IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001 1355

Bitwidth Cognizant Architecture Synthesis of Custom
Hardware Accelerators

Scott Mahlke Member, IEEERajiv Ravindran, Michael Schlanskéember, IEEERobert Schreiber, and
Timothy Sherwood

Abstract—Program-in chip-out (PICO) is a system for auto- programmable hardware accelerators (NPAs) execute parts of
matically synthesizing embedded hardware accelerators from the application that would run too slowly if implemented in soft-
loop nests specified in the C programming language. A key issue yare o an embedded programmable processor. Rapid low-cost

confronted when designing such accelerators is the optimization desi | ducti t i d hiah
of hardware by exploiting information that is known about esign, low production cost, low energy consumption, and hig

the varying number of bits required to represent and process Performance are important in these designs.

operands. In this paper, we describe the handling and exploitation ~ In order to reduce design time and design cost, the Hewlett-
of integer bitwidth in PICO. A bitwidth analysis procedure is Packard Laboratories program-in chip-out (PICO) project is fo-
used to determine bitwidth requirements for all integer variables ;504 on automating the design of NPAs from high-level speci-
and operations in a C application. Given known bitwidths for all .~ "~ . .
variables, complex problems arise when determining a program _flcatlons. Sour_ce code (ina Subse_t of C) for _a_ performance-crlt-
schedule that specifies on which function unit (FU) and at what ical loop nest is used as a behavioral specification of an NPA.
time each operation executes. If operations are assigned to FUsThe PICO system compiles the source code into a custom hard-
with no knowledge of bitwidth, bitwidth-related cost benefit is ware design in the form of a parallel special-purpose processor
lost when each unit is built to accommodate the widest operation array. The system produces a VHDL design for the array, its

?hss 'gg?ndé Er{itc?]raerfg\u,érgli%g?s (;?g rzté%?gagédémgﬂg p\g\;gjtt)Terﬂnis control logic, its interface to memory, and its interface to a host

addressed using a preliminary clustering of operations that is Processor.

based jointly on width and implementation cost. These clustersare PICO’s goal is to synthesize hardware systems having
then honored during resource allocation and operation scheduling minimal cost over a range of computational rate requirements.
to create an efficient width-conscious design. Experimental results s naner presents analysis and optimization techniques that
show that exploiting integer bitwidth substantially reduces the . : .
gate count of PICO-synthesized hardware accelerators across a '€ Needed to synthesize cost-effective hardware when function
range of applications. units (FUs) process program operations having differing integer

Index Terms—Application-specific ~ design, architecture prec?sion reqUirementS' Techniqges have been devel.oped o
synthesis, bitwidth, clustering, embedded system, hardware provide required bitwidth information on all program variables
accelerator, operation scheduling, resource allocation. and to optimize hardware using this bitwidth information.

Our paper was based on an existing PICO system that had no
capability for analyzing or optimizing bitwidths. We needed an
approach that provided accurate bitwidth information for use

S THE COST of complex chips decreases, the markets fduring hardware optimization. While some bitwidth informa-

personal digital assistants, MP3 players, cellular phone&gn was directly available by inspecting the code (e.g., the size
toys, games, network routers, and other specialized high-pefa constant), other information could only be provided by the
formance electronic devices is growing explosively. Many afser. Thus, a facility for acquiring user-provided bitwidths was
these devices perform computationally demanding processimgeded. Further, it was unreasonable to expect that a user deco-
of images, sound, and video or packet streams. To reduce ga$t the bitwidth of every temporary within a program. Not only
and power consumption, the electronic components of these tethis process tedious, many temporaries are created throughout
vices are now often realized as a single application-specific intee optimization process and the user is not even aware of their
grated circuits (ASICs). In many such ASICs, specialized noexistence. Thus, we needed to develop a bitwidth analysis ap-

proach to determine the required bitwidth for all program data.

Manuscript received April 16, 2001; revised July 9, 2001. This paper Wé@ our approach, users define the bitwidth of selected variables
recommended by Guest Editor P. Marwedel. through declarations in the source code. With knowledge of

S. Mahl_ke was v_vith the Hewlett-Packard Lat_)oratorie_s, quo Alto, CA 943Qhese declarations, opcode semantics, and widths of known con-
USA. He is now with the Department of Electrical Engineering and Computer, Lo

Science, University of Michigan, Ann Arbor, MI 48109 USA. stants, bitwidth analysis derives the required width for all pro-

M. Schlansker and R. Schreiber are with the Hewlett-Packard Lagram variables, expressions, and operations. The bitwidth anal-
oratories, Palo Alto, CA 94304 USA (e-mail: schlansk@hpl-hp.conysjs approach that is presented here is simple, efficient, and pro-
schreiber@hpl.hp.com).

R. Ravindran is with the Department of Computer Science and Engﬁl—uces reasonably accurate results.
neering, Indian Institute of Technology, Kanpur 208016, India (e-mail: Hardware optimization using bitwidth information is a very

rajiva@cse.iitk.ac.in). . . complex problem. When each FU processes only a single pro-
T. Sherwood is with the Department of Computer Science, University of Cali- . h .. : h EU b isel .
fornia at San Diego, La Jolla, CA 92093 USA (e-mail: sherwood@cs.ucsd.eddf@m operation, the precision of eac can be precisely tal-

Publisher Item Identifier S 0278-0070(01)09992-4. lored to the needs of this single operation. In this case, optimiza-

. INTRODUCTION

0278-0070/01$10.00 © 2001 IEEE

1356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

tion is simplified to a task of hardware pruning. However, whea more efficient design. Clusters are formed by analyzing the
FUs process multiple operations, the benefits of width-sensitityges and widths of all operations. Operations that may share re-
optimization are often diluted. When a single FU processessaurces to reduce cost are placed in the same width cluster. After
mix of narrow and wide operations, it must support the widestusters are formed, hardware resources are allocated separately
operation that executes on it irrespective of the width of tHer each cluster. This allocation is then used by a scheduler that
narrowest operation. If operations are assigned to FUs with nses these resources to satisfy all computational needs. During
knowledge of bitwidth, hardware is wasted as narrow and wideheduling, the binding of operations is restricted to FUs from
operations are assigned to FUs. Itis, therefore, desirable to cdheir own cluster. This produces a cost-sensitive binding of op-
fully assign operations of similar width to a common FU. erations to resources based on operation bitwidth and type.
Inthe approach described here, all FUs use the standard C lanAfe believe that width clustering represents a first attempt to
guage representations for processing operands of varying widtynthesize hardware over a range of computation rates while
This exploits most of the advantage available in treated exaexploiting both type and width information for each operation.
ples, and is consistent with PICO’s high-level synthesis heurM/dth clustering produces efficient hardware by selecting hard-
tics and low-level synthesis capabilities. FUs are customizadre from a complex and heterogeneous library of FUs each ca-
only in the number of bits that they process. Operands are refpable of executing one or more operation types. Results indicate
matted using zero fill, sign extension, and truncation. In supp@ibstantial improvements in the cost of generated hardware.
of this approach, we define the bitwidth of a variable to be the
number of bits required to represent the variable over the range
of values it can take on. If the variable is a signed integer, its
bitwidth is the number of bits required in two’s complement. If The overall structure of PICO is shown in Fig. 1. A C loop
unsigned, then its bitwidth is the number of bits required to hohiest is identified by the spacewalker (a design space exploration
the largest attainable positive value. tool) as the application component to be synthesized and pro-
The task of synthesizing hardware requires the solution wifled to the loop parallelizer to begin the process. Both the
complex optimization problems. These arise when operatiomsmber of processors and the computational rate for of each pro-
of varying width are assigned to a heterogeneous set of Fldessor are specified by the spacewalker as input to the synthesis
each potentially capable of executing multiple operation typgwocess. These parameters collectively determine the computa-
e.g., an arithmetic logic unit (ALU). A key goal for PICO istional rate at which the loop nest can be processed and are spec-
to provide a family of hardware solutions that vary in both codfied either automatically by PICO’s spacewalker or manually
and performance. Low-performance solutions should be less by-a user. PICO designs a nonprogrammable processor array
pensive while high-performance solutions cost more. In ordfar the given loop nest consistent with this computational rate
to achieve this objective, processors are synthesized so as tgjpecification. The register transfer level design (in VHDL) is
adequately powerful to process data at a given computation ratétten to an output file. PICO also generates performance and
yet minimum in cost. If costs are to diminish as the chosen prgate count measurements for the NPA. See [1] for a full descrip-
cessing rate is decreased, a strategy is needed to use the samd’ICO’s NPA synthesis capabilities.
hardware unitto process more than one program operation wheliVe now provide an overview of PICO by briefly describing
low processing rates are adequate. This implies that each &th of its components.
may potentially processes program variables of differing width. Spacewalker:PICO’s spacewalker is a complex heuristic
A scheduler chooses the FU and time at which each opeeagine that drives system synthesis. In general, multiple
tion takes place. The machine cost is strongly dependent upplication components must be accelerated on one or more
how well the scheduler makes these choices. To make schedstomized hardware processors. Processors take on more
uling aware of width, we employ a new techniqueégth clus- than one form including the PICO-NPAs discussed here as
tering, in which operations with similar bitwidths are groupedvell as PICO very long instruction words (PICO-VLIWS)
into clusters before scheduling. Width clustering takes into a/LIWs customized to specific application requirements) [2].
count each operation’s type and width and uses this informatidrimited chip area is available for these diverse needs. Further,
to identify width clusters that help minimize FU cost. given a desired computation rate, the hardware cost or chip
By binding operations of the same type to a common FU, castea required by a suitable accelerator is not known until the
is reduced as the FU is specialized (e.g., an adder as opposgtthesis process is at least partially completed. To synthesize a
to an ALU). The scheduler can channel expensive operatiactemplex system having optimal performance and cost, PICO'’s
like divides into a common FU to avoid proliferation of expenspacewalker selects candidate performance goals for specific
sive FUs. By binding operations of the same width to a commapplication components and it requests that these components
FU, cost is reduced as FUs that process only narrow opera@ags synthesized to evaluate their cost. The merits of this choice
are themselves narrow. When FUs process operands of simian than be evaluated at the system level and the choice can be
width, the costs of the registers and switches that connect Fatfopted or adjusted before full system synthesis proceeds. This
are also reduced. However, difficulty arises because these paper focuses exclusively on techniques for optimizing a loop
teria often compete. nest to produce a single PICO-NPA at a candidate computation
Width clustering addresses these complex tradeoffs befoate as requested during spacewalking.
scheduling begins as it groups operations into clusters. WidthLoop Parallelizer: The loop parallelizer is given a nest of
clusters guide resource allocation and scheduling to produminted loops and analyzes and exploits parallelism within that

