
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012 1067

On the Complexity of Generating Gate Level
Information Flow Tracking Logic

Wei Hu, Jason Oberg, Student Member, IEEE, Ali Irturk, Member, IEEE, Mohit Tiwari,
Timothy Sherwood, Member, IEEE, Dejun Mu, and Ryan Kastner, Member, IEEE

Abstract—Hardware-based side channels are known to expose
hard-to-detect security holes enabling attackers to get a foothold
into the system to performmalicious activities. Despite this fact, se-
curity is rarely accounted for in hardware design flows. As a result,
security holes are often only identified after significant damage
has been inflicted. Recently, gate level information flow tracking
(GLIFT) has been proposed to verify information flow security
at the level of Boolean gates. GLIFT is able to detect all logical
flows including hardware specific timing channels, which is useful
for ensuring properties related to confidentiality and integrity and
can even provide real-time guarantees on system behavior. GLIFT
can be integrated into the standard hardware design, testing and
verification process to eliminate unintended information flows in
the target design. However, generating GLIFT logic is a difficult
problem due to its inherent complexity and the potential losses in
precision. This paper provides a formal basis for deriving GLIFT
logic which includes a proof on the NP-completeness of generating
precise GLIFT logic and a formal analysis of the complexity and
precision of various GLIFT logic generation algorithms. Experi-
mental results using IWLS benchmarks provide a practical under-
standing of the computational complexity.

Index Terms—Algorithm design and analysis, Boolean functions,
computational complexity, gate level information flow tracking, in-
formation security.

I. INTRODUCTION

H IGH-ASSURANCE systems such as those found in crit-
ical infrastructures and medical devices have strict re-

quirements on information security. For example, the Boeing
787 uses a shared data network between the passenger network
and systems critical to the safe operation of the plane [1]. Un-
intended data movement from the user to the flight control net-

Manuscript received December 12, 2011; accepted February 09, 2012. Date
of publication February 28, 2012; date of current version May 08, 2012. This
work was supported by NSF Grant 0910581. The work of J. Oberg was sup-
ported by an NSF Graduate Research Fellowship. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Dr. Ramesh Karri.
W. Hu and D.Mu are with the School of Automation, Northwestern Polytech-

nical University, Xi’an 710072, Shaanxi, China (e-mail: vinnie@mail.nwpu.
edu.cn; mudejun@nwpu.edu.cn).
J. Oberg, A. Irturk, and R. Kastner are with the Department of Computer

Science and Engineering, University of California, San Diego, CA 92093 USA
(e-mail: jkoberg@cs.ucsd.edu; airturk@cs.ucsd.edu; kastner@cs.ucsd.edu).
M. Tiwari is with the Department of Electrical Engineering and Com-

puter Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
tiwari@eecs.berkeley.edu).
T. Sherwood is with the Department of Computer Science, University of Cal-

ifornia, Santa Barbara, CA 93106 USA (e-mail: sherwood@cs.ucsb.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2012.2189105

work could potentially violate the integrity of the flight con-
trol system, and there should be methods that ensure this never
occurs. Medical devices are another example of systems that
require high assurance. There are published attacks on insulin
pumps [2] and pacemakers [3] which describe how to compro-
mise patient privacy and even safety. Unfortunately, developing
high assurance systems is a costly endeavor. As an example, de-
veloping a high assurance real-time operating system required
extensive third party analysis [4], costing millions of dollars [5],
and taking years to complete [6].
Two common policies used to uphold information security

are discretionary access control and information flow control
(IFC). Access control mechanisms are often effective, but lack
the transitivity to monitor themovement of information. In other
words, these techniques provide a policy for how some object
can access some object , but they specify nothing about how
will use ’s data once it receives it. IFC, on the other hand,

is transitive in that it specifies a strict policy about where an ob-
ject’s data can flow. In terms of the shared data network on the
Boeing 787, an access control mechanism would specify how
the user and flight control systems can access some common
resource, but states nothing about how the resource uses any re-
ceived information from either party. An information flow con-
trol policy, however, could guarantee that no information flows
from the user to flight control network, even through shared re-
source. This strict policy provides strong assurance for confi-
dentiality [7] (e.g., that secret information will not leak to the
unintended places) and for integrity [8] (e.g., that high-assur-
ance components will not be affected by untrusted data). To up-
hold an IFC policy that encapsulates data integrity or confiden-
tiality, a method known as information flow tracking (IFT) is
commonly used to provide strict bounds on the movement of
information.
Information flow tracking is a method to enforce IFC that as-

sociates a label with data and tracks the movement of this label
through the system. IFT has been deployed at many levels of the
system stack including in the programming language [9], oper-
ating system [10], [11], instruction set and micro-architecture
[12], [13] and runtime system [14], [15]. Unfortunately, these
methods ignore hardware specific timing channels. Such hard-
ware specific timing channels are known to leak secret encryp-
tion keys in stateful elements such as caches [16] and branch
predictors [17]. Further, timing flows from untrusted entities to
ones of high integrity (e.g., from the user to flight control net-
work) can cause violations in real-time constraints, greatly hin-
dering the intended operation of a system or even rendering the
critical system useless.

1556-6013/$31.00 © 2012 IEEE

1068 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

To prevent hardware specific timing channels, the most
commonly used techniques are physical isolation and “clock
fuzzing” [18]. Physical isolation, as the name suggests, requires
that mix-trusted subsystems be completely isolated from each
other. Although surely information flow secure, this prevents
the two systems from sharing any common resource and ulti-
mately leads to hardware overheads due to replication. “Clock
fuzzing” is an ad hoc attempt to mitigate the likelihood of
extracting information from a timing channel by introducing
entropy into the channel. This method, however, only reduces
the bandwidth of the channel (by creating a lower signal to
noise ratio) and provides no formal guarantees about elimi-
nating a timing channel completely [19].
Gate level information flow tracking (GLIFT) [20] is a tech-

nique that can identify hardware specific timing channels in ad-
dition to other explicit and implicit information flows allowing
formal guarantees on their (non)existence. GLIFT associates a
single bit label with every data bit in the system and monitors
the movement of each individual bit of state in hardware as
they flow through Boolean gates. At this low level of abstrac-
tion, all logical information flows are detectable, including those
through timing channels. It is the only formal way of detecting
hardware specific timing channels to the best of our knowledge.
It can also detect other implicit and explicit information flows
that are monitored by IFTmethods at higher levels of the system
stack.
Previous work has shown that GLIFT can be used to guar-

antee strict isolation between different execution contexts of
software running on a processor while communicating with var-
ious I/O devices. An execution lease architecture was devel-
oped to dole out microarchitectural state to untrusted execu-
tion contexts [21]. To prevent information flows, even those
through hardware specific timing channels, the architecture con-
strains the execution of untrusted code to a space-time sandbox.
In other words, the untrusted context executes only for a fixed
amount of time with fixed memory bounds. This microarchitec-
ture employs GLIFT to provably show strict information flow
isolation is provided between different contexts. Furthermore,
GLIFT is shown to be effective at identifying timing channels in
bus protocols such as C and USB [22]. In this work, GLIFT is
used to show how timing channels can leak information between
I/O devices even if they are abiding by the protocol. The pro-
tocol is modified to include a time multiplexed behavior, which
provably isolates information between devices communicating
on the shared medium. These previous efforts are combined and
expanded to form a complete processor running a microkernel
[23]. Here a configurable architectural skeleton couples the low
level hardware implementation with a microkernel. This system
uses a static analysis technique called star-logic which is used to
verify, at design time, that the concrete hardware implementa-
tion and any software running upon it will be free of unintended
information flows.
To track information flows using GLIFT, a fundamental task

is to generate GLIFT logic, which is used for label propagation.
Since GLIFT accounts for information flows at a fine granu-
larity, i.e., bit level, the GLIFT logic tends to be substantially
larger than the circuit that is being monitored. In addition, as
previous work has shown [24], GLIFT logic generated using

certain methods has potential losses in precision. Such impre-
cise GLIFT logic contains false positives indicating nonexistent
unintended information flows. Therefore, it is important to un-
derstand the theoretical aspects behind GLIFT logic generation,
which is essential to design complexity and precision control.
The goal of this paper is to formally prove that generating

precise GLIFT logic is NP-hard. It also presents several algo-
rithms for generating GLIFT logic and provides a complexity
analysis of each. Specifically, our main contributions are:
1) providing a formal proof on the NP-completeness of the
precise GLIFT logic generation problem;

2) proposing several newGLIFT logic generation algorithms,
namely zero-one, SOP-POS, BDD-MUX and reconver-
gent fanout region reconstruction and giving a formal anal-
ysis on their complexity;

3) demonstrating the practical computational complexity of
different GLIFT logic generation algorithms using IWLS
benchmarks.

