinct heuristics are embodied within the pseu-
docode. A more accurate heuristic uses a recursive descent to
calculate cost, while a faster heuristic terminates this descent
and sacrifices the optimality of selected VFUs while acceler-
ating the VFU assignment process.

The first action performed within is to invoke the
function (implementation not shown) in order to
build a sorted list of operations from input code. For each op-
eration, the cheapest FU is identified and used to determine the
operation’s inherent cost. An ’s cheapest FU is the
least expensive FU among those capable of executing. The
determination of the cheapest FU takes the operation’s width
into account. An operation’s width is defined as the maximum
width of all of its operands. This represents a limitation of cur-
rent work as some operations like loads can have address width
that is unrelated to the data width and the use of this maximal
width is imprecise. For each FU that is capable of executing
the operation, ’s cost is measured at the width needed by the

operation . A cheapest FU is any of the FUs
that minimizes this cost. After inherent costs are calculated, op-
erations are sorted from highest to lowest cost and returned as
oplist from the function call to .

At each step in the VFU assignment procedure, a seed opera-
tion is selected from which a VFU is grown. This process begins
with the call to whose implementation is shown
in Fig. 6(a). The function identifies a seed oper-
ation as the costliest operation that has not already been bound
to a VFU. Given a seed operation, a candidate VFU (CVFU) is
grown for every hardware FU in the library that implements the
seed. The invocation of creates
a list containing a CVFU for each FU that implements the seed
operation. Each of these CVFUs is initialized with the property

, which identifies the FU that led to its creation.
A loop then separately processes each CVFU. A CVFU ac-

quires additional operation bindings as an inner loop traverses
the list of unbound operations from highest to lowest inherent
cost. As each operation is considered, the operation is bound to
the CVFU if the FU corresponding to the CVFU implements
the operation and the CVFU does not already have II operations
bound to it. Initially, zero operations are bound to the CVFU
and the first operation processed is the seed. The seed is always
compatible with and is always bound to the CVFU. Operation
binding continues until the CVFU has II bound operations or
the prioritized list of unbound operations is exhausted. When

is complete, a list of CVFUs is returned. Each
CVFU has a set of operations that has been
bound to it, a width that corresponds to the width of
the widest operation, and a hardware implementation cost for
the CVFU .

The algorithm uses one of two methods to determine the
CVFU that is selected as the final VFU for the seed. A rapid
heuristic minimizes anovercost function that computes the
amount that the actual implementation exceeds a lower bound
on the minimum possible cost. At each step in the algorithm,
the VFU for the seed is selected as the minimal overcost CVFU.
The overcost function is defined as

(1)

The overcost measures how close the actual cost of the
hardware implementation for a CVFU is to the sum of the
inherent costs for all operations assigned to that FU. The CVFU
having the lowest overcost is chosen as the VFU. After a VFU
is identified, the process continues by selecting the next seed
and growing a new VFU until all operations have been bound.

A threshold test ( ) deter-
mines whether the rapid heuristic is acceptable or more accurate
heuristics should be employed. When the overcost is unaccept-
ably high, a fully recursive technique is employed by calling

[pseudocode shown in Fig. 6(b)]. The
function calls to construct
a list of CVFUs. For each CVFU, the total cost is calculated as
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the actual cost of the CVFU plus the cost of implementing all re-
maining operations not bound to the CVFU. This remaining cost
is calculated recursively by calling with an
oplist consisting of the remaining unbound operations. A min-
imal cost is selected over all CVFUs and returned.

The VFU assignment pseudocode integrates a rapid heuristic
and an exponential heuristic into a common algorithm. This al-
gorithm has been used to enhance our understanding of both
heuristics and to gain a better understanding of how we might
wish to implement future width-clustering heuristics. We have
shown on a number of examples that the fully recursive heuristic
improves on results achieved by the rapid heuristic. By setting
the to infinity, the rapid heuristic is always
used. By setting to a negative number, the
fully recursive heuristics always used. This allows the compar-
ison of results derived by exclusive use of either heuristic. The
fully recursive heuristic is exponential in nature and cannot be
used in a production setting for large-scale problems. However,
timeout-based schemes or other computation limiting schemes
can be used to integrate limited recursion into the VFU assign-
ment algorithm.