Il. NPA SYNTHESIS IN THEPICO S/STEM

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1357

Application

F

Spacewalker

C Loop Nest Number of Processors and
Initiation Interval

A 4 A 4

Loop Parallelizer

Flattened Loop Code
L - Cost
Processor Synthesis
oo - Clustered
Code Bitwidth Width FU Allocation| | Datapath >
Optimization Analysis Clustering and Synthesis VHDL
Scheduling

Fig. 1. PICO NPA design system.

nest by generating a high-level plan called an iteration scheduléll be determined after scheduling and it will be made as wide
The iteration schedule determines a temporal (what time) aaslthe widest of these operations.

spatial (what processor) plan for all loop iterations. In order We now describe the modules that are used within processor
to maximize scheduling freedom, the loop parallelizer perfesynthesis.

tizes the input loop nest. To perfectize a loop, out-of-loop state-Code Optimization:This phase is performed by Elcor, a
ments are moved into a loop body and executed conditionatitargetable VLIW compiler [3]. After classical optimizations,
with appropriate predicate guards. The guarding expressionsiéa@nversion removes any branching within the loop body.
crafted to ensure that these out-of-loop statements execute Wille resulting branch-free loop body is suitable for software
true guarding predicate only on iteration when they would hayépelining.

originally executed. The resulting perfect nest of counted loopsBitwidth Analysis: This phase infers the bitwidth required to

is flattened into a single loop with a trip count that is the producépresent every value computed in the loop. Our approach is
of the loop trip counts in the original nest. In this form, the iterpresented in Section IlI.

ation scheduler gains additional freedom in organizing the loopWidth Clustering: The set of operations is partitioned into
nest for parallel execution and parallelism is limited only by theubsets of operations having similar width using the heuristics
code’s essential data dependences. discussed in Section IV.

A valid iteration schedule must satisfy the following proper- Clustered FU Allocation and Schedulindefore software
ties; each processor’s loop code executes a precisely specifigglining begins, a set of resources must be allocated that are
subset of all loop iterations and every loop iteration is executeditable for executing the loop at the given single-processor rate.
on some processor. This plan is symmetric among processorsRdther than allocating a single set of resources where each re-
single loop body is generated that is executed in a lock-step psource can be used to execute any compatible operation, re-
allel manner on all processors. The plan has the property thatslurces are allocated in clusters. Within each operation cluster,
dependence constraints can be met both within each procesgemllocate (by solving a small mixed integer linear program) a
and among processors at the requested computation rate. set of FUs that is powerful enough to perform the cluster oper-

Processor SynthesisThe process of creating a customizeditions at the desired Il [4]. Each cluster of FUs is then charac-
data path from the loop body is shown in the processor synthetgisized by a machine description for use by the Elcor software
boxin Fig. 1. The goal is to achieve the requested throughput faipeliner.
the given code with minimum hardware cost. This is performed Hardware is synthesized by first generating a software
by first allocating a set of FUs and then software pipeliningchedule that decides on which FU and at what time each
the loop code. Software pipelining generates loop schedutgseration occurs and then by more mechanically generating
for PICO NPAs. Software pipelining creates a single prograendata path during data-path synthesis. Each processor in the
schedule for all iterations that can be initiated at a constant rateay is heavily pipelined. The computation of a single iteration
called the initiation interval (11). The software pipeliner can bindypically requires more than the Il cycles, so that there will be
multiple operations to each FU. The FU's hardware realizati@@veral iterations in the pipeline at any given time. The software

1358 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

pipeliner schedules operations so that dependences among TABLE |
operations are satisfied both within each iteration and for any ~OPCODETRANSFERFUNCTIONS FORCOMMON INTEGER OPCODES
carried dependences between iterations. Moreover, resot Opcode Forward Backward
conflicts must be avoided: the scheduler ensures that t add d=MAX(s],s2) + 1[sl =d,s2=d
operations are not scheduled on the same FU at the same tj-Su2tract d=MAX(s1,52) +1]s1 =d,s2=d
X . . X . unary negate d=sl+1 sl=d
For simplicity and consistency with PICO’s current low-leve multiply d=s1+s2 sl=d,s2=4d
hardware synthesis capability, we assume that all FUs are fi divide. d=sl+1 s = max.width, 52 = max.width
. . . . left shift by const d=s1+C 51 =d - C, 82 = max_width
pipelined and ab!e to begin a new computation on eVery CyC it shifs by const | d=s1-C ST = d+ C 52 = maxwidih
It follows that a given FU can be assigned at most Il operatio compare d=1 s1 = max.width, s2 = max width
bitwise and d = MIN(sl, s2) sl=d,s2=4d
from the loop body. . e bitwise or d = MAX(sl, s2) sl=d,s2=d
Data-Path SynthesisThe scheduler makes many difficult Fitwise xor I = MAX(s1, 52) sT=d,s2=4d
heuristic decisions regarding how resources are to be us bitwise complement | d = max.width sl=d

By finalizing these decisions, the synthesis of the registef?fm,Of an operation is dest srcl opc srcl. We usg s1, ands2 to represent
. . . . thé widths of dest, src1, and src2, respectively.

switches, and interconnect needed to maintain and transport

operands within and among FUs within a processor becomes

somewhat more mechanical. Data_path synthesis generaté:ﬂrat, the width is limited by the amount of useful data available

customized data path for a single processor and then replicatéen the variable is defined. This is referred to asdétcon-

that data path for all processors. Each data path is connectéf@int For example, 16 bits are not necessary to hold the result

where needed with sibling processors to yield an array 6fadding two 3-bit numbers—4 bits is enough. Second, a value

processors capable of executing the all iterations at the desif@gd not retain more bits than the number needed by its uses.

aggregate rate. This is referred to as these constraintFor example, a 32-bit
guantity contains unneeded data if it is only used in 10-bit add
operations.

The individual operations are connected via define-use and
use-define chains such that every define of a variable is con-

Bitwidth analysis infers the bitwidth of every variable in aected to the operations that consume that value and the re-
program segment. The analysis operates on the assembly-l¥@spe. We repeatedly apply the def and use constraints to get
internal representation in Elcor. Each reference to a registere¥§r tighter restrictions on variable widths until we converge to
a source or destination operand is tagged with its computégtable solution. This approach is a natural extension to stan-
bitwidth. The results of bitwidth analysis are used by architeglard forward and backward dataflow analysis techniques [5].
ture synthesis to infer the sizes of the hardware components fof he iterative constraint propagation is best explained by
the hardware accelerator. breaking it down into its three constituent components: opcode

PICO uses initial bounds on the bitwidth for specific varitransfer functions, forward analysis, and backward analysis.
ables and iterative constraint propagation to identify adequzﬁéCh is discussed in the remainder of this section followed by
bitwidths for all variables. Initial bounds have multiple source@n €xample of the entire process.

First, conventional C variable types (bool, char, and short) pro-

vide important bitwidth information. The exact widths of alA- Opcode Transfer Functions

constants are directly known. We also give the user more fine-At the individual operation level, there is an opcode-specific
grained control over bitwidths of variables: a pragma specifyingalculation that determines the flow of information through the
an arbitrary bitwidth (e.g., 5 bits) may be optionally suppliedperation. For example, when two 6-bit quantities are added,
after each variable declaration in the C source code. Values réieig known the result is not larger than 7 bits. Similarly, when
from or written to an external location, such as memory, are idegl add has a 10-bit result, it is known that the inputs need not
candidates for user bitwidth annotation. These values are et larger than 10 bits. Such functions, referred topsode
analyzable and the compiler must assume the worst case intfa@sfer functionsare determined for every opcode in the com-
absence of user intervention. piler’s instruction set. They are broken down into forward op-

Another source of initial bounds is the PICO loop parallelizecode transfer functions to specify the rules for computing output
which introduces a number of variables into the code as it trangidths of an operation given its input widths and backward op-
forms the original program to parallel form. Bounds on thessde transfer functions to specify the rules for computing input
values are generally known by the loop parallelizer and their neidths of an operation given its output widths.
quired widths are, therefore, known. However, these widths areThe opcode transfer functions for some commonly occurring
not readily visible by direct inspection of the code after loofnteger arithmetic opcodes are presented in Table |. The forward
parallelization. The loop parallelizer inserts additional pragmaansfer function for add states that the destination width is the
within resultant code to provide this information. maximum of the two source widths plus one. In essence, a single

These bounds on bitwidths for all program variables providerry-out bit from the larger number could be generated; hence,
a starting point for iterative constraint analysis. Iterative comne additional bit is required. The backward transfer function
straint analysis can refine or narrow the bitwidths for manipr add states that the width of both sources is equal to the width
values by repeatedly propagating width constraints through thiethe destination. Since an add only propagates information
program. The width of a variable is constrained by two factorBom the low-order bits to the high-order bits, ambit result

1. BITWIDTH ANALYSIS

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1359

Compute width information for all operations in a region in
the forward direction. Widths are maintained for each variable
reference, operation x operand. CW contains the stable refer-

is only dependent on the low-order bits of the inputs. For in-
teger divide, the destination is no wider than the dividend. How-

ever, a maximal positive value for a particular bitwidth could be ence widths for the region. FW contains the working reference
divided by a negative one, thereby increasing the required widthwidths computed during forward analysis.

of the result by one in two’s complement format. Conversely for |
divide, the destination width places no constraints on the sources.
widths. Hence, the only conclusion is that the sources are uncon 3:
strained, representedmsx widthin Table I. The table presents ¢
the transfer functions for a variety of other opcodes that are de-g.

rived through similar analyzes. ';:
B. Forward Analysis ‘1’6:

Forward analysis repeatedly applies the def constraint to limit 11:
the output widths of all operations. Information is propagated }g
from operation inputs to their outputs via the forward opcode 14:
transfer functions. The forward propagation phase is applied it- 15:
eratively across all operations in the program until a fixed point ig
is reached. 18:

The algorithm for forward analysis is presented in Fig. 2. The 19
algorithm maintains two sets of widths for all of the register ;?
references in the program segment (or region) being analyzed 22:
current wideth (CW) and forward width (FW). CW is the last 23:
set of stable widths that were computed. Initially, CW is deter- gg
mined from the variable declaration information received from 26:
the PICO frontend. FW is the set of working widths that are 27:
computed during forward analysis. FW is initialized differently gg
for each type of operand. For source operands that are definei3o:
externally (a live-in register, memory location, or literal), the 3L
CW value is used as the initial value. These operands are neve 33§
computed in the code. Thus, forward analysis cannot make any 34:
conclusions about the widths of these operands. For all othe|35f
source and destination operands, FW is set to uncomputed, ref 3.

resented as zero in the algorithm. 38:
The middle portion of the algorithm in Fig. 2 shows the it- 3%
erative forward analysis process. The source widths[¢F¥]) 4l

for an operation are calculated by determining the widest defi- 42:
nition of the source to reach the operation under consideration.43:

Note that the minimum between the widest reaching definitiolg)
and the CW is always taken, so that the width is never increased
beyond its last stable constraint. The destination widths are then

Procedure forward_propagation(region, CW)

// Initialize the working reference widths, FW
for each operation o in region in sequential order
for each source operand s of o
if (s € (livein U memory U literal)) then
FWl(o,s] = CWo,s] ;
else
FWio,s] =0;
endif
endfor
for each destination operand d of o
FWlod} =0;
endfor
endfor
// Tterate until reach a fixed point solution
change = true ;
while (change)
change = false ;
for each operation o in region in sequential order
for each source operand s of o
// Each source width is the max of its reaching defs
FW/o,s] = MIN(MAX(FW/o,rdef[o,s]]), CW/[o,s]) ;
if (FWJo,s] changed) then
change = true ;
endif
endfor
for each destination operand d of o
// Propagate RHS to LHS using the forward tf
FWi{o,d] = MIN(op_forward(o,d,FW), CW[o,d}) ;
if (FWlo,d] changed) then
change = true ;
endif
endfor
endfor
endwhile
// Update region reference widths
change = false ;
for each operation-operand pair i, j
if (CW[i,j] # FW[i,j]) then
CWI[ij] = FW[i,] ;
change = true ;
endif
endfor
return change ;

Iterative algorithm for backward bitwidth analysis.

computed by applying the forward opcode transfer functiof’e width of destination operands that are either memory loca-

The process continues until a fixed point is reached. When tH@ns or live-out registers to CW. These operands have no con-

fixed point is achieved, the FW widths represent the next statigmers. Thus, backward analysis cannot derive any information

and more constrained set of widths. Hence, CW is updated witRout their widths. All other operands have their BW set to un-

FW where there are differences. calculated or zero. The backward analysis is iteratively applied
across all operations until a fixed point is reached.

C. Backward Analysis

Backward analysis is analogous to forward analysis with tfe Exa@mple
direction of all constraint propagation reversed. The use con-To illustrate the application of bitwidth analysis, consider the
straint is repeatedly applied to limit the input widths of eacexample in Fig. 4. The original code consists of four instruc-
operation given constraints on the output widths. Informatidions: two sequential instructions, a third within a loop, and a
is propagated from an operation outputs to its inputs using tfairth after the loop. For this example, the trip count of the loop
backward opcode transfer functions. is unknown. The initial widths provided by the user are anno-

The algorithm for backward analysis is presented in Fig. gated above each variable in the original code. Forward prop-
It is very similar in structure to the forward analysis algorithmagation applies the def constraint to propagate right-hand side
Thus, only a few differences are pointed out here. The baatenstraints to the left-hand side for each instruction. For 11, the
ward width (BW) is the set of working widths that are computedddition of a 3-bit and a 2-bit quantity produces at most a 4-bit
during backward analysis. The initialization process for BW setesult, hence the width af is 4 bits. For 12, the 4-bit value for

1360

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

Compute width information for all operations in a region in the
backward direction. Widths are maintained for each variable
reference, operation x operand. CW contains the stable refer-
ence widths for the region. BW contains the working reference
widths computed during backward analysis.

Procedure backward.propagation(region, CW)

an outer loop to the analysis process is useful. We suspect that
forward iteration to convergence followed by backward to con-
vergence achieves the best solution with this approach.

1: // Initialize the working reference widths, BW
2: for each operation o in region in reverse sequential order IV. WIDTH-SENSITIVE ARCHITECTURESYNTHESIS
3: for each destination operand d of o
4; if (d e (liveout U store)) then . . .
5. BW[o,d] = CW[o,d] ; The archlte(?ture §ynthe5|s process makgs a[l decisions
6: else needed to define efficient hardware for a given input loop
gi %‘_"f’[oyd] =0; nest. In this section, we describe techniques that we have
9: en‘;’}b; incorporated into architecture synthesis that allow it to use
10: for each source operand s of o bitwidth information to further improve the efficiency of the
g E;\;V[OyS] =0; generated hardware.
15 endfor The algorithms for architecture synthesis presented here are
14: // Tterate until reach a fixed point solution based on heuristics that divide a very complex problem into mul-
igj %ﬁﬁie(:h;“z); tiple simpler problems that are solved in a phased sequence.
17: change = glse : A truly _optimal strategy_jointly make_s all design decisions in _
18: for each operation o in region in reverse sequential order an environment where it can establish that the selected deci-
19: for each destination operand d of o sions are superior or equal to any other design choice. Optimal
20: // Each dest width is the max of its reaching uses p .q .y 9 p.
21 BWJo,d] = MIN(MAX(BW/o,ruse[o,d]]), CW]o,d]); segrch algorithms typically require the traversal of a combina-
22: if (BW[o,d] changed) then torial search space.
= o nange = true ; The use of bitwidth information is one example of the
25. endfor ongoing incorporation of additional design complexity into
26: for each source operand s of o PICO’s architecture synthesis approach. This complexity is
27: // Propagate LHS to RHS using the backward tf exhibited in a number of ways. Bitwidth information adds
28: BW][o,s] = MIN(op-backward(o,s,BW), CW]o,s]) ; . , . L. .
29: if (BW[o,s| changed) then .complexllty tp PICO’s arch_|tecture synthe3|s_ input. If this new
30: change = true ; information is to be exploited, algorithms will have to be up-
g; en‘;“fgf graded to take this information into account. The optimization
33. endfor criteria used during architecture synthesis grow more complex
34: endwhile ‘ as PICO'’s architecture synthesis process tries to more faithfully
5 /{ Udate region reference widths model variable width hardware cost and, finally, the incorpora-
37. for :fwh operation-operand pair i, tion of variable width hardware greatly adds to the diversity of
38: if (CW[i,j] # BW[i,j]) designs that must be considered. Multiple design choices that
igf g:ﬁ"i]_:t?x[}d] i were coequal when widths were fixed now represent distinct
41: endif & ’ potentially optimal choices.
42: endfor A number of papers have presented cleverly contrived integer
43: return change ; linear programming formulations of the special-purpose hard-
ware synthesis problem [6], [7]. These formulations represent
Fig. 3. lterative algorithm for backward bitwidth analysis. y P [] [] P

the necessary design decisions by using a large numtigilof
integer variables. These efforts have implicit architectural limi-

x is propagated downward from I1. Then, the forward opcodations that constrain the search space as defined by the formu-
transfer function for multiplication states thatbits multiplied lation so that solution is tractable. No doubt, they can be ex-
by m bits yields at most +m bits (see Table I). Thus, the widthtended in architectural scope and to accommodate bitwidth in-
of ¢ is calculated as 15 bits. Similar propagation is applied to tfiermation. The concern with these methods is the runtime of
other instructions. Since 13 is within a loop, the forward propdhe solver: as the complexity of the available choices for ar-
gation iterates until reaching a fixed point in whiglis 32 bits. chitecture synthesis and the optimization criteria continue to
This result is best possible since the loop iterates an unknoimarease, optimal search algorithms experience exponentially
number of times. growing runtimes and, in practice, they are unacceptably slow.
Backward analysis is applied next. The constraint of the final Prior to the incorporation of bitwidth analysis, PICO had a
outputz being no more than 16 bits is propagated. This affedieuristic two-phase strategy for architecture synthesis. In this
the width ofy and ¢ in 14 and 13 because the 16-bit outputstrategy, a first phase identifies a set of FUs of smallest cost
requires only 16-bit inputs. Note that the with ©fs reduced that is capable of executing the loop body at the requisite com-
even though it is a live-in variable. |11 and 12 are not affected hyutation rate. This minimization implicitly assumes that inter-
the backward propagation because they already contain strong@rnect cost is less important than FU cost. The second phase
width constraints. schedules all operations on a specific FU and at a specific mo-
In this example, a second iteration of forward analysis afterent in time, thus, completely specifying the higher level ar-
backward analysis completes yields no further improvement.dhitecture. The FU cost minimization uses an integer linear pro-
fact, we have tried and failed to find a case in which applyingramming formulation that is practical due to the simplicity of

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1361

2 4 3 2
|1~:;(2_—_§+-T |1:)‘2=§+1 I1:x=?.|-111
* 4 11 15
2:¥=%*b 2:y=x"b 12:y=x"b
: Loop:
me:sz %2 2 Loop32 2 2 "% 16 2
13:y =y +1 13:y=y+1 13:y=y+1
it () goto Loop if () goto Loop if () goto Loop
6 32 16 16 16
14:2=5+ ¢ I4:1z=y+%:2 4:z=y+cC
original code after forward prop after backward prop

Fig. 4. Example application of bitwidth analysis.

the search space (there arefa integer variables) and the em- Afssli.g: qllgﬁ ilﬁ regictm to ‘é}flusé .Retfll}"nsdthet!;stthof axcrue;i \f'ftl;ls
o . . . H viulist. € heuristic method 1s utilizeg unti € OVercost o e
pirical observation that optimal solutions can be found quickly .4 . goes above a threshold (MAX_OVERCOST). Once

[1]. The scheduling pass is heuristic due to the very large searc this occurs a recursive method is used to perform the remainder

space and the lack of efficient and provably optimal decision of the vfu assignment.
; ar Procedure vfu_assign(region, II)
making criteria
: // Build oplist, a list of ops sorted from highest to lowest