The remainder of this paper is organized as follows: Section II
first introduces the basics of information flow security and fun-
damentals of GLIFT; it then discusses the use of GLIFT for
secure hardware design. We define some related concepts in
Section III. Section IV performs a formal proof on the NP-com-
pleteness of generating precise GLIFT logic. In Section V, we
present various algorithms for GLIFT logic generation and for-
mally prove their complexity. Section VI provides runtime re-
sults of different GLIFT logic generation algorithms on several
IWLS benchmarks. We conclude in Section VII.

II. PRELIMINARIES

This section introduces the basics of information flow secu-
rity, describes the fundamentals of GLIFT, and shows how to use
GLIFT to create a secure hardware design flow. It then covers
the GLIFT logic generation problem including the potential for
imprecision in GLIFT logic.

A. Basics of Information Flows

In digital systems, information flows are categorized into ex-
plicit and implicit flows. Explicit flows appear with the direct
movement of data. Typical examples of explicit flows can be
found in assignment expressions, where information associated
with the source operand will flow to the destination operand
or in bus communications, where information contained in data
packets is transmitted from the sender to receiver. As its name
suggests, explicit flows are easy to capture since they are de-
pendent on direct data movements. More subtle implicit flows
are caused by nondeterministic behaviors of the system, such
as conditional branches or nondeterministic latency. As an ex-
ample, the timing difference between a cache hit and miss cre-
ates a timing channel which has been shown to leak secret keys
[16]. Implicit flows, especially hardware specific timing chan-
nels, are more difficult to detect and eliminate.
A secure system must be designed with careful consideration

of both explicit and implicit flows and effective measures taken
to prevent unintended flows of information. The most common
technique for implementing information flow control is infor-
mation flow tracking. While information flows appear in var-
ious forms at different abstraction levels of the system, GLIFT

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1069

Fig. 1. (a) Two-input NAND gate. (b) Partial truth table of NAND-2 with taint
information. (c) Corresponding GLIFT logic of NAND-2 is .

unifies the concepts of explicit flows, implicit flows, and timing
channels from the level of Boolean gates. It provides a founda-
tion for the development of secure systems by allowing hard-
ware designers to reason about these flows. This in turn can be
used to ensure private keys are never leaked (for secrecy), and
that untrusted information will not be used in the making of crit-
ical decisions (for safety and fault tolerance) nor in determining
the schedule (real-time). GLIFT provides a foundation for the
development of secure systems by allowing hardware designers
to reason about these flows.

B. Fundamentals of GLIFT

In IFT, data is assigned a label indicating its trustworthiness
or security level. For example, data from an open system should
be marked as untrusted and the private key used for data encryp-
tion should be labeled as secret. This label is then monitored
while it propagates through the system to prevent unintended
flows of information. We denote data that we wish to track as
tainted. For example, if the integrity of data is required, the data
is marked as tainted and GLIFT logic can be used to monitor if
this tainted information affects critical system components. Or
when the confidentiality of data is concerned, secret data is la-
beled as tainted and monitored to see if it ever flows to unclas-
sified resources.
Without loss of generality, we define a bit as tainted when its

tracking logic is true (“1”) and untaintedwhen its tracking logic
is false (“0”). Taint is propagated from an input to the output of
a Boolean function if the input has an influence on the output.
As an example, consider the two-input NAND gate (NAND-2) in
Fig. 1(a). Fig. 1(b) shows a partial truth table of NAND-2 with
taint information, where and denote the taint of
and , respectively. When both inputs of NAND-2 are tainted,
the output will surely be tainted. Similarly, when both inputs
are untainted, the output will be untainted. These obvious cases
are excluded from the truth table so that we can focus on the
more subtle ones in which only one input is tainted.
For a better understanding of taint propagation, consider the

first row in Fig. 1(b). The
tainted input does not have an influence on the output since
the output is dominated by in this case. Thus, the output
should be marked as untainted . Now consider row
4 . The tainted input has
an influence on the output since a change in the output can be
observed by changing the value of . In this case, tainted infor-
mation from input flows to the output and the output should be

Fig. 2. Information flows in a conditional branch. (a) Conditional branch.
(b) Gate level implementation of conditional branch.

marked as tainted . Once the GLIFT logic for NAND-2
derived from a full truth table is simplified, the resulting logic
is shown in Fig. 1(c).
From the NAND-2 example, we can discover that taint is prop-

agated from the tainted input to the output when and only when
at least one tainted input affects the output. This is the basic rule
used by GLIFT for taint propagation. It is different from pre-
vious conservative IFT methods that typically mark the output
as tainted whenever there is any tainted input.
GLIFT also captures implicit flows at the level of primitive

gates. Fig. 2 shows how all information flows in a conditional
branch are made explicit in the gate level implementation.
Let the conditional variable be tainted. If

should clearly be marked as tainted (is evaluated upon the
decision made on). Actually, even if should also
be marked as tainted because the value of is still dependent
on (by observing if there is a change in the value of , we
can learn some information about). Similarly, should be
marked as tainted regardless of the value of . Such analysis
is reflected in the gate level implementation of the conditional
branch. The output of the comparator is used as the select line of
the multiplexer, which chooses the destination register address.
In this process, tainted information contained in will flow
through the select signal SEL to ADDR and eventually to both

and . GLIFT logic will indicate such implicit flows by
marking the target registers as tainted. Further, GLIFT is able to
capture changes in register-to-register timing since it monitors
information flows at such a low abstraction level.

C. Employing GLIFT in Secure Hardware Design

GLIFT is able to account for all logic flows including explicit
flows, implicit flows and timing channels. It lays a solid founda-
tion for information flow control. Upon this foundation, verifi-
ably secure bit-tight components, information contained archi-
tectures, and applications can be built. In practice, there are two
methods for employing GLIFT logic, which we denote as static
and dynamic. In a static scenario, GLIFT is used to test [22],
[25] or verify [23] if the system complies with predefined in-
formation flow policies. This is done completely at design time,
i.e., there is no need to physically instantiate the GLIFT logic
after testing or verification is completed. Fig. 3 illustrates the
use of GLIFT for static testing and verification.
Static testing/verification works as follows. The system is de-

scribed in a hardware description language (HDL). Once the

1070 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

Fig. 3. Employing GLIFT for static testing or verification.

digital circuit under design has passed functional verification,
it is synthesized into gate-level netlist using standard hardware
synthesis tools. Then each gate in the netlist is augmented with
GLIFT logic. After that, testing or verification scenarios are run
to check if the design potentially violates any predefined infor-
mation flow policies. If some information flow policy is vio-
lated, the design is modified and reverified until all informa-
tion flow security properties are guaranteed. In the static testing
or verification application scenario, the tester is responsible for
specifying what data to track. For example, the tester sets cer-
tain inputs to tainted and observes if security-critical portions of
the design are affected by these tainted inputs. Depending on the
security scenario, a large number of information flow testing or
verification scenarios may need to be run by the tester to ensure
that the design is secure.
In a dynamic application scenario [20], [21], GLIFT logic is

physically instantiated alongside the original hardware to allow
run-time checking of security properties. In this case, system
designers specify the secrecy or trustworthiness for data origi-
nating from different sources. As an example, data coming from
an open network environment is labeled as tainted to indicate
that it is untrusted while data from a secure separation kernel
will be marked as untainted. The GLIFT logic takes both the
data and their labels and performs IFT at run time. The output
label will be checked to see if any information flow security
policy is violated. If a violation is detected, an exception will be
generated and system recovery operations will be launched. The
dynamic application scheme allows the monitoring of more re-
alistic execution patterns since some run-time features are hard
to predict during design time. However, the area/delay overhead
of GLIFT logic is significant. Therefore, GLIFT logic should be
reserved for critical portions which require a strict information
flow security guarantee.
We have demonstrated the use of GLIFT in secure hardware

design as both a static testing/verification technique and a dy-
namic IFT approach. In [22], GLIFT is used to test informa-
tion flows in bus protocols for peripheral communication with
novel techniques proposed to eliminate timing channels. Other
work addresses security issues in reconfigurable devices that use
mix-trusted IP cores from different vendors [25]. GLIFT is used

to verify that there is no unintended interaction between dif-
ferent modules that may violate security policies such as nonin-
terference. In [23], a static analysis technique called star-logic is
used to verify the concrete hardware implementation with par-
tial software specification to be free of unintended information
flows. The information flow properties of the entire design are
statically verified all the way down the gate-level implementa-
tion using GLIFT. GLIFT has also been used as a dynamic IFT
approach to build an information flow tracking microprocessor
that monitors all unintended flows emanating from untrusted
inputs [20]. An improved architecture [21] allows regions of
execution to be tightly quarantined and their side effects to be
tightly bounded, which enables mix-trust computations using
shared resources through secure context switch. This new ar-
chitecture also employs GLIFT to monitor information flows at
run time.
In both the static and dynamic scenarios, the process of gen-

erating the GLIFT logic plays an important role. Generating low
overhead and precise GLIFT logic reduces the testing/verifica-
tion time in the static scenario and increases the performance of
the overall system in the dynamic scenario.