After VFU assignment is complete, a set of VFUs is defined.
Every operation is bound to one VFU with a maximum of II op-
erations bound to a single VFU. The VFU selection and assign-
ment heuristic of this section has chosen a set of VFUs of ap-
proximately minimal total cost. The set of VFUs and the binding
of operations to them is next used to drive downstream clus-
tering that is cognizant of the effects of both width and reper-
toire on FU cost.

B. Form Operation Clusters Through VFU Clustering

The purpose of this step is to partition the set of operations
into operation clusters. To that end, VFU clustering is used to
group VFUs based on width. The width of each VFU is deter-
mined by the widest operation assigned to that VFU. The VFUs
are sorted from highest to lowest in width. A cluster is initialized
when the widest unbound VFU is added to it. The width of this
VFU defines the cluster width. The ratio of the cluster width to
each of the remaining unbound VFUs is calculated. VFUs are
added to the cluster until this ratio falls below some threshold
(e.g., 1.5). When the cluster is complete, the widest unbound
VFU is again selected as a seed to form a new cluster. The
process repeats until all VFUs are assigned to clusters. Finally,
each VFU cluster gives rise to an operation cluster. All opera-
tions bound to a common VFU cluster reside within a common
operation cluster. After operation clusters are formed, the VFUs
have no further use and are discarded.

C. Machine Description Creation and Scheduling

Creation of the clustered machine description completes the
width-clustering process. For each operation cluster, a set of
FUs that can execute all operations within the cluster at the re-
quired rate is selected using integer linear programming. The in-
teger linear program allocates FUs from a library of FUs having
known cost functions. These functions relate FU width to FU
cost. In the PICO library, the unit of cost is estimated gate count.

The width of each cluster is determined by the widest oper-
ation within the cluster. For each of the operations within the

cluster, all FUs that implement the operation are added to that
cluster’s FU library. The cost for each of these FUs is evaluated
at the cluster width. The integer linear program is then applied
separately, for each cluster, in order to determine the initial set
of FUs for the cluster.

The selection of FUs is translated into a machine description
needed by the software pipeliner. A machine description for all
clusters is assembled by instantiating scheduling alternatives for
all allocated FUs within all clusters. For each alternative, its FU
type is used to identify a machine description for the FU that
is used to construct the machine description for the alternative
(i.e., the instance of the FU). The software pipeliner has been al-
tered so that it limits the binding of each operation to scheduling
alternatives corresponding to FUs that are within the operation’s
width cluster. After the machine description is constructed, the
software pipeliner is then used to determine a FU and time for
all operations.

Width clustering allows us to systematically reduce hard-
ware cost by taking advantage of width information without
increasing the complexity of FU allocation and scheduling.
In fact, width clustering simplifies both the FU allocation
and scheduling process. Since FU allocation is performed
separately for each cluster, the allocator solves a simpler allo-
cation problem for each cluster. This accelerates the allocation
process. Since, the software pipeliner is constrained to bind
each operation to scheduling alternatives within its cluster, the
number of allowed alternatives is reduced. Again, scheduling
is actually simplified by width clustering.

D. Example

To illustrate the application of width clustering, the ex-
ample in Fig. 7 is presented. For this example, we assume

is infinity, thus, the rapid heuristic for
VFU assignment is exclusively utilized. The example consists
of four operations, three adds and a subtract, and an II of two.
The example FU library has three elements: adder, subtracter,
adder–subtracter. For this example, each FU’s cost is linear
in bitwidth as specified in the upper right cell of Fig. 7. The
operations are sorted by their inherent cost, yielding an order
of I1-I3-I2-I4. The first seed is the head of the list or I1. It
can be implemented using either an adder (option A) or an
adder–subtracter (option B). With option A, the highest cost
operation that is compatible is I2, yielding a overcost of:

. With option B, the highest
cost operation that is compatible is I3, yielding a overcost of:

. The choice with the smallest
overcost is chosen; hence, option B is selected. The next seed
chosen is I2, and with a similar calculation, option A is chosen.
After VFU assignment is complete, there are two VFUs: a
32-bit adder–subtracter assigned operations I1 and I3; and a
6-bit adder assigned operations I2 and I4.