S . . oL
The need to consider jointly operation width and operation 2: // cost of the cheapest FU to implement that operation
type affects both the composition of the FUs in the synthesized 3: Opklli_slt =(b;{ﬂ;i-optlist(rigi)on) ;
. N . : while (oplist not empty
processor as well as the detall_ed plndlng of each pperat|on to_on<5: cvulist = build_cvfulist(oplist, II) ;
of these FUs. The software pipeliner is responsible for solving 6. best.overcost = infinity ;
a difficult combinatorial search problem and uses heuristics to 7: for each candidate virtual function unit cvfu in cvfulist

i ; ; 8: overcost = compute_overcost(cvfu, II) ;
identify an operation schedule that meets resource and deperg. if (overcost < best_overcost) then

dence constraints. Rather than adding complexity to the sched 1: best_overcost = overcost ;

uler, we have developed a clustering phase that is invoked befor¢11: best cvfu = cvfu ;

scheduling. Itis designed to restrict the scheduler in such a way }g en'il"fg‘rf

that efficient width-sensitive designs are produced. 14: // Tf best_cvfu has an acceptable overcost, then keep it

In general, clustering is a process of partitioning the set of 15 if (best_overcost < MAX.OVERCOST) then
ti d th t of EUs int bsets bef heduli 16: vfulist.add(best_cvfu) ;
operations and the set o s into subsets before scheduling ;. oplist = oplist - best.cvfu.bound.ops ;
and constraining the scheduler to bind operations to FUs of theis: // Else, use recursive approach to bind remaining ops
same cluster. Operation clustering has traditionally addressec19: el;id o ively(oplist, T1, selected_fus)
o s : -vius_recursively(oplist, II, selected_fus) ;

the problem of comp|I|r_19 programs for predefined hardware 5, viulist — vfulist +Zele’(’:ted fus ;
clusters of FUs and register files [8]. 22: oplist.clear() ;

PICO balances the competing costs of supporting opera-23: endif
. 24: endwhile
tion width and operation type by width clustering. In width ¢
clustering, the set of operations is first partitioned into subsets
having similar type or similar width. After operation clustergig. 5. Algorithm for VFU assignment.
are formed, FUs are allocated separately for each cluster.
Width clustering promotes the use of narrow FUs for narroare made. It does not constrain the actual bindings that finally

operations and it also channels expensive operations int@ra made. Pseudocode for the VFU assignment algorithm is pro-

return viulist ;

single cluster to avoid proliferation of expensive FUs. vided in Fig. 5 and pseudocode for its supporting procedures is
Width clustering consists of the following three steps: provided in Fig. 6.
1) virtual FU (VFU) assignment; The VFU assignment has a number of inputs. A set of oper-
2) VFU clustering; ations that must be implemented along with lls are provided.
3) creation of clustered machine description. Each operatiorop has a widthop.width that is determined

I%ing bitwidth analysis. PICO uses a library of FUs each with a
pecific opcode repertoire and a cost that varies with the FU’s
width. The VFU assignment procedure uses a cost function
fu.cost(width) that is defined for each FU. The cost depends
on both the function to be implemented as well as the width
A VFU assignment is a preliminary binding of operations tof the FU implementation. These costs are calibrated from an
FUs that is directed by the cost of implementing the operatiopsgisting standard cell library that can generate actual FUs of
with known width on heterogeneous FUs. It is derived withowtppropriate width and repertoire.
using any data dependence information. VFU assignment proVFU assignment begins in the procedufe_assign in Fig. 5.
vides a sample binding from which further clustering decisiorighe input parameter region is an object that holds all required

Each is discussed in the remainder of this section. An examﬂ:sj'
then follows.

A. Virtual FU Assignment

1362

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

Create a list of cvfus compatible with the first operation in
oplist, bind up to II operations to each cvfu.
Procedure build.cvfulist(oplist, IT)

operationfu.cost(op.width). A cheapest FU is any of the FUs
that minimizes this cost. After inherent costs are calculated, op-

1: seed = oplist.head ; fus(sced) erations are sorted from highest to lowest cost and returned as
2: cvfulist = create_compatible_cvfus(seed) ; ; ; : :

3: for each candidate virtual function unit cvfu in cvfulist oplist from the f.unCtlon call th_u ild_oplist.

4 num_assigned_ops = 0; _ At. each step in the VI_:U assignment proced.ure, a seed opera-
5: for each operation x in oplist tionis selected from which a VFU is grown. This process begins
6: if (cvfufuimplements(x) then with the call tobuild_cvfulist whose implementation is shown

7: cvfu.bind(x) ; L . . . oo

8: cvfu.width = MAX(cvfu. width, x.width) ; in Fig. 6(a). The f_unchorbuﬂ(_l_cvfuhst identifies a seed oper-

9: num _assigned_ops = num_assigned_ops + 1 ; ation as the costliest operation that has not already been bound
10: endif to a VFU. Given a seed operation, a candidate VFU (CVFU) is
11: if (num-assigned.ops == II) then . . .

12: break; grown for every hardware FU in the library that implements the
13: endif seed. The invocation efeate_compatible_cvius(seed) creates

14: endfor a list containing a CVFU for each FU that implements the seed
15: endfor . - .

16: return cvfulist ; operation. Each of these CVFUs is initialized with the property

@

Returns the cost for the best assignment of the remaining op-
erations to vfus. The parameter selected_fus is the 2nd return
value, a list of the vfus coresponding to the returned cost.
Procedure find_vfus_recursively(oplist, II, selected fus)

cvfu.fu, which identifies the FU that led to its creation.

A loop then separately processes each CVFU. A CVFU ac-
quires additional operation bindings as an inner loop traverses
the list of unbound operations from highest to lowest inherent
cost. As each operation is considered, the operation is bound to

1. if list i ty) the Terminate recursion . . .

2: ' fgfgjn‘z ?mp y) then /] the CVFU if the FU corresponding to the CVFU implements
3. endif . . o the operation and the CVFU does not already have Il operations
gj (/: ‘/I f‘}:ﬁ;teﬁ"}l‘) 5:{2“05;’51‘:;:22911{53551‘5“ remaining ops to vfus bound to it. Initially, zero operations are bound to the CVFU
6 best_cost = infinity ; PIsh S and the_first o_peratior_1 processed is the seed. The seed is alyvays
7: bestcvfus =0; . _ . ' . compatible with and is always bound to the CVFU. Operation
5 f°§;§§£‘n‘§ﬁ‘;‘lﬁt"'_v€‘;‘°}‘i‘$f‘g‘;ﬁ‘%’(‘nﬁ&to?’sf‘? in cvfulist binding continues until the CVFU has Il bound operations or
10: cost = find.vfus.recursively(unbound_oplist, II, the prioritized list of unbound operations is exhausted. When
11: selectedfus) ; . build_cvfulist is complete, a list of CVFUs is returned. Each
g :‘f)t(atléizftc;tc‘ftb;tc‘;z‘;‘;“-‘;‘;f:gf"f“'“"dth) ; CVFU has a set of operatiorsfu.bound_ops that has been

14: best_cost = total _cost ; bound to it, a widthevfu. width that corresponds to the width of

15: best_cvfus = selected fus + cvfu ; the widest operation, and a hardware implementation cost for
ig enednfg:'f the CVFUcvfu.fu.cost(cviu.width).

18: selected fus = best_cvfus ; The algorithm uses one of two methods to determine the
19: return best_cost ; CVFU that is selected as the final VFU for the seed. A rapid

Fig. 6. Support functions for VFU assignment. (a) Algorithm for candidat!

(b)

VFU list construction. (b) Algorithm for recursive VFU assignment.

heuristic minimizes arovercostfunction that computes the
amount that the actual implementation exceeds a lower bound
on the minimum possible cost. At each step in the algorithm,
the VFU for the seed is selected as the minimal overcost CVFU.

information about the region of the input program containinghe overcost function is defined as

the loop nest for which hardware is to be synthesized. Il spec-
ifies the initiatior_l ir_1terva| fqr the desired schedul_e. As we dis'overcost:Cvfu.fu.cost(cvfu.width)
cuss later, two distinct heuristics are embodied within the pseu- CFU(op).cost(op.width)

docode. A more accurate heuristic uses a recursive descent to — Z i .
calculate cost, while a faster heuristic terminates this descent opEcviu.bound_ops
and sacrifices the optimality of selected VFUs while acceler- Q)

ating the VFU assignment process.

The first action performed withinfu_assign is to invoke the ~ The overcost measures how close the actual cost of the
function build _oplist (implementation not shown) in order tohardware implementation for a CVFU is to the sum of the
build a sorted list of operations from input code. For each optherent costs for all operations assigned to that FU. The CVFU
eration, the cheapest FU is identified and used to determine ttaving the lowest overcost is chosen as the VFU. After a VFU
operation’s inherent cost. Asp’s cheapest FWEFU(op) is the is identified, the process continues by selecting the next seed
least expensive FU among those capable of execuinghe and growing a new VFU until all operations have been bound.
determination of the cheapest FU takes the operation’s widthA threshold testdvercost < MAX_OVERCOST) deter-
into account. An operation’s width is defined as the maximumines whether the rapid heuristic is acceptable or more accurate
width of all of its operands. This represents a limitation of cuheuristics should be employed. When the overcost is unaccept-
rent work as some operations like loads can have address widlity high, a fully recursive technique is employed by calling
that is unrelated to the data width and the use of this maxinfald_vfus_recursively [pseudocode shown in Fig. 6(b)]. The
width is imprecise. For each Flu that is capable of executing functionfind _vfus_recursively callsbuild _cvfulist to construct
the operationfu’s cost is measured at the width needed by thelist of CVFUs. For each CVFU, the total cost is calculated as

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1363

the actual cost of the CVFU plus the cost of implementing all retuster, all FUs that implement the operation are added to that
maining operations not bound to the CVFU. This remaining cosluster’s FU library. The cost for each of these FUs is evaluated
is calculated recursively by callidind _fus_recursively withan at the cluster width. The integer linear program is then applied
oplist consisting of the remaining unbound operations. A miseparately, for each cluster, in order to determine the initial set
imal cost is selected over all CVFUs and returned. of FUs for the cluster.