D. GLIFT Logic Generation

The GLIFT logic performs label propagation to calculate the
taint for each of the outputs of the original Boolean function.
The inputs to the GLIFT logic are the set of inputs of the original
Boolean function and the taint label set (containing the taint for
each of these original inputs). Therefore, the GLIFT logic corre-
sponding to an -input Boolean function has inputs and thus
can be significantly more complex than the original Boolean
function.
GLIFT logic exhibits various levels of precision depending

on the algorithm used to generate it [24]. Preciseness is defined
as indicating an information flow occurred iff an input affects the
output. If information does not flow from the input to the output,
yet the GLIFT logic indicates a flow, it is said to be imprecise,
i.e., the GLIFT logic contains a false positive. Note that a false
negative (not indicating that a flow occurred) is unacceptable in
the context of IFTwhile a false positive (indicating that a nonex-
istent flow occurred) is safe but overly conservative. Excessive
false positives make it difficult to determine whether or not the
indicated flow is in fact harmful. Careful generation of GLIFT
logic can greatly reduce (if not eliminate) these false positives.
For a more concrete understanding, consider a two-input mul-

tiplexer (MUX-2) which selects one of its inputs and for
output according to select line . Its Boolean function is

. It can be implemented using two AND gates, an OR
gate and an inverter. When the GLIFT logic for MUX-2 is gen-
erated by discretely instantiating tracking logic for these primi-
tive gates,1 impreciseness arises [24]. Specifically, an additional
and unnecessary term is introduced to the GLIFT logic.
This term indicates that when and are both untainted “1”
and the select line is tainted, the output will be tainted. Ac-
tually, in this case, the output will be untainted “1” regardless
of the status of since both inputs are equally untainted “1”. In
other words, the GLIFT logic denotes a false positive.

1We call this the constructive algorithm as we describe in Section V-B.

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1071

TABLE I
MINTERM COUNTS OF GLIFT LOGIC FUNCTIONS OF 4-BIT ADDER

GENERATED BY PRECISE AND IMPRECISE METHODS

Now consider a 4-bit adder. Table I shows the number of
minterms in the GLIFT logic functions generated using both
precise and imprecise methods. We can see that the number of
minterms for the imprecise method is more than or equal to that
for the precise one. Such additional minterms are false positives.
The percentage data in Table I show a statistic of false positives
introduced by imprecise GLIFT logic generation method. As an
example, the imprecise GLIFT logic for output cout contains as
high as 9.47% false positives, which frequently indicate nonex-
istent tainted information flows, i.e., some information flow se-
curity policy has been violated when actually not.
With an understanding of the potential difficulties in GLIFT

logic generation, this paper formally proves that generating pre-
cise GLIFT logic is an NP-hard problem and proposes several
more scalable precise GLIFT logic generation algorithms. Be-
fore that, some basic concepts are formally defined.

III. TERMS AND DEFINITIONS

In this section, we provide definitions for Boolean function,
binary decision diagram, reconvergent fanout and other related
concepts. We do our best to use conventional notations and
specifically follow the notations used in [26]–[28].
Let be a Boolean space. A completely specified

Boolean function with variables is defined
as a mapping: . For a Boolean function
of variables, a product term in which each of the variables
appears once (in either its complemented or uncomplemented
form) is called a minterm. The on-set of a Boolean function is
the set of minterms for which the function has value “1”. The
off-set is the set of minterms for which the function has value
“0”.
Definition 1 (Implicant): an implicant is a “covering” of one

or more minterms in the on-set of a Boolean function.
Definition 2 (Prime Implicant): a prime implicant is an im-

plicant that cannot be covered by a more general one.
Definition 3 (Complete Sum): the complete sum is the sum

of all the prime implicants of a Boolean function.
Definition 4 (Static Hazard): a static hazard is the situation

where, when one input changes, the output incorrectly changes
momentarily before stabilizing to the correct value. This is typ-
ically due to different input to output paths with variations in
delay. There are two types of static hazards.
1) Static-1 Hazard: the output is initially “1” and after an
input change, the output momentarily changes to “0” be-
fore stabilizing to “1”.

2) Static-0 Hazard: the output is initially “0” and after an
input change, the output momentarily changes to “1” be-
fore stabilizing to “0”.

Definition 5 [Binary Decision Diagram (BDD)]: A BDD is
a rooted, directed acyclic graph with vertex set containing
two types of vertices. A nonterminal vertex has as attributes
a pointer index to a decision variable
in the input variable set and two children

. A terminal vertex has as attribute a
value .
Definition 6 (Reduced BDD): A reduced BDD is one that

meets the following additional properties.
1) When traversing any path from a terminal vertex to the root
vertex we encounter each decision variable at most once.

2) for any vertex and no two subgraphs
in the BDD are isomorphic.

Definition 7 [Reduced Ordered BDD (ROBDD)]: A canon-
ical form called a ROBDD if the following restrictions are im-
posed: for any vertices and such that no
vertex is terminal, we must have
and .
Definition 8 [Reduced Free (BDD)]: A reduced free BDD

is a reduced BDD where no strict variable ordering is required
on the BDD. In other words, different paths may have different
variable ordering as long as each variable is encountered at most
once along any path.
In our successive discussions, when talking about BDDs, we

refer to reduced-ordered or free BDDs unless explicitly speci-
fied.
Definition 9 (Reconvergent Fanout): If there are two or more

disjoint paths between a stem (i.e., an input line or a logic gate
output) and a gate , then is a reconvergent fanout stem (or
simply reconvergent fanout), and is a reconvergence gate of
stem .
Definition 10 (Reconvergent Fanout Region): The stem re-

gion (or reconvergent fanout region) of a reconvergent fanout
stem is composed of all the circuit nodes that satisfy the fol-
lowing conditions.
1) They are reached by the reconvergent fanout .
2) They reach a reconvergence gate of stem .
When talking about reconvergent fanout regions, we usually

mean those where signal fanout and reconvergence happen ex-
plicitly. However, reconvergence may also appear in a single
node containing a sum-of-product (SOP) formula. Both cases
may affect the precision of the GLIFT logic and thus need to be
considered. We identify the formal case as a global reconver-
gent fanout region and the latter as a local one.
For a better understanding, consider some examples of re-

convergent fanout regions as shown in Fig. 4, where the inputs
are at the bottom, the outputs are at the top, and all the num-
bered circles containing a Programmable Logic Array (PLA)
table are internal nodes. Here, PLA tables are used to specify
the functionality of internal nodes. In Fig. 4(a), there is a global
reconvergent fanout region consisting of nodes and .
In Fig. 4(b), nodes and compose another global re-
convergent fanout region; node contains a local reconvergent
fanout region.
Now that we have defined the basic concepts, the following

section performs a formal proof on the complexity of the precise
GLIFT logic generation problem.

1072 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

Fig. 4. Examples of reconvergent fanout regions. (a) Global reconvergent
fanout region. (b) Design contains a global reconvergent fanout region and a
local one.

IV. COMPLEXITY OF GENERATING PRECISE GLIFT LOGIC

GLIFT logic augmentation is a challenging task due to its in-
herent complexity and possible losses of precision. In this sec-
tion, we formally prove that generating precise GLIFT logic is
NP-complete. In the discussion, we consider -input Boolean
functions , where are the in-
puts. Before performing the NP-completeness proof, we need
to discuss the condition for the existence of nonconstant GLIFT
logic as stated and proved in Theorem 1.
Theorem 1: A Boolean function has nonconstant GLIFT

logic if the function is satisfiable and not a tautology.
Proof: If a Boolean function is not satisfiable, its value

will be constant “0”. In this case, no tainted input can affect the
output. The GLIFT logic is independent of the tainted inputs and
thus will be constantly “0”. Similarly, if a Boolean function is a
tautology, its GLIFT logic will be simply constant “0” as well
since the output of the functions is constant “1” and can never
be affected by a tainted input.
When a Boolean function is satisfiable and not a tautology,

there should exist input patterns which will evaluate the Boolean
function to be logic “1” and “0”, respectively. In other words,
tainted inputs may have a chance to affect the output. In this
case, the GLIFT logic will be dependent on the tainted inputs
and thus nonconstant.
By Theorem 1, the process of determining if a given Boolean

function has nonconstant GLIFT logic can be difficult because
it requires solving the NP-complete Boolean satisfiability and
nontautology problems. This may provide us some initial un-
derstanding on the complexity of the GLIFT logic generation
problem.
Since the NP-completeness proofs must be formalized for de-

cision problems [29], we begin our proof by describing a deci-
sion problem related to GLIFT logic generation. Specifically,
we define the taint propagation problem as follows:
Problem: Taint Propagation.
Instance: An -input Boolean function and a single tainted

input .
Decision Problem: Is there an input pattern that propagates

the value of to the output?