VFU clustering is then performed. Assuming a cluster ratio
of two, each VFU is assigned its own cluster. Hence after width
clustering is complete, there are two clusters, (I1, I3) and (I2,
I4). The creation of the clustered machine description selects
an adder–subtracter for the first cluster and an adder for the
second cluster. For this simple example, integer linear program-
ming happens to select the same FUs as those that were selected
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Fig. 7. Example application of width clustering using rapid heuristic.

during VFU assignment. Subsequent software pipelining en-
sures that I1 and I3 are bound to the resources in the first cluster
(adder–subtracter) and I2 and I4 are bound to the resources in
the second (adder).

It is interesting to reexamine the example with one small
change to the FU library. Assume that the cost of the adder–sub-
tracter is increased from 13 gates/bit to 15 gates/bit. In this case,
VFU assignment using the rapid heuristic fails to achieve an effi-
cient solution. The result is that three VFUs (32-bit adder, 32-bit
subtracter, and 5-bit adder) are assigned operations. Even with
the change in cost, the best solution is still two VFUs (32-bit
adder–subtracter and 6-bit adder) as achieved previously. The
rapid heuristic made an inefficient choice for the first opera-
tion assigning it to an adder (rather than an adder–subtracter),
thereby causing the problem. For this example, the exponential
heuristic achieves the best solution for either cost function.

V. HARDWARE GENERATION

The final phase of the design process is to build the actual
NPA hardware. A hardware processing engine is synthesized di-
rectly from the scheduled loop. Each hardware component (FU,
register, multiplexer) is sized using the results from bitwidth
analysis and scheduling.

The data-path schema for each processor in the NPA is shown
in Fig. 8. The data path consists of an array of heterogeneous
FUs that implement all operations in the loop body. FUs include
adders, multipliers, multiply–adders, ALUs, etc. Ports to mem-
ories are treated as FUs as well. The physical memories and
memory interfaces are not shown. There is also a special branch
FU that controls the software pipeline loop execution [9].

Each FU computes result operands that must be stored in reg-
isters until they are no longer needed. Our approach for de-
ploying registers is too complex to fully describe within this
paper, but a brief overview is presented here. A separate set of
registers is dedicated to storing results that are computed within
each FU. However, special treatment is needed for rarely oc-
curring cases where, due to the use of predicated conditionals,

Fig. 8. NPA data-path schema used by PICO.

a common result is computed by multiple FUs within mutually
exclusive conditional clauses. Each FUs result registers are im-
plemented as a customized network of individual register ele-
ments rather than as a multiported addressable register file. The
number of required registers depends upon the number of pro-
gram variables computed by each FU as well as the length of
time that each computed value must be maintained to support
the software pipeline schedule. After the register network and
the flow of operands through registers is fully specified, each
register element is further customized to its final width. Before
the loop can begin execution, all live-in values are downloaded
from the global memory and stored into the appropriate register
to initialize the loop.

Because a common set of registers stores all results that are
computed within each FU and because registers often hold
values for more than one program variable, width clustering
simultaneously reduces the hardware cost for the FUs as well
as the cost of the FUs’ result registers, i.e., the clustering of
operations of similar width into common FUs automatically
clusters operands of similar width into shared register elements.

Loop invariant operands receive special treatment. Constant
values are directly generated in hardware. Loop invariant values
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TABLE II
APPLICATION DESCRIPTION ANDTARGET THROUGHPUT

that are computed prior to entering the loop and then repeatedly
used within the loop require exactly one unshared register.

The data path is controlled by a ring counter that varies from
0 to II-1 and a loop counter that is initialized to the number
of loop iterations and decremented until it reaches zero. The
ring counter is used to generate control signals for switches
within the interconnect, registers, and multifunction FUs. A
final DONE flag is set when the desired number of iterations
have been executed and the pipeline is drained.

VI. EXPERIMENTAL EVALUATION

In this section, PICO’s bitwidth-sensitive architecture syn-
thesis is evaluated. The comparison is made against a baseline
PICO that is bitwidth unaware.

A. Setup and Application Characteristics

To perform the experiments, we used PICO to design NPAs
for a set of 20 loop nests. Table II presents the loop nests and a
brief description of each. The depth of each loop nest in the orig-
inal source is specified in the column labeled Depth. These loop
nests were chosen from a variety of domains including printing,
digital photography, communications, and networking. Narrow
bitwidths are common in these domains and used throughout
these applications. Width pragmas were inserted where appro-
priate to more precisely specify the widths of values kept in
memory (e.g., arrays).