The VFU assignment pseudocode integrates a rapid heuristid he selection of FUs is translated into a machine description
and an exponential heuristic into a common algorithm. This aleeded by the software pipeliner. A machine description for all
gorithm has been used to enhance our understanding of belisters is assembled by instantiating scheduling alternatives for
heuristics and to gain a better understanding of how we migdit allocated FUs within all clusters. For each alternative, its FU
wish to implement future width-clustering heuristics. We hauvgpe is used to identify a machine description for the FU that
shown on a number of examples that the fully recursive heuristicused to construct the machine description for the alternative
improves on results achieved by the rapid heuristic. By settifige., the instance of the FU). The software pipeliner has been al-
theMAX_OVERCOST toinfinity, the rapid heuristic is always tered so that it limits the binding of each operation to scheduling
used. By settingl AX_OVERCOST to a negative number, the alternatives corresponding to FUs that are within the operation’s
fully recursive heuristics always used. This allows the compasidth cluster. After the machine description is constructed, the
ison of results derived by exclusive use of either heuristic. Tiseftware pipeliner is then used to determine a FU and time for
fully recursive heuristic is exponential in nature and cannot ladl operations.
used in a production setting for large-scale problems. HoweverWidth clustering allows us to systematically reduce hard-
timeout-based schemes or other computation limiting schenveare cost by taking advantage of width information without
can be used to integrate limited recursion into the VFU assignereasing the complexity of FU allocation and scheduling.
ment algorithm. In fact, width clustering simplifies both the FU allocation

After VFU assignment is complete, a set of VFUs is defineénd scheduling process. Since FU allocation is performed
Every operation is bound to one VFU with a maximum of Il opseparately for each cluster, the allocator solves a simpler allo-
erations bound to a single VFU. The VFU selection and assigration problem for each cluster. This accelerates the allocation
ment heuristic of this section has chosen a set of VFUs of ggrocess. Since, the software pipeliner is constrained to bind
proximately minimal total cost. The set of VFUs and the bindingach operation to scheduling alternatives within its cluster, the
of operations to them is next used to drive downstream clusamber of allowed alternatives is reduced. Again, scheduling
tering that is cognizant of the effects of both width and repeis actually simplified by width clustering.

toire on FU cost.
D. Example

B. Form Operation Clusters Through VFU Clustering To illustrate the application of width clustering, the ex-

The purpose of this step is to partition the set of operatioagnple in Fig. 7 is presented. For this example, we assume
into operation clusters. To that end, VFU clustering is used JdAX_OVERCOST is infinity, thus, the rapid heuristic for
group VFUs based on width. The width of each VFU is detexFU assignment is exclusively utilized. The example consists
mined by the widest operation assigned to that VFU. The VFJ$ four operations, three adds and a subtract, and an Il of two.
are sorted from highest to lowest in width. A cluster is initializetfhe example FU library has three elements: adder, subtracter,
when the widest unbound VFU is added to it. The width of thisdder—subtracter. For this example, each FU’s cost is linear
VFU defines the cluster width. The ratio of the cluster width tin bitwidth as specified in the upper right cell of Fig. 7. The
each of the remaining unbound VFUs is calculated. VFUs agperations are sorted by their inherent cost, yielding an order
added to the cluster until this ratio falls below some threshotd 11-13-12-14. The first seed is the head of the list or I1. It
(e.g., 1.5). When the cluster is complete, the widest unbousdn be implemented using either an adder (option A) or an
VFU is again selected as a seed to form a new cluster. Thgder—subtracter (option B). With option A, the highest cost
process repeats until all VFUs are assigned to clusters. Finadgeration that is compatible is 12, yielding a overcost of:
each VFU cluster gives rise to an operation cluster. All opergg20 — ((320 + 60)/2)) = 130. With option B, the highest
tions bound to a common VFU cluster reside within a commagost operation that is compatible is I3, yielding a overcost of:
operation cluster. After operation clusters are formed, the VFU$16 — ((320 + 320)/2)) = 96. The choice with the smallest
have no further use and are discarded. overcost is chosen; hence, option B is selected. The next seed
chosen is 12, and with a similar calculation, option A is chosen.
After VFU assignment is complete, there are two VFUs: a

Creation of the clustered machine description completes tB2-bit adder—subtracter assigned operations 11 and I3; and a
width-clustering process. For each operation cluster, a setéebit adder assigned operations 12 and 14.

FUs that can execute all operations within the cluster at the re-VFU clustering is then performed. Assuming a cluster ratio
quired rate is selected using integer linear programming. The of-two, each VFU is assigned its own cluster. Hence after width
teger linear program allocates FUs from a library of FUs havirgustering is complete, there are two clusters, (11, 13) and (12,
known cost functions. These functions relate FU width to FW4). The creation of the clustered machine description selects
cost. Inthe PICO library, the unit of cost is estimated gate couain adder—subtracter for the first cluster and an adder for the

The width of each cluster is determined by the widest opesecond cluster. For this simple example, integer linear program-

ation within the cluster. For each of the operations within thing happens to select the same FUs as those that were selected

C. Machine Description Creation and Scheduling

1364 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

FU library: Adder: 10 gates/bit
=2 Subtracter: 10 gates/bit
Adder-Subtracter: 13 gates/bit

Input instructions: | 11: add, 32-bit, mincost = 320
12: add, 6-bit, mincost = 60
13: sub, 32-bit, mincost = 320
14: add, 5-bit, mincost = 50

Seed: H Option A: Adder, 32-bit, H1, 12, overcost = 130
Choose option B | Option B: Adder-Subtracter, 32-bit, I1, I3,
Seed: 12 Option A: Adder, 6-bit, 12, 14,

Choose option A | Option B: Adder-Subtracter, 6-bit, 12, 14, overcost = 35

After virtual FU Adder-Subtracter: 32-bit, cost = 480, 1, I3

assignment: Adder: 6-bit, cost = 60, 12, 14
After cluster Cluster 1: 11, I3, width range = 32-bit to 32-bit
assignment: Cluster 2: 12, |4, width range = 6-bit to 5-bit

Fig. 7. Example application of width clustering using rapid heuristic.

during VFU assignment. Subsequent software pipelining er <
sures that I1 and 13 are bound to the resources in the first clust]|—3 Interconnect
(adder—subtracter) and 12 and 14 are bound to the resources —’WC1 Wea

the second (adder).

It is interesting to reexamine the example with one smal
change to the FU library. Assume that the cost of the adder—su FU FU FU FU FU
tracter is increased from 13 gates/bit to 15 gates/bit. In this cas
VFU assignment using the rapid heuristic fails to achieve an effi
cient solution. The result is that three VFUs (32-bit adder, 32-bi - - - + -
subtracter, and 5-bit adder) are assigned operations. Even w

AR i A A 4 A 2 4 A AN J A A 4

. 2) R R R R
the change in cost, the best solution is still two VFUs (32-bi Regs egs eos egs egs
adder—subtracter and 6-bit adder) as achieved previously. T , ,
rapid heuristic made an inefficient choice for the first opera

tion assigning it to an adder (rather than an adder—subtracte
thereby causing the problem. For this example, the exponential
heuristic achieves the best solution for either cost function. Fig. 8. NPA data-path schema used by PICO.

a common result is computed by multiple FUs within mutually
V. HARDWARE GENERATION exclusive conditional clauses. Each FUs result registers are im-
plemented as a customized network of individual register ele-
The final phase of the design process is to build the actuaknts rather than as a multiported addressable register file. The
NPA hardware. A hardware processing engine is synthesizedglimber of required registers depends upon the number of pro-
rectly from the scheduled loop. Each hardware component (Fytam variables computed by each FU as well as the length of
register, multiplexer) is sized using the results from bitwidthime that each computed value must be maintained to support
analysis and scheduling. the software pipeline schedule. After the register network and
The data-path schema for each processor in the NPA is shawe flow of operands through registers is fully specified, each
in Fig. 8. The data path consists of an array of heterogeneaugister element is further customized to its final width. Before
FUs that implement all operations in the loop body. FUs includie loop can begin execution, all live-in values are downloaded
adders, multipliers, multiply—adders, ALUs, etc. Ports to menfrom the global memory and stored into the appropriate register
ories are treated as FUs as well. The physical memories aodnitialize the loop.
memory interfaces are not shown. There is also a special brancBecause a common set of registers stores all results that are
FU that controls the software pipeline loop execution [9]. computed within each FU and because registers often hold
Each FU computes result operands that must be stored in reglues for more than one program variable, width clustering
isters until they are no longer needed. Our approach for d@multaneously reduces the hardware cost for the FUs as well
ploying registers is too complex to fully describe within thigs the cost of the FUS’ result registers, i.e., the clustering of
paper, but a brief overview is presented here. A separate sebpérations of similar width into common FUs automatically
registers is dedicated to storing results that are computed witklaosters operands of similar width into shared register elements.
each FU. However, special treatment is needed for rarely ocdLoop invariant operands receive special treatment. Constant
curring cases where, due to the use of predicated conditionatslues are directly generated in hardware. Loop invariant values