Now we formally prove the taint propagation problem to be
NP-complete, which is stated and proved in Theorem 2.
Theorem 2: Taint Propagation is NP-complete.
Proof: 1) .

Taint is propagated from the tainted input to the output when
and only when the tainted input has an influence on the output.
In other words, taint is propagated from to the output when
there is an input pattern such that:

(1)

since a nondeterministic al-
gorithm needs only to guess a truth assignment for inputs

and verify in polynomial time if this input
pattern propagates taint to the output by checking if (1) holds.
2) Fault Detection Taint Propagation.
The problem of determining if a fault in an input line is

detectable by I/O experiments is polynomially complete [30].
We transform this NP-complete fault detection problem to taint
propagation.
Given a Boolean function in 3-DNF

(Disjunctive Normal Form), we construct a circuit
with inputs , such that

. This construction is a direct implementa-
tion of and thus can be completed in polynomial time. Let
a certain input be tainted in the Boolean function . We
manually introduce a fault in the input line of circuit . That
is, taint is propagated from to the output iff (1) holds for
some input pattern . Further, the fault in input
line will be detectable iff the same condition is satisfied.
Thus, taint propagates from to the output iff the fault in

input line will be detectable. In other words, fault detection
transforms to taint propagation.
Generating precise GLIFT logic is a search problem. As such,

we defined the corresponding search problem of the taint prop-
agation decision problem as:
Problem: Taint Propagation.
Instance: An -input Boolean function and a single tainted

input .
Search Problem: Find an input pattern that propagates the

value of to the output, or else output .
The search problem of a NP-complete problem is no easier

than the decision problem itself [29]. This is due to the fact that
the solution to the search problem provides an answer to the de-
cision problem. Usually, a solution to the search problem can be
found by solving the corresponding decision problem a polyno-
mial number of times. For the taint propagation problem, a satis-
fied input pattern can be found by solving its corresponding de-
cision version times if there is one. Once a solution to the taint
propagation search problem is found, a minterm can be added
to the GLIFT logic to track tainted information flowing from
input to the output under this input pattern. Thus, precisely
determining which minterms with a single tainted input should
be added into the GLIFT logic requires solving the NP-com-
plete decision and this NP-hard search problem and thus is even
harder.

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1073

Apart from single tainted input cases, there are usually
minterms with multiple tainted inputs in the GLIFT logic as
well. We will show that precisely determining which minterms
with multiple tainted inputs should be added into the GLIFT
logic is equally hard. Before that, it is necessary to prove the
following lemma.
Lemma 1: The output of a Boolean function will be tainted

when at least one tainted input propagates to the output.
Proof: By the definition of taint, the output of a Boolean

function will be tainted when at least one tainted input has an
effect on the output. In other words, the output will be tainted
when at least one tainted input propagates to the output.
Theorem 3: Finding an input pattern that propagates taint

from any of the tainted inputs to the output
is NP-hard.

Proof: By Lemma 1, one needs to solve the taint prop-
agation decision problem times to determine if any tainted
input is able to propagate to the output in the worst case. Once
there exists a tainted input that propagates to the output, an input
pattern can be found by solving the taint propagation decision
problem another times. Thus, finding an input pattern that
propagates taint from any of the tainted inputs to the output
is determined by solving the taint propagation decision problem
a polynomial number of times. Since the taint propagation deci-
sion problem is NP-complete, finding an input pattern that prop-
agates taint from any of the tainted inputs to the output is
NP-hard.
Once an input pattern that propagates taint from any of

the tainted inputs to the output is found,
a minterm is added to the GLIFT logic with these inputs
marked as tainted. Therefore, precisely determining which
minterms with multiple tainted inputs should be added into the
GLIFT logic requires solving an NP-complete decision and an
NP-hard search problem and thus is even more complex. Since
we showed that precisely determining which minterms with
either single or multiple tainted input(s) should be added into
the GLIFT logic needs to solve NP-complete problems, precise
GLIFT logic generation (i.e., the corresponding optimization
problem of taint propagation which requires finding all possible
solutions) is also a hard problem.
Taint propagation, the fundamental problem of GLIFT logic

generation, closely relates to several well-known problems in
the switching circuit theories including Boolean satisfiability,
nontautology, fault detection, observability and automatic test
pattern generation (ATPG). Specifically, if taint is able to prop-
agate from any input to the output, the Boolean function should
be satisfiable and also not a tautology. If taint cannot be prop-
agated from any input to the output, a single evaluation step
will determine if the Boolean function is a tautology or unsat-
isfiable. Fault detection and observability are both concerned
with the existence of an input pattern that propagates the value
of some signal to an observation point. It is directly related to
taint propagation. ATPG takes a step further by finding effec-
tive test vectors that solve the fault detection or observability
problem if any exists. These known problems are all concerned
about the propagation of values through Boolean functions or
circuits. In addition, all these problems have been proved to be
NP-complete [29]–[31], which provides a good insight into the

complexity of our taint propagation and GLIFT logic generation
problems.

V. GLIFT LOGIC GENERATION ALGORITHMS

This section introduces various GLIFT logic generation algo-
rithms with a formal analysis on their computational complexity
and precision.

A. Minterm Enumeration Algorithms

The brute force algorithm, which we formalized in previous
work [24], is a minterm enumeration algorithm based upon the
definition of information flow. It works by changing the inputs
to a given Boolean function and observing what combinations
can cause a difference in the output. For any combination that
causes a change in the output, a minterm is added to the GLIFT
logic with the changed logic variables(s) marked as tainted and
unchanged variable(s) marked as untainted.
As an example, consider the NAND-2 gate (see Fig. 1). As-

sume the initial inputs under consideration are and
. By changing the value of to “1”, the output will

change from “1” to “0”. Thus, a difference in the output is ob-
served and the minterm should be added to the GLIFT
logic. This minterm monitors the flow of tainted information
from input to the output when is untainted and logically
“1”. Then let and . By changing the value of to
“0”, the output will change from “0” to “1”. Thus, a change in
the output is observed and the minterm should also be
added to the GLIFT logic. Note that the two minterms
and can be combined and reduced to the implicant

resulting in simplified GLIFT logic.
The GLIFT logic generated using the brute force algorithm

correctly tracks all flows of information assuming all input com-
binations are analyzed. Furthermore, the brute force algorithm
only accounts for the actual information flows, i.e., it is precise
for GLIFT logic generation. However, this algorithm has high
computational complexity because every single input combina-
tion must be checked in order to accurately determine which
minterms should be added to the GLIFT logic.
Theorem 4: The complexity of the brute force algorithm is

.
Proof: For an -input Boolean function, there are a total of
minterms; generating all these minterms takes steps. For

every minterm, each of the remaining minterms must be
checked to see if differences in the inputs lead to a change in the
output. This is redundant since each pair of terms only needs to
be checked once. As such, the total number of checking oper-
ations actually needed is . Thus, the algorithm
will complete in , i.e., steps.
Therefore, the computational complexity of the brute force al-
gorithm is .
An improvement to this brute force algorithm is the zero-one

algorithm, which enumerates minterms in a slightly more effi-
cient way. This improved algorithm essentially performs map-
ping from the on-set of a Boolean function to its off-set. Each
mapping operation will result in an implicant containing the
taint(s) of changed variable(s) and the literal(s) of unchanged
variable(s). This is based upon the inherent property of GLIFT

1074 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

that the value of a taint variable can be ignored in taint propa-
gation and the complement of taint never appears in simplified
GLIFT logic [32]. As a result, the mapping operations will pro-
duce cubes rather than minterms.
For a better understanding, once again consider the NAND-2

example. The on-set of NAND-2 is while
the off-set is (assume a variable ordering of).
When mapping from “00” to “11”, the implicant should be
added to the GLIFT logic since both and are tainted, their
values can be ignored; mapping from “01” to “11” will result
in the implicant since is tainted, its value can be ignored
and now that is untainted, the complement of its taint, i.e., ,
can be eliminated. According to the definition of information
flow, the GLIFT logic generated using the zero-one algorithm
is also precise.
Theorem 5: The upper bound on complexity of the zero-one

algorithm is .
Proof: Consider an unsimplified Boolean function, whose

on- and off-sets both consist of minterms. For an -input func-
tion, there are minterms in its on-set and

minterms in its off-set. The computation time needed
for minterm generation is .
Each single map operation from the on-set to the off-set cor-

responds to an implicant in the GLIFT logic. Thus, the zero-one
algorithm can complete in steps. Since

reaches maximum when , the computational com-
plexity of the zero-one algorithm is bounded by .
In practice, if minterms in the on- and off-sets of a Boolean

function are combined to more general implicants, the number
of elements in these two sets will decrease dramatically. In this
case, the computation time of the zero-one algorithm will be re-
duced significantly. Additionally, the resulting implicants from
each mapping operation will yield even larger cubes. However,
according to [33], the number of product terms in the SOP rep-
resentation of an -input Boolean function is bounded by .
There are known functions with exactly product terms
in both its on- and off-sets, e.g., -input XOR and NXOR. In
this case, the complexity of the zero-one algorithm will reach