One applicationchainis a synthetic application that was cre-
ated during our study of width-aware synthesis.Chain is a loop
nest that contains two dependence chains of multiply operations
that are identical except in the width of data they process. The
first chain operates on narrow data and the second on wide data.
In such an application, the opportunity for large cost savings
using bitwidth analysis is present because half of the data is
narrow. However, without width-aware heuristics, most FUs end
up being wide due to the unfortunate binding of wide and narrow
operations to the same FU.

TABLE III
DISTRIBUTION OF STATIC OPERATION WIDTHS

For these experiments, the performance is held constant for
each loop nest as specified by the II and the number of pro-
cessors. For each loop nest, the number of processors is set to
one and the chosen II is shown in Table II. Scaling the number
of processors should have little effect on the results because at
higher throughputs identical processors are replicated. By de-
fault, an II of two was chosen. However, there were several cases
that contained a recurrence constraint that requires an II that is
larger than two. For these loop nests, the lowest II that met the
recurrence constraint was chosen. The figure of merit in these
experiments is the cost of the design that achieves the speci-
fied performance. PICO measures cost using gate count esti-
mates for each hardware component. Each component has an
associated parameterized cost formula that has been calibrated
against a production-quality design library. To derive the total
cost, the hardware components are instantiated and the cost of
the components are summed across the design. These cost for-
mulas have been shown to accurately estimate system cost as
measured in gate equivalents. Cost estimates do not include the
cost of wires (including their length).

The width-clustering algorithm presented in Section IV
provides a parameter to determine the
heuristic that is applied for VFU assignment. Except for
the last experiment, these experiments are performed with

set to infinity. This causes the rapid
nonrecursive algorithm to be used for these experiments.

To provide some insight into the width characteristics of the
applications, a histogram of the static operation widths is pre-
sented in Table III. Each cell in the table contains the fraction
of static operations for a particular application whose width is
within the specified range. For example, 27% of the operations
in adpcmhave widths of 1–4 bits. As previously discussed, this
paper makes the simplifying assumption that an operation can
be described by a single width that corresponds to the maximum
width across all of its input and output ports. In general, a diverse
set of widths are present in each application. Most applications
also contain a large fraction of operations whose width is less
than 8 bits. A notable exception to these trends ismatmul. This
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Fig. 9. Effects of bitwidth analysis on NPA cost. Study compares two configurations to determine component widths: standard C widths (left bar) and bitwidth
analysis (right bar). Cost is broken down into three pieces: FU, register, and rest.

application is a matrix multiplication of two 32-bit matrices of
large size, thus, all variables are truly 32 bits. One can properly
anticipate that width-sensitive synthesis will have little effect
onmatmuldue to this characteristic. In the remainder of the ap-
plications, many of the 32-bit operations correspond to address
calculation and manipulation. We currently assume all loads and
stores to global memory require 32-bit addresses. Thus, in many
cases, further improvement can be obtained for the bitwidth of
address arithmetic.

B. Effectiveness of Bitwidth Analysis

Fig. 9 presents the effects of bitwidth analysis on the NPA cost
for each application along with the arithmetic mean (amean)
across all of the applications. The figure compares two variants
of the PICO-NPA system: no width cognizance where the stan-
dard C widths are used for all variables and operations (left bar),
bitwidth analysis enabled, but width clustering disabled (right
bar). The bars show the normalized cost for each NPA design
broken down into three pieces: FU, register, and the remainder
or rest. The remainder portion is dominated by switches within
the interconnect of the design (see Fig. 8). As with FUs and reg-
isters, the cost of the interconnect is highly dependent on width.
Total cost for each bar is normalized to the no width cognizance
case, thus, the height of the rightmost bar shows the overall cost
reduction achieved via bitwidth analysis.

From the figure, bitwidth analysis alone provides a large re-
duction in total cost across most of the loops. The mean total cost
is reduced by approximately 50%. This is achieved by reducing
the mean costs of the FUs, registers, and rest by 38%, 57%,
and 45%, respectively. Interestingly, the register cost is reduced
by the largest percentage and the FU cost by the smallest. A
common cause for this behavior is that many of the loops contain

uniformly wide multiply operations. Multipliers are quadratic
whereas registers are linear in cost as a function of width. As
a result, the FU cost has an expensive fixed term due to wide
multipliers. Therefore, a smaller reduction is observed for a very
expensive term in the FU cost.