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1365

TABLE I TABLE Il
APPLICATION DESCRIPTION AND TARGET THROUGHPUT DISTRIBUTION OF STATIC OPERATION WIDTHS
Application | Depth | 11 Description Application | 1-4 | 5-8 | 9-12 | 13-16 | 17-20 | 21-24 | 25-28 | 20-32
adpcm 2 | 9] adaptive delta compression encoder adpem 0271015003] 025| 0.14] 0.00] 0.00] 0.15
el 212 | packet recognition and delineation cell 0.89 | 0.04 [000 0.05] 0.00| 0.00] 000] 0.02
T 512 [synthetic benchmark chain 0.4370.00 [0:00 | 000 | 000| 000 000 0.57
channel 3117 | multiplexing cells on & chantel channel 0.26 [0.15 [0.00 | 0.03 | 0.02| 000 | 000 055
—onv3d T 3 12D convolution convad 0.52 [0.12 [0.03 | 0.00| 0.03| 0.00| 0.00 0.30
dct 2| 2 | forward discrete cosine transform det 0064 0.01 | 0.21] 033 0.00] 0.00] 0.01] 038
edge 519 | edge-based image smoothing edge 037 [023 [0.20 | 0.02| 009 003 | 0.00| 0.05
nceds 512 [runtength encoding encode 0.09 (0227002 034] 005] 000 000 038
= fir 0.00 | 0.25 | 0.00 | 050 | 0.00 | 0.00| 000 025
fir 2 1 2 | 16-tap finite impulse response filter Toed 039 (022 031 | 0.00 T 0.00 T 0.00 T 0.00 008
fsed 2 | 3 | Floyd-Steinberg halftoning heat 0.45 [0.00 [0.21 | 0.00] 0.00] 0.00 | 0.00] 034
ﬁe?ft g g :lDﬁfelaxatmn . huffman | 0.23 | 0.48 | 0.00 | 0.05 | 001 | 0.01] 000 0.3
wffman Jutiman encocing linescreen | 0.06 | 0.63 | 0.00 | 0.17 | 0.00| 0.00| 000 | 0.14
linescreen 2 | 2| image half-toning _ lyapunov_ | 0.29 | 0.14 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.51
lyapunov 3| 3 | determining matrix stablility matmul 0.00 | 0.00 | 0.00 | 0.00| 0.00| 0.00| 0.00] 1.00
matmul 3| 2 | matrix multiplication tls 0.08]0.09 [0.00 [0.02| 0.09] 0.00] 0.00| 0.72
tls 3 | 2 | complex recursive least-squares filter sharp 048018009 | 013 0.00 0.00| 0.03] 0.09
sharp 2| 2 | image sharpening sobel 0.35]0.19| 029 008 | 0.00] 0.02| 002 0.06
sobel 2| 2 | image edge detection taub 0.38]007]002] 027 0.00| 000 0.14] 0.1
taub 6 | 2 | digital demosaicing viterhi 0.28]0.17[030| 0.16 | 0.00| 0.00| 0.00| 0.09
viterbi 2 [6 | viterbi decoder using block decoding

.] For these experiments, the performance is held constant for
that are computed prior to entering the loop and then repeategdly., loop nest as specified by the Il and the number of pro-
used within the loop require exactly one unshared register. cegsors. For each loop nest, the number of processors is set to

The data path is controlled by a ring counter that varies froghe and the chosen Il is shown in Table II. Scaling the number
0 to -1 and a loop counter that is initialized to the numbes hrocessors should have little effect on the results because at
qf loop |terat|.ons and decremented until |t.reaches zero. THE;her throughputs identical processors are replicated. By de-
ring counter is used to generate control signals for switchgg it an 11 of two was chosen. However, there were several cases
within the interconnect, registers, and multifunction FUS. 45t contained a recurrence constraint that requires an Il that is
final DONE flag is set when the desired number of iterationg ger than two. For these loop nests, the lowest Il that met the

have been executed and the pipeline is drained. recurrence constraint was chosen. The figure of merit in these
experiments is the cost of the design that achieves the speci-
VI. EXPERIMENTAL EVALUATION fied performance. PICO measures cost using gate count esti-

mates for each hardware component. Each component has an

In this section, PICO’s bitwidth-sensitive architecture Sygﬁ_\lssociated parameterized cost formula that has been calibrated

thesis is evaluated. The comparison is made against a baseline. . . N .
PICO that is bitwidth unaware. against a production-quality design I_|brary. _To derive the total
cost, the hardware components are instantiated and the cost of
L - the components are summed across the design. These cost for-
A. Setup and Application Characteristics mulas have been shown to accurately estimate system cost as
To perform the experiments, we used PICO to design NPAseasured in gate equivalents. Cost estimates do not include the
for a set of 20 loop nests. Table Il presents the loop nests andost of wires (including their length).
brief description of each. The depth of each loop nestin the orig-The width-clustering algorithm presented in Section IV
inal source is specified in the column labeled Depth. These loppvides aMAX_OVERCOST parameter to determine the
nests were chosen from a variety of domains including printinigeuristic that is applied for VFU assignment. Except for
digital photography, communications, and networking. Narrothe last experiment, these experiments are performed with
bitwidths are common in these domains and used throughddAX OVERCOST set to infinity. This causes the rapid
these applications. Width pragmas were inserted where appmnonrecursive algorithm to be used for these experiments.
priate to more precisely specify the widths of values kept in To provide some insight into the width characteristics of the
memory (e.g., arrays). applications, a histogram of the static operation widths is pre-
One applicatiorthainis a synthetic application that was cresented in Table Ill. Each cell in the table contains the fraction
ated during our study of width-aware synthe€lfainis aloop of static operations for a particular application whose width is
nest that contains two dependence chains of multiply operatiomighin the specified range. For example, 27% of the operations
that are identical except in the width of data they process. Tieadpcmhave widths of 1-4 bits. As previously discussed, this
first chain operates on narrow data and the second on wide dat@per makes the simplifying assumption that an operation can
In such an application, the opportunity for large cost savingp® described by a single width that corresponds to the maximum
using bitwidth analysis is present because half of the datawdth across all of its input and output ports. In general, adiverse
narrow. However, without width-aware heuristics, most FUs erset of widths are present in each application. Most applications
up being wide due to the unfortunate binding of wide and narraaso contain a large fraction of operations whose width is less
operations to the same FU. than 8 bits. A notable exception to these trends&mul This

1366 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

|I FU B Register CIRest

il
L

= g
E
2

Nomalized cost
[=] =]
F 9 4

0.3

PR ————— |
.. = ¥y ¥ - -8 ¥ [F-]

L o)
=
=
15
o

linascraan
e e s s ey =y e O R

ﬁi=‘=§Em E 3 EETEE §
g 7 = E E -] 5 &
TTAge ? SHREEE -

Fig. 9. Effects of bitwidth analysis on NPA cost. Study compares two configurations to determine component widths: standard C widths (left tvaigthnd bi
analysis (right bar). Cost is broken down into three pieces: FU, register, and rest.

application is a matrix multiplication of two 32-bit matrices ofuniformly wide multiply operations. Multipliers are quadratic
large size, thus, all variables are truly 32 bits. One can propevijiereas registers are linear in cost as a function of width. As
anticipate that width-sensitive synthesis will have little effea result, the FU cost has an expensive fixed term due to wide
onmatmuldue to this characteristic. In the remainder of the apaultipliers. Therefore, a smaller reduction is observed for a very
plications, many of the 32-bit operations correspond to addresgensive term in the FU cost.

calculation and manipulation. We currently assume all loads andThe largest reduction occurs foell, where the total cost is
stores to global memory require 32-bit addresses. Thus, in maaguced by 85%. This application is dominated by operations
cases, further improvement can be obtained for the bitwidth thfat are 1-4 bits (89% from Table Ill). Hence, there are a large

address arithmetic. number of opportunities to synthesize narrow hardware to re-
_ o _ duce cost. There are few problems that arise due to any sharing
B. Effectiveness of Bitwidth Analysis of hardware between wide and narrow operations. The other ex-

Fig. 9 presents the effects of bitwidth analysis on the NPA cdéeéme behavior occurs fanatmul where no cost reduction is
for each app"ca’[ion a|ong with the arithmetic mean (ameaayserved. As shown in Table IIl, all of its operations are 32 bit;
across all of the applications. The figure compares two variafitence, there is no opportunity for bitwidth-sensitive synthesis
of the PICO-NPA system: no width cognizance where the stdi@-yield any cost reductions.
dard C widths are used for all variables and operations (left bar
bitwidth analysis enabled, but width clustering disabled (rig
bar). The bars show the normalized cost for each NPA desigrFig. 10 presents the effects of width clustering on the NPA
broken down into three pieces: FU, register, and the remainaest for each application along with the arithmetic mean across
or rest. The remainder portion is dominated by switches withall of the applications. The format of the figure is identical to
the interconnect of the design (see Fig. 8). As with FUs and rabat of the previous experiment (Fig. 9). However, Fig. 10 com-
isters, the cost of the interconnect is highly dependent on widffares two different variants of the PICO-NPA system: bitwidth
Total cost for each bar is normalized to the no width cognizaneealysis alone (left bar) and bitwidth analysis and width clus-
case, thus, the height of the rightmost bar shows the overall ctesing (right bar). Total cost for each bar is normalized to the
reduction achieved via bitwidth analysis. bitwidth analysis alone case.

From the figure, bitwidth analysis alone provides a large re- The figure shows that width clustering further improves to the
duction in total cost across most of the loops. The mean total cosest of the NPAs, but the improvement is more modest than in
is reduced by approximately 50%. This is achieved by reducitige previous experiment. A mean reduction of 9% in total cost is
the mean costs of the FUs, registers, and rest by 38%, 578bserved, achieved by mean reductions of 11% FU, 6% register,
and 45%, respectively. Interestingly, the register cost is reducatd 9% rest. The most noticeable cost savings occurhfain
by the largest percentage and the FU cost by the smallestwhich enjoys a 45% reduction in total cost. This application
common cause for this behavior is that many of the loops containffers from poor sharing of hardware using bitwidth analysis

. Effectiveness of Width Clustering

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1367

'WFU W Register O Rest

.

1=

0.