. Thus, the complexity of minterm enumeration
algorithms is generally on the order of , which makes
them inefficient for processing large Boolean functions. How-
ever, these two algorithms are directly based on the definition
of information flow and thus provide a good basis for under-
standing how to generate GLIFT logic.
The minterm enumeration algorithms perform exhaustive

search in the on- and off-sets of a Boolean function, and
the problem will become intractable as the number of inputs
increases. Our experiments show that these minterm enumer-
ation algorithms have difficulty processing even moderately
complex designs. Advances in switching circuit theory, e.g.,
Boolean difference and SAT based observability don’t care
analysis, may provide more scalable solutions than minterm
enumeration. These methods lead to generalized solutions that
yield cubes instead of minterms, which could be dramatically
more scalable and in line with logic synthesis techniques. As
an example, consider a Boolean function with a tainted
input . One can construct another Boolean function with
only inverted in the Boolean formula of . By applying an

all-solutions SAT solver on , one can precisely obtain
all input patterns that propagates tainted information from
to the output if any exists. Although these methods are more
scalable, their efficiency is restricted to single tainted input
analysis. Consider a multiple tainted input case with tainted
inputs; these tainted inputs do not necessarily all change their
values in a single analysis. Instead, one needs to assume
tainted inputs indeed change their values for a certain run.
Since the total number of variable combinations is exponential,
i.e., , the number of runs will grow exponentially in a single
multiple tainted input analysis.
With an understanding of the complexity of minterm enu-

meration algorithms, the following sections focus on more ef-
ficient solutions for GLIFT logic generation using techniques
other than exhaustive search.

B. Constructive Algorithm

The constructive algorithm provides a less computationally
complex approach to GLIFT logic generation. However, it is
not guaranteed to provide a precise GLIFT function [24]. This
algorithm maintains a GLIFT library that contains the tracking
logic for gate primitives such as AND, OR and NOT T. Given a
Boolean function, gate primitives in its logic equation are aug-
mented with tracking logic from the GLIFT library discretely,
which is similar to technology mapping.
Let denote the number of gates in the circuit representation

of a Boolean function. Then, the complexity of the constructive
algorithm will be polynomial to . This is formally stated and
proved as Theorem 6.
Theorem 6: The complexity of the constructive algorithm is
.
Proof: In the constructive algorithm, each gate in a

Boolean function is augmented with tracking logic through
a constant time mapping operation. Therefore, the time for
GLIFT logic generation is , where is the constant
associated with tracking logic mapping for an individual gate.
Thus, the complexity of the constructive algorithm is .
While the computation time of the constructive algorithm is

linear to the number of gate primitives in a Boolean function,
GLIFT logic generated using this algorithm can be imprecise.
Such imprecision is caused by one-variable switches (multiple
variable switches do not cause imprecision) [24]. Switching
circuit theories in static hazards [34], [35] and reconvergent
fanouts [28] address such variable switch activities and thus
both provide a good insight to the impreciseness of the con-
structive algorithm. The following sections present solutions to
this imprecision problem from these two viewpoints.

C. Complete Sum Algorithm

As mentioned, the impreciseness of the constructive algo-
rithm is caused by the correlation between a variable and its
complement, i.e., a single variable switch. Switching circuit
theory observes that such single variable switches result in
static hazards [34]. It has been proven that a logic circuit con-
taining all its prime implicants is free of all static hazards [35].
Thus, GLIFT logic generated using the constructive algorithm
from a Boolean function in its complete sum form will be
precise. We call this precise GLIFT logic generation approach

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1075

the complete sum algorithm and have formally proven it to be
precise for GLIFT logic generation [24].
However, the complete sum algorithm is computationally ex-

pensive since the generation of just one prime implicant from a
normalized Boolean formula is NP-hard [36]. Further, the total
number of prime implicants of a Boolean function is generally
exponential to the number of inputs of that function. For an
-input Boolean function, themaximum number of prime impli-
cants approaches [37]. There are known functions with
a total number of prime implicants. Thus, the complete
sum algorithm is inherently exponential, which is formalized as
proved in Theorem 7.
Theorem 7: The complexity of the complete sum algorithm

is .
Proof: The complete sum algorithm is complete in two

steps. First, all prime implicants of a given Boolean function are
derived. This step is considered to be inherently of exponential
complexity, regardless of the representation of a Boolean func-
tion [38]. The computational complexity of known algorithms,
for example, the Quine’s algorithm [39] is . Most of the
other methods are [40], [41], or some are [38],
[42]. The second step of the algorithm constructively augments
tracking logic for all prime implicants, whose computation time
is polynomial to the total number of prime implicants . Thus,
the complexity of the complete sum algorithm is .
For simple functions with a small number of prime impli-

cants, there are existing tools such as ESPRESSO [43], which
are efficient for finding all prime implicants. However, the com-
plete sum algorithm is inherently expensive because it requires
solving the NP-hard prime implicants generation problem. This
provides us some further understanding on the complexity of
precise GLIFT logic generation [36]. In the next section, we
propose a new algorithm which requires the calculation of more
general two-level representations instead of complete sum for
generating precise GLIFT logic.

D. SOP-POS Algorithm

The impreciseness of the constructive algorithm is caused
by static hazards. A well-known property in switching circuit
theory is that a circuit in sum-of-products (SOP) representa-
tion is automatically free of static-0 hazards and a circuit in
product-of-sum (POS) form is free of static-1 hazards [44]. As a
consequence, the false positives in GLIFT logic generated from
circuits in SOP representation using the constructive algorithm
are caused by static-1 hazards while those in GLIFT logic gen-
erated from circuits in POS form constructively are caused by
static-0 hazards. Further, these two imprecise GLIFT logic func-
tions do not overlap in their false positives since the static-1 and
static-0 hazards of a Boolean function never have an intersection
[45]. Thus, we can generate two imprecise GLIFT logic func-
tions from the SOP and POS representations of a Boolean func-
tion and obtain the precise GLIFT logic by performing a logic
AND operation on the two imprecise ones. We call this new pre-
cise GLIFT logic generation approach the SOP-POS algorithm.
Given a Boolean function , we denote its SOP and POS rep-

resentations as and ; the GLIFT logic functions gen-
erated from them constructively are denoted as and

, respectively.2 Then, the precise GLIFT logic
can be obtained using

(2)

For a concrete understanding, once again consider the
MUX-2 example. We have

(3)

When generated constructively, as shown in (4),
contains false positive (caused by static-1 hazard in)

(4)

Using the constructive algorithm, we get , as given
in (5), which contains false positive (caused by static-0
hazard in)

(5)

When performing a logic AND of (4) and (5), both false pos-
itives will be reduced and the resulting GLIFT logic is shown
in (6), which is equivalent to the precise GLIFT logic generated
using the brute force algorithm

(6)

In practice, the SOP (or POS) representations of and are
also eligible for precise GLIFT logic generation. The resulting
GLIFT logic will be equally precise. This is because they do not
have an intersection in their static-1 (or static-0) hazards and
and share the same precise GLIFT logic [32].
In general, the computational complexity of calculating two

PLA tables can be significantly lower than finding all prime im-
plicants. Thus, the SOP-POS algorithm can be more efficient
than the complete sum algorithm. Theorem 8 formally states and
proves the complexity of the SOP-POS algorithm.
Theorem 8: The upper bound on complexity of the SOP-POS

algorithm is .
Proof: The SOP-POS algorithm generates precise GLIFT

logic from two PLA (either SOP or POS) tables of a given
Boolean function. For an -input function, the complexity of
computing two PLA tables has an upper bound of (the on-
and off-sets of the function in the worst case). With these two
PLA tables, the two imprecise GLIFT logic functions can be
generated in polynomial time, which is linear to the total number
of gates in the two PLA tables. In addition, the AND opera-
tion on the two imprecise GLIFT logic functions takes constant
time. Thus, the complexity of the SOP-POS algorithm is upper
bounded by .
The SOP-POS algorithm requires calculating more general

two-level representations instead of the complete sum of a
Boolean function, which makes it less expensive as compared

2The notation sh is derived from the “shadow logic”, which is another term
for GLIFT logic.

1076 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

to the complete sum algorithm. For an -input Boolean func-
tion , the number of product terms in its SOP representation
has an upper bound of . There are existing functions that
have product terms in both and , such as -input XOR.
The calculation of two SOP formulas takes a total of steps
in this case. Thus, the complexity of the SOP-POS algorithm
can reach .
With the consistent growth in the size of integrated circuits,

modern synthesis tools usually use multilevel logic network for
circuit representation. Mapping of the multilevel representation
of a Boolean function to two-level SOP/POS forms has scala-
bility challenges, which makes the SOP-POS algorithm ineffi-
cient for processing large multilevel logic networks. In the fol-
lowing section, we consider a frequently used multilevel logic
representation technique and present a more scalable precise
GLIFT logic generation algorithm.