The largest reduction occurs forcell, where the total cost is
reduced by 85%. This application is dominated by operations
that are 1–4 bits (89% from Table III). Hence, there are a large
number of opportunities to synthesize narrow hardware to re-
duce cost. There are few problems that arise due to any sharing
of hardware between wide and narrow operations. The other ex-
treme behavior occurs formatmul, where no cost reduction is
observed. As shown in Table III, all of its operations are 32 bit;
hence, there is no opportunity for bitwidth-sensitive synthesis
to yield any cost reductions.

C. Effectiveness of Width Clustering

Fig. 10 presents the effects of width clustering on the NPA
cost for each application along with the arithmetic mean across
all of the applications. The format of the figure is identical to
that of the previous experiment (Fig. 9). However, Fig. 10 com-
pares two different variants of the PICO-NPA system: bitwidth
analysis alone (left bar) and bitwidth analysis and width clus-
tering (right bar). Total cost for each bar is normalized to the
bitwidth analysis alone case.

The figure shows that width clustering further improves to the
cost of the NPAs, but the improvement is more modest than in
the previous experiment. A mean reduction of 9% in total cost is
observed, achieved by mean reductions of 11% FU, 6% register,
and 9% rest. The most noticeable cost savings occurs forchain,
which enjoys a 45% reduction in total cost. This application
suffers from poor sharing of hardware using bitwidth analysis
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Fig. 10. Effects of width clustering on NPA cost. Study compares two configurations to determine component widths: bitwidth analysis alone (left bar) and
bitwidth analysis and width clustering (right bar). Cost is broken down into three pieces: FU, register, and rest.

alone. Almost half of the operations inchainare 1–4 bits (see
Table III), yet less than a 5% reduction in cost is observed after
bitwidth analysis (see Fig. 9). Narrow and wide operations are
accidentally scheduled onto common FUs resulting in most of
the hardware being wide. Width clustering effectively groups
narrow operations together, thereby reducing the FU cost by a
substantial amount. A similar behavior occurs forlyapunovand
yields a total cost reduction of 19%.

Other applications, which achieve more than 10% reduction
in total cost via width clustering, illustrate a different behavior.
Two such examples arechannelandencode. In both of these
cases, the FU cost drops by less than 5%. However, the register
cost drops by 21% and 15%. Both of these designs are domi-
nated by register cost because there are a large number of vari-
ables with long lifetimes. Without width clustering, wide and
narrow operations are placed on common FUs. This binding re-
sults in wide FUs, but more importantly results in wide registers
because our data-path schema shares registers among the values
produced by a single FU (see Section V). Width clustering is
able to effectively group operations of similar width to enable
the width of the output registers to be substantially reduced. FU
cost is also reduced, but the amount is insignificant compared
to the savings in the register cost.

Therls application is an outlier. In this case, width clustering
increases the cost of the NPA by 3%. This behavior results be-
cause width clustering causes the schedule length for a single
iteration of the loop to increase. We believe that this is because
the scheduler has fewer binding choices due to the clustering
and must lengthen the schedule to achieve the desired II. The
net effect is that a larger number of registers is required and the
cost grows slightly.

D. Width Clustering With Multifunction FUs

One of the key factors affecting the results is the set of
FUs available in the library. The baseline library in PICO
supports only a small number of multifunction FUs, such as
adder–subtracter, multiply–adder, and load-store. Multifunc-
tion FUs create opportunities for intelligent sharing that can be
exploited by width clustering. To investigate these effects, the
last experiment is repeated with a number of multifunction FUs
added to the PICO library. The results of the experiment are
presented in Fig. 11. The figure has the same format as Fig. 10.
However, note that the cost is normalized to a different value in
this experiment due to the different FU library.

The results in Fig. 11 are noticeably different from those in
Fig. 10. The mean reduction in total cost increases from 9%
to 12%. This behavior is directly attributable to the availability
of multifunction FUs. Multifunction FUs support larger com-
binations of operation types. Hence, there are more interesting
sharing opportunities to exploit during width clustering. The
flexibility of multifunction FUs enables the mapping of more
operations of similar width to common FUs when it has little
effect on the cost of the FU. In addition to reducing overall FU
cost, this behavior generally reduces the cost of registers and
interconnect as better width utilization is achieved for the en-
tire data path. One obvious example of this behavior isadpcm.
In this case, a 23% reduction in total cost is achieved via width
clustering compared to 6% reduction in the previous experiment
without multifunction FUs.