@

0.7

0.6

0.5

0.4

Momnalized cost

]

0z

1

cell

£
&

charnel

inecCraen
hyapursny
rFraimml
{1
alam

ol
laub
wileri

Fig. 10. Effects of width clustering on NPA cost. Study compares two configurations to determine component widths: bitwidth analysis aloneafidft bar
bitwidth analysis and width clustering (right bar). Cost is broken down into three pieces: FU, register, and rest.

alone. Almost half of the operations @hainare 1—4 bits (see D. Width Clustering With Multifunction FUs
Table 11), yet less than a 5% reduction in cost is observed afterqa of the key factors affecting the results is the set of

bitwidth analysis (see Fig. 9). Narrow and wide operations agg;s ayajlable in the library. The baseline library in PICO
accidentally scheduled onto common FUs resulting in most gy, orts only a small number of multifunction FUs, such as
the hardware being wide. Width clustering effectively 9roungyqer_subtracter, multiply—adder, and load-store. Multifunc-

narrow operations together, thereby reducing the FU cost by&, Fus create opportunities for intelligent sharing that can be
substantial amount. A similar behavior occurslj@punovand gy pioited by width clustering. To investigate these effects, the

yields a total cost reduction of 19%. last experiment is repeated with a number of multifunction FUs
Other applications, which achieve more than 10% reducti@added to the PICO library. The results of the experiment are
in total cost via width clustering, illustrate a different behaviopresented in Fig. 11. The figure has the same format as Fig. 10.
Two such examples amhanneland encode In both of these However, note that the cost is normalized to a different value in
cases, the FU cost drops by less than 5%. However, the registés experiment due to the different FU library.
cost drops by 21% and 15%. Both of these designs are domiThe results in Fig. 11 are noticeably different from those in
nated by register cost because there are a large number of Viéig: 10. The mean reduction in total cost increases from 9%
ables with long lifetimes. Without width clustering, wide ando 12%. This behavior is directly attributable to the availability
narrow operations are placed on common FUs. This binding @&-multifunction FUs. Multifunction FUs support larger com-
sults in wide FUs, but more importantly results in wide registetsnations of operation types. Hence, there are more interesting
because our data-path schema shares registers among the vaharing opportunities to exploit during width clustering. The
produced by a single FU (see Section V). Width clustering feexibility of multifunction FUs enables the mapping of more
able to effectively group operations of similar width to enableperations of similar width to common FUs when it has little
the width of the output registers to be substantially reduced. Fffect on the cost of the FU. In addition to reducing overall FU
cost is also reduced, but the amount is insignificant comparegst, this behavior generally reduces the cost of registers and
to the savings in the register cost. interconnect as better width utilization is achieved for the en-
Therls application is an outlier. In this case, width clusteringire data path. One obvious example of this behavi@discm
increases the cost of the NPA by 3%. This behavior results be-this case, a 23% reduction in total cost is achieved via width
cause width clustering causes the schedule length for a singlastering compared to 6% reduction in the previous experiment
iteration of the loop to increase. We believe that this is becauséghout multifunction FUs.
the scheduler has fewer binding choices due to the clusteringrhere is one outlying applicati@dge where the relative cost
and must lengthen the schedule to achieve the desired Il. Tdfehe NPA is increased with multifunction FUs and width clus-
net effect is that a larger number of registers is required and tieeing. For this application, width clustering provides a 12% re-
cost grows slightly. duction in cost using the base FU library (Fig. 10). However,

1368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

|WFU B Register O Rest |

R - I

0.8
ar
o
Hoos
™
Hos
m
E 0
=
a3
0.2
i1
I}i_i—-n_g-:-i-‘- o = 2 3 EE E
t J RS e~ ER*R2ER
= UEE gE EE%E uE ;E

Fig. 11. Effects of width clustering on NPA cost using a richer FU library that contains multifunction FUs. Study compares two configurationsiteedeter
component widths: bitwidth analysis alone (left bar) and bitwidth analysis and width clustering (right bar). Cost is broken down into thredJpiecgstef, and
rest.

using multifunction FUs, width clustering increases the cost by VII. RELATED WORK
1%. The single-iteration schedule length is increased by a Sig'Bitwidth has been exploited in a number of previous efforts.

nificant amount by the choice of clusters. As aresult, the registfzﬁe C language has been augmented to provide additional
and total cost also grow. bitwidth information in the work on Valen-C at Kyushu Uni-
versity [10] and by using pragmas in work at Delft [11]. Our
C extensions closely mirror these pragmas. A number of prior
The width-clustering algorithm presented in Section IV corefforts propagate bitwidth information in the style of dataflow
tains two separate heuristics for the VFU assignment phaaealysis. Information is propagated only locally in [11]. Others
The rapid heuristic employs the overcost metric to make assigmepagate information over larger scope [12]-[14]. This work
ment decisions. There is also a more expensive heuristic tisasimilar to ours in that we all use bidirectional constraint prop-
employs a fully recursive technique to derive the VFU assigagation. The work at the Massachusetts Institute of Technology
ments. Using both FU libraries from the previous experimenfd,4] emphasizes the careful treatment of value ranges, while
we compared the gate counts achieved with exclusive usetloé work at Carnegie Mellon University [13] analyzes sparse
each heuristic. The results showed only minor differences in thatterns of bits by recording detailed information about each bit
achieved FU and total gate counts. They differed by no mopesition separately. Each of these bitwidth analysis approaches
than 3%. Generally, the expensive heuristic achieved better can potentially discover opportunities that are missed by our
sults, but there were several cases where the rapid actually @aralysis approach.
formed better. In many cases, the results were virtually identical.In work at Seoul National University [15], [16], the effects of
From these results, one might conclude that the expensigantization error for fixed point operations where low order
heuristic is not needed. We believe, however, that such a cduits are discarded is studied using both analysis and simula-
clusion cannot be sustained at this point for a number of re@n. This work treats a limited class of add- and multiply-based
sons. First, we only evaluated a small number of applicatiosgnal processing algorithms. While our approach never sacri-
for these experiments. Second, PICO’s FU library is less coffices any precision, it is clear that for many digital signal pro-
plex than what we expect to encounter in fully practical usesessing applications low-order bits are often not needed and can
Third, it is not difficult to break the rapid heuristic, as showe discarded in order to reduce hardware cost without intro-
in Section IV-D. A production architecture synthesis system @ucing undue error into the application.
likely to face more complex applications and aricher FU library. Automatic data-path synthesis and has a long history and vast
In such an environment, the tradeoffs are more difficult and vigerature. For example, Cathedral 11l [17] represents a complete
believe the expensive heuristic may behave better than this sgithesis system developed at IMEC, an independent micro-
of experiments shows. electronics research center in Leuven, Blegium, and illustrates

E. Comparison of Width-Clustering Heuristics

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS 1369

one approach to high-level synthesis. It uses an applicative laion is costly and may require the insertion of intercluster copy
guage for program specification and designs customized datserations. The goal is to intelligently assign operations and
paths for DSP applications from this specification. operands to clusters so that performance is maximized.

Our paper focuses specifically on data-path synthesis inEijk et al. [31] present an approach for scheduling code for
the context ofll > 1 software pipelines that share resourcesregular CPUs. This work deals with complex machine con-
among multiple operations. This requires both the allocati@traints by pruning the search space prior to scheduling. While
of hardware resources as well as the scheduling of operatitihe problem they solve is quite different from ours, they also
to those resources. The focus on software pipelines allowsuse an approach that limits the binding choices before sched-
to allocate hardware using resource models that have beging starts.
carefully adapted to software pipelining. We do not know
of other data-path synthesis systems that generate low-cost
designs by scheduling loops at a desired throughput on FUs
that are shared among operations of similar width in such aln this paper, we investigate the exploitation of integer
way as to reduce hardware cost. bitwidth in an architecture synthesis system for custom NPAs.

Paulin and Knight use a technique called force-directéithe goal is to reduce the cost of our designs by exploiting
scheduling to synthesize data paths in the HAL system fbitwidth information to build cheaper hardware. We employ
ASIC design [18]. They integrate FU resource allocation artd/o complementary approaches. Bitwidth analysis computes
scheduling into a common synthesis algorithm to minimizihe number of bits necessary for each program variable and
overall cost. The Sehwa design system automatically designgeration. This information provides the foundation for archi-
processing pipelines from behavioral specifications [19]. Thiscture synthesis. Width clustering is then used to guide FU
work uses allocation and scheduling heuristics to construtocation and instruction scheduling so that they intelligently
cost or performance constrained designs. Bakshi and Gajsiap operations of disparate bitwidths onto the hardware.
consider the tradeoffs in allocating either low latency anflharing decisions are made jointly based on bitwidth and
expensive or high latency and inexpensive FUs within dmplementation cost.
integrated scheduling and resource allocation algorithm [20].Experiments show that bitwidth-sensitive architecture syn-
Similarly, Chang and Pedram also consider the allocation thiesis reduces design cost by a substantial amount. Bitwidth
FUs of varying latency, but their focus is on energy minimizaanalysis alone provides a mean reduction in total gate count of
tion [21]. Clique-based partitioning algorithms were developetb%. The application of width clustering provides an additional
in the FACET project to jointly minimize FU and inter-FUreduction of 9% in mean total gates. Overall, the mean design
communication costs [22]. In [16], greedy list-schedulingost is reduced by 53% over a baseline system that is bitwidth
techniques are presented that use bitwidth information duringaware. The experiments also show that the importance of
scheduling to select hardware units having compatible widthidth clustering increases as the number of architectural choices
An additional problem of minimizing the cost of transmittingncreases. The scheduler is more prone to making bad decisions
and extending operands of variable bitwidth has been addressedcerning width, resulting in poor designs. Width clustering ef-
in [23]. fectively constrains the scheduling choices to produce a quality

Marwedel studies techniques that allow the use of commdesign.
hardware to treat expressions with related, but not identical se-This paper is based on a number of assumptions that could be
mantics [24]. The technique consists of an initial phase thgéneralized in future research. The current synthesis system as-
maps expressions to virtual components followed by a subseimes that all FUs are fully pipelined and can process a new set
quent phase that maps virtual components to physical compdinput operands on every clock cycle. This limitation can be
nents. Ang and Dutt develop techniques to optimize multioutpeliminated using relatively simple techniques to model, allocate,
operations. They also consider a simple linear-cost treatmentéord synthesize operations that occupy FUs for multiple machine
bitwidth [25]. cycles. Results presented here also assume that each operation’s

Another approach customizes a conventional processor wigtency is known prior to FU binding, i.e., for each operation,
respect to bitwidth. In work by Shackleforet al, detailed the binding choice is limited to a set of FUs having common
bitwidth information on operations is used to explore the cokttency. This too can be generalized; however, problems occur
effectiveness of a family of processors with varying data-pattthen operations on recurrence cycles are chosen with exces-
width [26]. When operands have width that exceeds the hasgive latency and the scheduler fails to identify a legal program
ware width, they are treated in a serial fashion using multiptehedule. Finally, the paper also assumes that, for each opera-
precision operations. As the hardware width is varied, bitwidtion, all input and output operands have the same bitwidth. For
information on operations allows the system to determirgperations like shifts and multiplies, this is a severe limitation.
the precise number of computational steps required for edgbmoving this limitation is somewhat more difficult because of
operation. the increased complexity in modeling cost and the large number

Scheduling within clusters has been used for VLIW archef binding choices that are now presented. For example, when
tectures that are implemented as separate physical clusterstj@gting a mixed set of commutative and noncommutative op-
[27]-[30]. These clustering heuristics are aimed at compilati@nations, hardware optimization should consider applying the
for predefined VLIW architectures that have partitioned FUsommutative property, where legal, to coalign narrow operands
and register files. In these machines, intercluster communicar the same side of each potential FU. Improvements in all of

VIII. CONCLUSION

1370

these areas would make this work more generally applicable tag]
future design systems.