E. BDD-MUX Algorithm

Recent advances in digital circuit design has enabled the syn-
thesis of static hazard-free multilevel logic using BDDs [27].
Now that this BDD method is able to eliminate static hazards,
which are the sources of impreciseness of the constructive algo-
rithm, it can also be used for precise GLIFT logic generation.
To generate precise GLIFT logic, a reduced ordered or free

BDD is constructed from a given Boolean function. Then a mul-
tilevel logic network is derived from the BDD by replacing each
BDD vertex with a two-input multiplexer (MUX-2). After that,
the multiplexer network is simplified through constant propaga-
tion. There is some difference in the constant propagation step
as compared to the method given by [27]. We perform constant
propagation only when both inputs to a multiplexer are con-
stants. In case only one input is a constant, we label the con-
stant input as untainted. Finally, the multiplexer network is aug-
mented with GLIFT logic using the constructive algorithm. As
long as the GLIFT logic for the MUX-2 in the GLIFT library
is precise, the resulting GLIFT logic function will be precise.
We call this new precise GLIFT logic generation algorithm the
BDD-MUX algorithm.
For a more concrete understanding, consider the Boolean

function . When generating GLIFT logic
for using the constructive algorithm directly, the resulting
GLIFT function will be imprecise because there is a one-vari-
able switch caused by subterms and . To generate
precise GLIFT logic using the BDD-MUX algorithm, we first
construct a BDD from as shown in Fig. 5(a). Then all the ver-
texes in the BDD are substituted with MUX-2, which results in
a multiplexer network as shown in Fig. 5(b). The multiplexers
with two constant inputs are further simplified through constant
propagation. Finally, the simplified logic network shown in
Fig. 5(c) is augmented with GLIFT logic constructively using
the precise tracking logic for MUX-2 as given in (6).
Theorem 9: The complexity of the BDD-MUX algorithm is

.
Proof: The BDD-MUX algorithm first constructs a re-

duced free or ordered BDD for a given Boolean function. For
an -input Boolean function, the computational complexity of

Fig. 5. (a) BDD. (b) Derived multiplexer network. (c) Simplified logic network
after constant propagation.

BDD construction has an upper bound of [46]. The con-
structive GLIFT logic augmentation process will complete in
steps, where is the number of multiplexers in the simplified
multiplexer network. Thus, the complexity of the BDD-MUX
algorithm is .
The most computationally expensive step of the algorithm

lies in the construction of a reduced free or ordered BDD from a
Boolean formula. Certain NP-complete problems such as SAT
and nontautology can be solved in polynomial time on a reduced
free or ordered BDD. Thus, the construction of a reduced free
or ordered BDD is generally of exponential complexity. For-
tunately, in most cases such a BDD can be constructed in a
time complexity far less than . Proper variable ordering
can significantly decrease both the time and space complexity
of BDD construction, which makes the BDD-MUX algorithm
faster than other GLIFT logic algorithms in practice as we will
show in Section VI.
The BDD-MUX algorithm targets multilevel logic networks

instead of two-level tabular or SOP/POS representations. The
number of nodes in the reduced BDD of a Boolean function is
bounded by . By comparison, the number of product terms
in its SOP formula is bounded by . Thus, the BDD-MUX
algorithm is often more scalable than the previous precise
GLIFT logic generation algorithms. In addition, there are
mature BDD packages such as CUDD [47] and even existing
logic synthesis tools such as ABC [48] that provides support
for BDD maintenance.
The complete sum, SOP-POS and BDD-MUX algorithms

consider the cause of impreciseness of the constructive algo-
rithm as static hazards. We can also consider the imprecision
problem from the viewpoint of reconvergent fanouts. The fol-
lowing section presents a precise GLIFT logic generation algo-
rithm that deals with reconvergent fanout regions.

F. Reconvergent Fanout Region Reconstruction Algorithm

Reconvergent fanout regions have been identified as potential
sources of logic hazards and race conditions in the switching
circuit theory [28]. In a reconvergent fanout region, there is
the possibility for the occurrence of one-variable switch (i.e.,
static hazard). Thus, such regions are potential sources of im-
preciseness of the constructive algorithm. To generate precise
GLIFT logic, reconvergent fanout regions need to be locally re-
constructed either as a single node in the complete sum form

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1077

or a multiplexer network translated from a reduced free or or-
dered BDD. Finally, the fully processed logic network is aug-
mented with GLIFT logic using the constructive algorithm. We
call this new precise GLIFT logic generation approach the re-
convergent fanout region reconstruction algorithm. In succes-
sive discussions, it will be also called the RFRR algorithm for
simplicity.
A multilevel logic network can be described as a directed

graph , where is the vertex set and is the edge
set. Let and . The complexity of the RFRR
algorithm is determined by the number of elements in these two
sets, together with the number of inputs of the Boolean function.
This is formalized as Theorem 10.
Theorem 10: The complexity of the reconvergent fanout re-

gion reconstruction algorithm is .
Proof: The computation extensive steps of the algorithm

lie in the search for all reconvergent fanout regions and re-
constructing them as a single node in the complete sum form
or a multiplexer network translated from a reduced free or or-
dered BDD. In a logic network , the maximum number
of global reconvergent fanout regions is and the
number of local ones is in the worst case. The complexity of
finding one reconvergent fanout region is bounded by .
Assume a reconvergent fanout region has inputs. The com-
plexity for reconstruction would be . Thus, for an input
Boolean function, the reconvergent fanout region construction
algorithm will complete in
steps in the worst case (for all reconvergent fanout re-
gions), where is the number of gates in the fully processed
logic network. Thus, the complexity of the reconvergent fanout
region construction algorithm is .
The RFRR algorithm has higher complexity as compared

to the BDD-MUX algorithm which also targets the multilevel
logic network. Theoretically, the complete sum algorithm is the
extreme case of the RFRR algorithm, where a primary output
is considered as a reconvergence gate. Although this algorithm
is not as efficient as the BDD-MUX algorithm, it considers the
imprecision problem from a different viewpoint, i.e., reconver-
gent fanouts which cause data correlations. This algorithm also
provides a possibility to capture where impreciseness initially
arises and identify portions of the circuit that need redesign to
(partially) eliminate imprecision.

G. Comparison of GLIFT Logic Generation Algorithms

The computational complexity and precision of different
GLIFT logic generation algorithms are summarized as shown
in Table II.
From Table II, the complexity of the brute force and zero-one

algorithms are on the same order, i.e., . However, the
zero-one algorithm may take relatively less computation time
since the exact upper bounds of their complexity are and

, respectively. In addition, if general implicants are con-
sidered instead of minterms, the reduction in execution time of
the zero-one algorithm will be even more significant. The com-
plexity of the complete sum, SOP-POS and BDD-MUX algo-
rithms are on the same order. They are one order of magnitude
faster than the brute force and zero-one algorithms. However,

TABLE II
COMPUTATIONAL COMPLEXITY AND PRECISION OF DIFFERENT

GLIFT LOGIC GENERATION ALGORITHMS

Fig. 6. Experimental flows for runtime analysis of various GLIFT logic
function generation algorithms. (a) Brute force, (b) zero-one, (c) Com. Sum,
(d) SOP-POS, (e) BDD-MUX, (f) RFRR, and (g) constructive.

the SOP-POS and BDD-MUX algorithms execute faster than
the complete sum algorithms in most cases. This is because cal-
culating two PLA tables or a reduced ordered or free BDD is
generally faster than finding all its prime implicants. The RFRR
algorithm is inherently expensive since the number of reconver-
gent fanout regions can be exponential and reconvergent fanout
region reconstruction has exponential complexity as well. The
constructive algorithm is the only method whose complexity
is polynomial to the number of primitive gates in a given de-
sign. Yet it is also the only algorithm that has potential losses in
precision.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We carried out experiments on several IWLS benchmarks to
obtain runtime results of the different GLIFT logic generation
algorithms. In our experiments, the GLIFT logic functions are
generated using the algorithms discussed in this paper. These
algorithms use the design tools shown in Fig. 6.
The brute force algorithm works on a full truth table gen-

erated by the ModelSim simulation tool. Our GLIFT logic
augmentation script checks each minterm in the truth table
against the remaining minterms to see if there is a difference in
the output. Whenever a difference is encountered, a minterm
with the changed variables marked as tainted and unchanged
variables marked as untainted is added to the GLIFT logic. The
zero-one algorithm further partitions the truth table generated
into the on- and off-sets of its Boolean function. Then our
GLIFT logic augmentation script maps minterms in the on-set

1078 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

TABLE III
RUNTIME OF DIFFERENT GLIFT LOGIC GENERATION ALGORITHMS.