There is one outlying applicationedge, where the relative cost
of the NPA is increased with multifunction FUs and width clus-
tering. For this application, width clustering provides a 12% re-
duction in cost using the base FU library (Fig. 10). However,
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Fig. 11. Effects of width clustering on NPA cost using a richer FU library that contains multifunction FUs. Study compares two configurations to determine
component widths: bitwidth analysis alone (left bar) and bitwidth analysis and width clustering (right bar). Cost is broken down into three pieces: FU, register, and
rest.

using multifunction FUs, width clustering increases the cost by
1%. The single-iteration schedule length is increased by a sig-
nificant amount by the choice of clusters. As a result, the register
and total cost also grow.

E. Comparison of Width-Clustering Heuristics

The width-clustering algorithm presented in Section IV con-
tains two separate heuristics for the VFU assignment phase.
The rapid heuristic employs the overcost metric to make assign-
ment decisions. There is also a more expensive heuristic that
employs a fully recursive technique to derive the VFU assign-
ments. Using both FU libraries from the previous experiments,
we compared the gate counts achieved with exclusive use of
each heuristic. The results showed only minor differences in the
achieved FU and total gate counts. They differed by no more
than 3%. Generally, the expensive heuristic achieved better re-
sults, but there were several cases where the rapid actually per-
formed better. In many cases, the results were virtually identical.

From these results, one might conclude that the expensive
heuristic is not needed. We believe, however, that such a con-
clusion cannot be sustained at this point for a number of rea-
sons. First, we only evaluated a small number of applications
for these experiments. Second, PICO’s FU library is less com-
plex than what we expect to encounter in fully practical uses.
Third, it is not difficult to break the rapid heuristic, as shown
in Section IV-D. A production architecture synthesis system is
likely to face more complex applications and a richer FU library.
In such an environment, the tradeoffs are more difficult and we
believe the expensive heuristic may behave better than this set
of experiments shows.

VII. RELATED WORK

Bitwidth has been exploited in a number of previous efforts.
The C language has been augmented to provide additional
bitwidth information in the work on Valen-C at Kyushu Uni-
versity [10] and by using pragmas in work at Delft [11]. Our
C extensions closely mirror these pragmas. A number of prior
efforts propagate bitwidth information in the style of dataflow
analysis. Information is propagated only locally in [11]. Others
propagate information over larger scope [12]–[14]. This work
is similar to ours in that we all use bidirectional constraint prop-
agation. The work at the Massachusetts Institute of Technology
[14] emphasizes the careful treatment of value ranges, while
the work at Carnegie Mellon University [13] analyzes sparse
patterns of bits by recording detailed information about each bit
position separately. Each of these bitwidth analysis approaches
can potentially discover opportunities that are missed by our
analysis approach.

In work at Seoul National University [15], [16], the effects of
quantization error for fixed point operations where low order
bits are discarded is studied using both analysis and simula-
tion. This work treats a limited class of add- and multiply-based
signal processing algorithms. While our approach never sacri-
fices any precision, it is clear that for many digital signal pro-
cessing applications low-order bits are often not needed and can
be discarded in order to reduce hardware cost without intro-
ducing undue error into the application.

Automatic data-path synthesis and has a long history and vast
literature. For example, Cathedral III [17] represents a complete
synthesis system developed at IMEC, an independent micro-
electronics research center in Leuven, Blegium, and illustrates
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one approach to high-level synthesis. It uses an applicative lan-
guage for program specification and designs customized data
paths for DSP applications from this specification.

Our paper focuses specifically on data-path synthesis in
the context of software pipelines that share resources
among multiple operations. This requires both the allocation
of hardware resources as well as the scheduling of operations
to those resources. The focus on software pipelines allows us
to allocate hardware using resource models that have been
carefully adapted to software pipelining. We do not know
of other data-path synthesis systems that generate low-cost
designs by scheduling loops at a desired throughput on FUs
that are shared among operations of similar width in such a
way as to reduce hardware cost.