(20]

ACKNOWLEDGMENT [21]

The authors would like to thank S. Abraham for his help in22

designing and developing bitwidth analysis and S. Aditya, D.
Cronquist, V. Kathail, B. Rau, and M. Sivaraman for their many{23]
discussions and useful feedback.

[24]

REFERENCES (25]

[1] R.Schreibeet al, “High-level synthesis of nonprogrammable hardware

accelerators,” ifProceedings of the International Conference on Appli- [26]

cation-Specific Systems, Architectures, and Processor&. Swartz-

lander, G. A. Jullian, and M. J. Schulte, Eds. Los Alamitos, CA: IEEE

Comput. Soc., 2000, pp. 113-124. [27]

S. Aditya, B. R. Rau, and V. Kathail, “Automatic architectural synthesis

of VLIW and EPIC processors,” iRroc. Int. Symp. System Synthesis

Nov. 1999, pp. 107-113. [28

[3] Trimaran compiler infrastructure for instruction-level parallelism [On-
line]. Available: www.trimaran.org.

[4] R. Schreiberet al, “PICO-NPA: High-level synthesis of nonpro-

grammable hardware acceleratord,”VLSI Signal Processingo be

published.

[5] A.Aho, R. Sethi, and J. Ullmar€ompilers: Principles, Techniques, and
Tools Reading, MA: Addison-Wesley, 1986.

[6] C. H. Gebotys and M. I. EImasry, “Global optimization approach for

architecture synthesis|EEE Trans. Computer-Aided Desigvol. 12,

pp. 1266-1278, Sept. 1993.

B. Landwehr, P. Marwedel, and R. Domer, “Oscar: Optimum simul-

taneous scheduling, allocation and resource binding based on integer

programming,” inProc. Eur. Design Automation Confreb. 1994, pp.

90-95.

[8] P.Lowneyet al, “The multiflow trace scheduling compilerJ. Super-
comput, vol. 7, pp. 51-142, Jan. 1993.

[9] V.Kathail, M. S. Schlansker, and B. R. Rau, “HPL PlayDoh architecture

specification: Version 1.0,” Hewlett-Packard Laboratories, Palo Alto,

CA, Tech. Rep. HPL-93-80, Feb. 1994.

H. Yasuura, H. Tomiyama, A. Inoue, and F. N. Eko, “Embedded syste

design using soft-core processor and ValeniS'J. Info. Sci. Engvol.

14, pp. 587-603, Sept. 1998.

A. Cilio and H. Corporaal, “Efficient code generation for ASIPs with

different word sizes,” ifProc. 3rd Annu. Conf. Advance School for Com-

puting and ImagingJune 1997, pp. ???7-???.

R. Razdan and M. D. Smith, “A high-performance microarchitectu

with hardware-programmable function units,”Rroc. 27th Annu. Int.

Symp. MicroarchitectureNov. 1994, pp. 172-180.

M. Budiu, S. Goldstein, K. Walker, and M. Sakr, “Bitvalue inference:

(2]

[29]

(30]

(31]
(7]

(20]

(11]

(12]

(13]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 11, NOVEMBER 2001

N. Park and A. C. Parker, “Sehwa: A software package for synthesis of
pipelines from behavioral specification$ZEE Trans. Computer-Aided
Design vol. 7, pp. 356-370, Mar. 1988.

S. Bakshi and D. D. Gajski, “Components selection for high perfor-
mance pipelines,1EEE Trans. VLSI Systvol. 4, pp. 182—-194, June
1996.

J. M. Chang and M. Pedram, “Energy minimization using multiple
supply voltages,1EEE Trans. VLSI Systvol. 5, pp. 1-8, Dec. 1997.

C. Tseng and D. P. Siewiorek, “FACET: A procedure for automated syn-
thesis of digital systems,” iRroc. 20th Design Automation Confune
1983, pp. 566-572.

K. Schoofs, G. Goossens, and H. D. Man, “Bit-alignment in hardware
allocation for multiplexed DSP architectures,”Rnoc. Eur. Design Au-
tomation Conf.Feb. 1993, pp. 289-293.

P. Marwedel, “Matching system and component behavior in MIMOLA
synthesis tools,” ifProc. Eur. Design Automation ConMar. 1990, pp.
146-156.

R. Ang and N. Dutt, “An algorithm for the allocation of functional units
from realistic RT component libraries,” iRroc. 7th Int. Symp. High-
Level Synthesjsvlay 1994, pp. 164-169.

B. Shackleforcet al,, “Embedded system cost optimization via data path
width adjustment,1EICE Trans. Info. Systvol. E80-D, pp. 974-981,
Oct. 1997.

A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned register files for
VLIWSs: A preliminary analysis,” inProc. 25th Annu. Int. Symp. Mi-
croarchitecture Dec. 1992, pp. 292-300.

] W. Leeet al, “Space-time scheduling of instruction-level parallelism

on a RAW machine,” irProc. 8th Int. Conf. Architectural Support for
Programming Languages and Operating Systebts. 1998, pp. 46-57.

E. Ozer, S. Banerjia, and T. M. Conte, “Unified assign and schedule:
A new approach to scheduling for clustered register file microarchitec-
tures,” inProc. 31th Annu. Int. Symp. Microarchitectuiéov. 1998, pp.
308-314.

G. Desoli, “Instruction assignment for clustered VLIW DSP compilers:
A new approach,” Hewlett-Packard Laboratories, Palo Alto, CA, Tech.
Rep. HPL-98-13, Feb. 1999.

K. Eijk et al, “Constraint analysis for code generation: Basic technigues
and applications in FACTS,ACM Trans. Design Automat. Electron.
Syst, vol. 5, pp. 774-793, Oct. 2000.

Scott Mahlke (S’88—M'95) received the Ph.D. de-
gree in electrical and computer engineering from the
University of lllinois at Urbana-Champaign in 1997.
He is currently an Assistant Professor with the
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. From
1994 to 2001, he was a Research Engineer with
the Compiler and Architecture Research Group,
Hewlett-Packard Laboratories, Palo Alto, CA, where
he was a member of the Program-In Chip-Out
(PICO) research team that focuses on automatic

[14]

Detecting and exploiting narrow bitwidth computations,”Baro-Par ~ SyNthesis of application-specific hardware accelerators. Previously, his work
2000 Parallel ProcessingA. Bode, T. Ludwig, W. Karl, and R. Wis- focused on compilation techniques for VLIW/EPIC processors and he was
miiller, Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 1900, Le cenrtral contriubotr to the Trimaran compiler infrastructure. His current
ture Notes in Computer Science, pp. 969-979. research interests include the areas of application-specific processor design,

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth ana|y5§§>mpilertechniques for high-performance, and computer architecture.

with application to silicon compilation,” ifProc. SIGPLAN’00 Conf.
Programming Language Design and Implementatidune 2000, pp.
108-120.

S. Lee and W. Sung, “Finite wordlength effects analysis and wordlength
optimization of Dolby digital audio decoder,” igroc. Int. Symp. Cir-
cuits and Systemdune 1998, pp. 209-212.

K. I. Kum and W. Sung, “Word-length optimization for high level syn-{
thesis of digital signal processing systems, Piroc. 1998 IEEE Work-
shop on Signal Processing Syste@st. 1998, pp. 142—-151.

S. Note, W. Geurts, F. Catthoor, and H. D. Man, “Cathedral-ll: Ar;
chitecture-driven high-level synthesis for high throughput DSP applic:
tions,” in Proc. 28th ACM/IEEE Design Automation Cqnfune 1991,
pp. 597-602.

P. G. Paulin and J. P. Knight, “Force-directed scheduling for the beh
vorial synthesis of ASICs,TEEE Trans. Computer-Aided Desigvol.
8, pp. 661-679, June 1989.

(15]

(16]

(17]

(18]

Rajiv Ravindran received the B.Tech. degree in
computer science from the Regional Engineering
College, Calicut, India, in 1998 and the M.Tech. de-
gree in computer science from the Indian Institute of
Technology, Kanpur, India, in 2000. He is currently
working toward the Ph.D. degreee computer science
and engineering at the same university.

His current research interests include high-level
synthesis of architectures for embedded systems.

MAHLKE et al: BITWIDTH COGNIZANT ARCHITECTURE SYNTHESIS

)

Society and the ACM.

Michael Schlansker(M'79) received the B.S.E. de-
gree in engineering physics and the M.S. and Ph.C
degrees in computer engineering from the Universit
of Michigan, Ann Arbor.

He is a Laboratory Scientist with Hewlett-Packard
Laboratories, Palo Alto, CA. His current research
interests include computer architecture, compilers
embedded system design, reconfigurable archite
tures, and high-performance processing for intern
data centers.

Dr. Schlansker is a Member of the IEEE Computer

prefetching.

Robert Schreiberreceived the Ph.D. degree in com-
puter science from Yale University, New Haven, CT,
in 1977.

He is currently a Principal Scientist with the
Hewlett-Packard Laboratories, Palo Alto, CA,
where he is a leading member of the Program-In
Chip-Out (PICO) research team. He has held faculty
positions at Stanford University and Rensselaer
Polytechnic Institute and was Chief Scientist of
Saxpy Computer Corporation. He is the area editor
for scientific computing of thdournal of the ACM

He is a contributor to the Matlab scientific computing environment and is a
codeveloper of the High Performance Fortran programming language. His
current research interests include sequential and parallel algorithms for matrix
computation and for compiler optimization of parallel programs.

1371

Timothy Sherwood received the M.S. degree in
computer science from the University of California
at San Diego, La Jolla, in 2000. He is currently
working toward the Ph.D. degree at the same
university.

He has worked at both the Hewlett-Packard Re-
search Laboratory and Compag’s Western Research
Laboratories. His current research interests include
the automated design of customized processors,
techniques for reducing simulation time through
program analysis, and hardware-based schemes for