“N. AVG” IS AVERAGE RUNTIME NORMALIZED TO THAT OF CONSTRUCTIVE
ALGORITHM. RESULTS ARE IN SECONDS (SEC)

to the off-set. For each mapping operation, a minterm with the
unchanged variables and taints of changed variables is added to
the GLIFT logic. The complete sum algorithm uses ESPRESSO
[43] to find all prime implicants of the benchmark. Then the
constructive algorithm operates on the complete sum repre-
sentation to create the GLIFT logic. The SOP-POS algorithm
uses SIS [49] to calculate the SOP representations for both the
original benchmark and the complemented design. Then our
script generates GLIFT logic functions for both representations.
Finally, the precise GLIFT logic is obtained by performing an
AND operation on the two imprecise GLIFT logic functions. The
BDD-MUX algorithm uses ABC [48] to construct a ROBDD
for the benchmark and translate the ROBDD to a multiplexer
network. Then we use our script to create the GLIFT logic
for the multiplexer network constructively. The RFRR algo-
rithm uses our preprocessing script to find and reconstruct all
reconvergent fanout regions either as a SOP formula in the
complete sum form or as a multiplexer network translated from
a ROBDD. Then we use the constructive algorithm to create
the final GLIFT logic. The constructive algorithm processes
the optimized logic circuit directly using our own GLIFT logic
augmentation script and creates a potentially imprecise GLIFT
logic function.
The GLIFT logic functions generated using algorithms a) to

f) as denoted in Fig. 6 are all precise and thus should be logi-
cally equivalent. This is verified using the formal equivalence
checking command in the ABC tool. The GLIFT logic function
generated using flow g) may be imprecise and therefore is not
necessarily equivalent to the other functions. The following sec-
tion outlines the runtime results of different algorithms.

B. Runtime Results

GLIFT logic functions for several IWLS benchmarks are gen-
erated using the algorithms described in this paper. Their execu-
tion time is shown in Table III. We stop if an algorithm cannot
complete on a benchmark within 10 hours. We are restricted
in the benchmarks we could test because we used several logic
synthesis tools such as ESPRESSO and ABC in our experiment.

These tools have limitations on the size of the circuit they could
process.
Consider the benchmark DES in Table III which is an imple-

mentation of the Data Encryption Standard. The “-” symbols
indicate that the brute force and zero-one algorithms required
over 10 hours to complete on this benchmark. The constructive
algorithm takes only 1.85 s. However, the GLIFT logic gener-
ated by this constructive algorithm is imprecise as compared to
those generated using the remaining algorithms. The complete
sum, SOP-POS, BDD-MUX and RFRR algorithms require ex-
ecution times of 243.1, 159.3, 47.5, and 428.1 s, respectively.
The last row of Table III shows the average runtime normalized
to the execution time of the constructive algorithm.
The brute force and zero-one algorithms are the most expen-

sive since they require greater than 10 hours on many of the
benchmarks. The constructive algorithm often takes the shortest
time to complete while the RFRR algorithm usually needs a
longer execution time. The SOP-POS and BDD-MUX algo-
rithms typically see less computation time than the complete
sum algorithm since deriving PLA tables or a BDD is typically
faster than finding all prime implicants. Further, we see that the
BDD-MUX algorithm is close to or faster than the SOP-POS al-
gorithm in most cases. For certain benchmarks, the BDD-MUX
algorithm executes significantly faster, such as t481 and DES.
The RFRR algorithm is slow because of the large number of
reconvergent fanout regions and inherent complexity of recon-
struction. It works quickly when few reconvergent fanout re-
gions need to be processed such as in the x1 example. It is
necessary to point out that the runtime of different algorithms
is function-specific. It depends on both the functionality (e.g.,
the percentage of minterms included in the on-set affects the
total number of prime implicants) and description style of the
benchmark.
The constructive algorithm has the lowest complexity while

all the remaining algorithms are inherently expensive. However,
precision of GLIFT logic is also an important factor in security
critical applications. There can be various tradeoffs for system
designers. In highly secure systems that require high precision,
sacrifices in computational complexity need to be made and pre-
cise GLIFT logic generation algorithms should be used. While
in systems where a certain amount of false positives can be tol-
erated, imprecise GLIFT logic can be generated using the con-
structive algorithm in polynomial time. The amount of preci-
sion required to adequately uphold the information flow secu-
rity policy of an application remains an open problem. System
designers should make the final decision how precise the GLIFT
logic needs to be upon tradeoffs between security requirements
and design efforts.

VII. CONCLUSION

GLIFT provides an effective approach to monitor informa-
tion flows including those through hardware specific timing
channels from Boolean functions. It can be integrated into
the standard hardware design and verification process for
eliminating unintended interactions between subsystems which
may open up doors for malicious attacks. This paper presents
formal proof on the NP-completeness of precise GLIFT logic
generation. Several GLIFT logic generation algorithms are

HU et al.: COMPLEXITY OF GENERATING GATE LEVEL INFORMATION FLOW TRACKING LOGIC 1079

proposed with formal analysis on their complexity and preci-
sion. In highly secure systems where high precision is required,
precise GLIFT logic generation algorithms should be used,
while in applications where imprecision can be tolerated, the
constructive algorithm would be more cost effective. Further,
heuristic algorithms such as adding prime implicants to or
selectively reconstructing reconvergent fanout regions can also
be used. The algorithm can stop when a desired precision is
achieved, which provides flexible tradeoffs between precision
and design efforts.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their valu-
able feedback, which was of great help in improving this paper.

REFERENCES

[1] “Federal aviation administration (FAA),” Special Conditions: Boeing
Model 787-8Airplane; Systems and data networks security-isolation or
protection from unauthorized passenger domain systems access 2008
[Online]. Available: http://cryptome.info/faa010208.htm

[2] C. Li, A. Raghunathan, and N. Jha, “Hijacking an insulin pump: Se-
curity attacks and defenses for a diabetes therapy system,” in Proc.
13th IEEE Int. Conf. e-Health Networking Applications and Services
(Healthcom), Columbia, MO, Jun. 2011, pp. 150–156.

[3] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. Maisel, “Pacemakers and im-
plantable cardiac defibrillators: Software radio attacks and zero-power
defenses,” in Proc. IEEE Symp. Security and Privacy, 2008, Oakland,
CA, May 2008, pp. 129–142.

[4] “Common criteria,” Common criteria for information technology se-
curity evaluation 2009 [Online]. Available: http://www.commoncrite-
riaportal.org/cc/

[5] G. Heiser, What Does cc eal6 mean? 2008 [Online]. Available: http://
www.ok-labs.com/blog/entry/what-does-cc-eal6-mean/

[6] Green Hills, The integrity real-time operating system 2010 [Online].
Available: http://www.ghs.com/products/rtos/integrity.html

[7] D. Bell and L. LaPadula, Secure computer systems: Mathemat-
ical foundations MITRE Corporation, Bedford, MA, Tech. Rep.
MTR-2547, 1973.

[8] K. J. Biba, Integrity Considerations for Secure Computer Systems
MITRE Corporation, Bedford, MA, Tech. Rep. TR-3153, 1977.

[9] A. Sabelfeld and A. Myers, “Language-based information-flow secu-
rity,” IEEE J. Selected Areas Commun., vol. 21, no. 1, pp. 5–19, Jan.
2003.

[10] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
in Proc. 21st ACM SIGOPS Symp. Operating Systems Principles
(SOSP’07), New York, 2007, pp. 321–334.

[11] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey, D.
Ziegler, F. Kaashoek, R. Morris, and D. Mazières, “Labels and event
processes in the asbestos operating system,” ACM Trans. Comput.
Syst., vol. 25, Dec. 2007.

[12] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proc. 11th Int.
Conf. Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS-XI), New York, 2004, pp. 85–96, ACM.

[13] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible infor-
mation flow architecture for software security,” in Proc. 34th Annu.
Int. Symp. Computer Architecture (ISCA’07), New York, 2007, pp.
482–493, ACM.

[14] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software,” in Proc. 12th Annu. Network and Distributed System Secu-
rity Symp. (NDSS’05), 2005.

[15] F. Qin, C. Wang, Z. Li, H. S. Kim, Y. Zhou, and Y. Wu, “Lift: A
low-overhead practical information flow tracking system for detecting
security attacks,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microar-
chitecture, Dec. 2006, pp. 135–148.

[16] D. J. Bernstein, Cache-Timing attacks on AES Uni-
versity of Illinois at Chicago, Chicago, IL, Tech. Rep.
cd9faae9bd5308c440df50fc26a517b, 2005.

[17] O. A. Jean-Pierre, J. P. Seifert, and C. K. Koc, “Predicting secret keys
via branch prediction,” in Cryptology—CT-RSA 2007, Cryptographers
Track at RSA Conf., 2007, pp. 225–242, Springer-Verlag.

[18] W.-M. Hu, “Reducing timing channels with fuzzy time,” in Proc. IEEE
Computer Soc. Symp. Res. Security and Privacy 1991, May 1991, pp.
8–20, IEEE.