Paulin and Knight use a technique called force-directed
scheduling to synthesize data paths in the HAL system for
ASIC design [18]. They integrate FU resource allocation and
scheduling into a common synthesis algorithm to minimize
overall cost. The Sehwa design system automatically designs
processing pipelines from behavioral specifications [19]. This
work uses allocation and scheduling heuristics to construct
cost or performance constrained designs. Bakshi and Gajski
consider the tradeoffs in allocating either low latency and
expensive or high latency and inexpensive FUs within an
integrated scheduling and resource allocation algorithm [20].
Similarly, Chang and Pedram also consider the allocation of
FUs of varying latency, but their focus is on energy minimiza-
tion [21]. Clique-based partitioning algorithms were developed
in the FACET project to jointly minimize FU and inter-FU
communication costs [22]. In [16], greedy list-scheduling
techniques are presented that use bitwidth information during
scheduling to select hardware units having compatible width.
An additional problem of minimizing the cost of transmitting
and extending operands of variable bitwidth has been addressed
in [23].

Marwedel studies techniques that allow the use of common
hardware to treat expressions with related, but not identical se-
mantics [24]. The technique consists of an initial phase that
maps expressions to virtual components followed by a subse-
quent phase that maps virtual components to physical compo-
nents. Ang and Dutt develop techniques to optimize multioutput
operations. They also consider a simple linear-cost treatment for
bitwidth [25].

Another approach customizes a conventional processor with
respect to bitwidth. In work by Shacklefordet al., detailed
bitwidth information on operations is used to explore the cost
effectiveness of a family of processors with varying data-path
width [26]. When operands have width that exceeds the hard-
ware width, they are treated in a serial fashion using multiple
precision operations. As the hardware width is varied, bitwidth
information on operations allows the system to determine
the precise number of computational steps required for each
operation.

Scheduling within clusters has been used for VLIW archi-
tectures that are implemented as separate physical clusters [8],
[27]–[30]. These clustering heuristics are aimed at compilation
for predefined VLIW architectures that have partitioned FUs
and register files. In these machines, intercluster communica-

tion is costly and may require the insertion of intercluster copy
operations. The goal is to intelligently assign operations and
operands to clusters so that performance is maximized.

Eijk et al. [31] present an approach for scheduling code for
irregular CPUs. This work deals with complex machine con-
straints by pruning the search space prior to scheduling. While
the problem they solve is quite different from ours, they also
use an approach that limits the binding choices before sched-
uling starts.

VIII. C ONCLUSION

In this paper, we investigate the exploitation of integer
bitwidth in an architecture synthesis system for custom NPAs.
The goal is to reduce the cost of our designs by exploiting
bitwidth information to build cheaper hardware. We employ
two complementary approaches. Bitwidth analysis computes
the number of bits necessary for each program variable and
operation. This information provides the foundation for archi-
tecture synthesis. Width clustering is then used to guide FU
allocation and instruction scheduling so that they intelligently
map operations of disparate bitwidths onto the hardware.
Sharing decisions are made jointly based on bitwidth and
implementation cost.

Experiments show that bitwidth-sensitive architecture syn-
thesis reduces design cost by a substantial amount. Bitwidth
analysis alone provides a mean reduction in total gate count of
49%. The application of width clustering provides an additional
reduction of 9% in mean total gates. Overall, the mean design
cost is reduced by 53% over a baseline system that is bitwidth
unaware. The experiments also show that the importance of
width clustering increases as the number of architectural choices
increases. The scheduler is more prone to making bad decisions
concerning width, resulting in poor designs. Width clustering ef-
fectively constrains the scheduling choices to produce a quality
design.

This paper is based on a number of assumptions that could be
generalized in future research. The current synthesis system as-
sumes that all FUs are fully pipelined and can process a new set
of input operands on every clock cycle. This limitation can be
eliminated using relatively simple techniques to model, allocate,
and synthesize operations that occupy FUs for multiple machine
cycles. Results presented here also assume that each operation’s
latency is known prior to FU binding, i.e., for each operation,
the binding choice is limited to a set of FUs having common
latency. This too can be generalized; however, problems occur
when operations on recurrence cycles are chosen with exces-
sive latency and the scheduler fails to identify a legal program
schedule. Finally, the paper also assumes that, for each opera-
tion, all input and output operands have the same bitwidth. For
operations like shifts and multiplies, this is a severe limitation.
Removing this limitation is somewhat more difficult because of
the increased complexity in modeling cost and the large number
of binding choices that are now presented. For example, when
treating a mixed set of commutative and noncommutative op-
erations, hardware optimization should consider applying the
commutative property, where legal, to coalign narrow operands
on the same side of each potential FU. Improvements in all of
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these areas would make this work more generally applicable to
future design systems.
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