[19] P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn, “A retrospec-
tive on the VAX VMM security kernel,” IEEE Trans. Software Eng.,
vol. 17, no. 11, pp. 1147–1165, Nov. 1991.

[20] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in Proc. 14th Int. Conf. Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’09), New York, 2009, pp.
109–120.

[21] M. Tiwari, X. Li, H. Wassel, F. Chong, and T. Sherwood, “Execution
leases: A hardware-supported mechanism for enforcing strong non-in-
terference,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, MICRO-42. 2009, New York, Dec. 2009, pp. 493–504.

[22] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in I C and USB,” in Proc. 48th ACM/
EDAC/IEEE Design Automation Conf. (DAC), San Diego, CA, Jun.
2011, pp. 254–259.

[23] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable micro-
kernel, processor, and I/O system with strict and provable information
flow security,” in Proc. 38th Annu. Int. Symp. Computer Architecture
(ISCA’11), New York, 2011, pp. 189–200, ACM.

[24] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R.
Kastner, “Theoretical fundamentals of gate level information flow
tracking,” IEEE Trans. Computer-Aided Design of Integrated Circuits
Syst., vol. 30, no. 8, pp. 1128–1140, Aug. 2011.

[25] R.Kastner, J. Oberg,W.Hu, andA. Irturk, “Enforcing information flow
guarantees in reconfigurable systems with mix-trusted IP,” in Proc. Int.
Conf. Eng. Reconfigurable Systems and Algorithms (ERSA), Las Vegas,
NV, Jul. 2011.

[26] G. Micheli, “McGraw-Hill series in electrical and computer engi-
neering: Electronics and VLSI circuits,” in Synthesis and Optimization
of Digital Circuits. New York: McGraw-Hill, 1994.

[27] B. Lin and S. Devadas, “Synthesis of hazard-freemultilevel logic under
multiple-input changes from binary decision diagrams,” IEEE Trans.
Computer-Aided Design Integrated Circuits Syst., vol. 14, no. 8, pp.
974–985, Aug. 1995.

[28] F. Maamari and J. Rajski, “A method of fault simulation based on
stem regions,” IEEE Trans. Computer-Aided Design Integrated Cir-
cuits Syst., vol. 9, no. 2, pp. 212–220, Feb. 1990.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York:W. H. Freeman, 1990.

[30] O. Ibarra and S. Sahni, “Polynomially complete fault detection prob-
lems,” IEEE Trans. Computers, vol. C-24, no. 3, pp. 242–249, Mar.
1975.

[31] H. Fujiwara, “Computational complexity of controllability/observ-
ability problems for combinational circuits,” IEEE Trans. Computers,
vol. 39, no. 6, pp. 762–767, Jun. 1990.

[32] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Theoretical analysis of gate level information flow tracking,” in Proc.
47th ACM/IEEE Design Automation Conf. (DAC), Anaheim, CA, Jun.
2010, pp. 244–247.

[33] E. Dubrova, “Upper bound on the number of products in a
sum-of-product expansion of multiple-valued functions,” Mul-
tiple-Valued Logic, Int. J., pp. 349–364, May 2000.

[34] E. J. McCluskey, “McGraw-Hill electrical and electronic engineering
series,” in Introduction to the Theory of Switching Circuits. New
York: McGraw-Hill, 1965.

[35] E. B. Eichelberger, “Hazard detection in combinational and sequential
switching circuits,” IBM J. Res. Development, vol. 9, no. 2, pp. 90–99,
Mar. 1965.

[36] L. Palopoli, F. Pirri, and C. Pizzuti, “Algorithms for selective enumer-
ation of prime implicants,” Artificial Intell., vol. 111, no. 12, pp. 41–72,
Jul. 1999.

[37] A. K. Chandra and G. Markowsky, “On the number of prime impli-
cants,” Discrete Math., vol. 24, no. 1, pp. 7–11, 1978.

[38] T. Strzemecki, “Polynomial-time algorithms for generation of prime
lmplicants,” J. Complexity, vol. 8, pp. 37–63, 1992.

1080 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 3, JUNE 2012

[39] W.V. Quine, “On cores and prime implicants of truth functions,”Amer.
Mathematical Monthly, vol. 66, pp. 755–760, 1959.

[40] N. N. Necula, “A numerical procedure for determination of the prime
implicants of a boolean function,” IEEE Trans. Electron. Computers,
vol. EC-16, no. 5, pp. 687–689, Oct. 1967.

[41] M. Friedel, S. Nikolajewa, and T. Wilhelm, “The decomposition tree
for analyses of boolean functions,” Math. Structures Computer Sci.,
vol. 18, pp. 411–426, 2008.

[42] E. Morreale, “Recursive operators for prime implicant and irredundant
normal form determination,” IEEE Trans. Comput., vol. C-19, no. 6,
pp. 504–509, Jun. 1970.

[43] B. Donald and O. Pederson, “Center for electronic systems de-
sign,” Espresso: A multi-valued PLA minimization 1988 [On-
line]. Available: http://embedded.eecs.berkeley.edu/pubs/down-
loads/espresso/index.htm

[44] S. H. Unger, Asynchronous Sequential Switching Circuits. Mel-
bourne, FL: Krieger Publishing, 1983.

[45] P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. Nowick, “Syn-
thesis of hazard-free customized cmos complex-gate networks under
multiple-input changes,” in Proc. 33rd Design Automation Conf., June
1996, pp. 77–82.

[46] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, pp. 293–318,
Sep. 1992.

[47] F. Somenzi, Cudd: Cu Decision Diagram Package 2011 [Online].
Available: http://vlsi.colorado.edu/~fabio/CUDD/

[48] B. Donald and O. Pederson, “Center for electronic systems design,”
ABC: A System for Sequential Synthesis and Verification 2007 [On-
line]. Available: http://www.eecs.berkeley.edu/~alanmi/abc/

[49] “Berkeley logic synthesis and verification group,” SIS: A System
for Sequential Circuit Synthesis 2002 [Online]. Available: http://em-
bedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm

Wei Hu received the B.S. degree in pattern recog-
nition and intelligent system from the School of
Automation, Northwestern Polytechnical University,
Xi’an, Shaanxi, China. He is currently pursuing the
Ph.D. degree from the School of Automation, North-
western Polytechnical University, Xi’an, Shaanxi,
China.
His current research interests are in algorithm

design and analysis, security, reconfigurable devices
and embedded systems.

JasonOberg (S’10) received the B.S. degree in com-
puter engineering from the University of California,
Santa Barbara. He is currently pursuing the Ph.D. de-
gree, working with R. Kastner, from the Department
of Computer Science and Engineering, University of
California, San Diego.
His primary research interests include hardware

and embedded system security with the use of
information flow tracking.

Ali Irturk (S’07–M’10) received the Ph.D. degree in
computer science and engineering from the Univer-
sity of California, San Diego.
He is currently a Research Scientist with the De-

partment of Computer Science and Engineering, Uni-
versity of California, San Diego. His current research
interests include design methods, languages and tools
for embedded systems and their applications in areas,
including signal processing, security, and high per-
formance computing.

Mohit Tiwari received the Ph.D. degree in com-
puter science from the University of California,
Santa Barbara, in 2011.
He is currently a Computing Innovation Fellow at

the University of California, Berkeley. His research
interests include computer architecture and program
analyses, especially applied to secure and reliable
systems.
Dr. Tiwari’s work has received the Best Paper

Award at Parallel Architectures and Compilation
Techniques in 2009 and the IEEE Micro Top Pick in

2010.

Timothy Sherwood (M’00) received the B.S. degree
in computer science and engineering from the Uni-
versity of California (UC), Davis, in 1998, and the
M.S. and Ph.D. degrees in computer science and en-
gineering from UC, San Diego, in 2003.
He is currently an Associate Professor with the De-

partment of Computer Science, UC, Santa Barbara.
He specializes in the development of novel computer
architectures for security, monitoring, and adaptive
control.
Dr. Sherwood’s papers have been selected as

Micro Top Picks on four separate occasions, and he was the recipient of the
2009 Northrup Grumman Excellence in Teaching Award.

Dejun Mu received the Ph.D. degree in control
theory and control engineering from Northwestern
Polytechnical University, Xi’an, Shaanxi, China, in
1994.
He is currently a Professor with the School of

Automation, Northwestern Polytechnical University,
China. His current research interests include control
theories and information security, including basic
theories and technologies in network information
security, application specific chips for information
security, and network control systems.

Ryan Kastner (S’00–M’04) received the Ph.D. de-
gree in computer science from the University of Cal-
ifornia, Los Angeles.
He is currently an Associate Professor with the

Department of Computer Science and Engineering,
University of California, San Diego. His current
research interests include many aspects of embedded
computing systems, including reconfigurable archi-
tectures, digital signal processing, and security.

