
44

Designing Secure Systems
on Reconfigurable Hardware

TED HUFFMIRE

Naval Postgraduate School

BRETT BROTHERTON

Special Technologies Laboratory

NICK CALLEGARI, JONATHAN VALAMEHR, and JEFF WHITE

University of California, Santa Barbara

RYAN KASTNER

University of California, San Diego

and

TIM SHERWOOD

University of California, Santa Barbara

The extremely high cost of custom ASIC fabrication makes FPGAs an attractive alternative

for deployment of custom hardware. Embedded systems based on reconfigurable hardware

integrate many functions onto a single device. Since embedded designers often have no choice

but to use soft IP cores obtained from third parties, the cores operate at different trust levels,

resulting in mixed-trust designs. The goal of this project is to evaluate recently proposed security

primitives for reconfigurable hardware by building a real embedded system with several cores

on a single FPGA and implementing these primitives on the system. Overcoming the practical

problems of integrating multiple cores together with security mechanisms will help us to develop

realistic security-policy specifications that drive enforcement mechanisms on embedded systems.

This research was funded in part the National Science Foundation Grant CNS-0524771 and

National Science Foundation Career Grant CCF-0448654.

Authors’ addresses: T. Huffmire, Department of Computer Science, Naval Postgraduate

School, Monterey, CA 93943; email: tdhuffmi@nps.edu; B. Brotherton, Special Technolo-

gies Laboratory, Santa Barbara, CA 93111; email: brett.brotherton@gmail.com; N. Callegari,

J. Valamehr, and J. White, Department of Electrical and Computer Engineering, Univer-

sity of California, Santa Barbara, CA 98106; email: {nick callegari, valamehr}@ece.ucsb.edu;

jdwhite08@engineering.ucsb.edu; R. Kastner, Department of Computer Science and Engineering,

University of California San Diego, La Jolla, CA 92093; email: kastner@ucsd.edu; T. Sherwood,

Department of Computer Science, University of California, Santa Barbara, CA 93106; email: sher-

wood@cs.ucsb.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/07-ART44 $5.00 DOI 10.1145/1367045.1367053 http://doi.acm.org/

10.1145/1367045.1367053

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:2 • T. Huffmire et al.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Virtual mem-
ory; B.7.1 [Integrated Circuits]: Types and Design Styles—Gate arrays; B.7.2 [Integrated Cir-
cuits]: Design Aids—Placement and routing; C.1.3 [Processor Architectures]: Other Architec-

ture Styles—Adaptable architectures; D.4.7 [Operating Systems]: Organization and Design—

Real-time systems and embedded systems; K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms: Design, Security

Additional Key Words and Phrases: Field programmable gate arrays (FPGAs), advanced encryption

standard (AES), memory protection, separation, isolation, controlled sharing, hardware security,

reference monitors, execution monitors, enforcement mechanisms, security policies, static analysis,

security primitives, systems-on-a-chip (SoCs)

ACM Reference Format:
Huffmire, T., Brotherton, B., Callegari, N., Valamehr, J., White, J., Kastner, R., and Sherwood, T.

2008. Designing secure systems on reconfigurable hardware. ACM Trans. Des. Autom. Electron.

Syst. 13, 3, Article 44 (July 2008), 24 pages, DOI = 10.1145/1367045.1367053 http://doi.acm.org/

10.1145/1367045.1367053

1. INTRODUCTION

Reconfigurable hardware, such as a field programmable gate array (FPGA),
provides an attractive alternative to costly custom ASIC fabrication for deploy-
ing custom hardware. While ASIC fabrication requires very high nonrecurring
engineering (NRE) costs, an SRAM-based FPGA can be programmed after fab-
rication to be virtually any circuit. Moreover, the configuration can be updated
an infinite number of times.

Because they are able to provide a useful balance between performance,
cost, and flexibility, many critical embedded systems make use of FPGAs as
their primary source of computation. For example, the aerospace industry re-
lies on FPGAs to control everything from the Joint Strike Fighter to the Mars
Rover. We are now seeing an explosion of reconfigurable-hardware-based de-
signs in everything from face recognition systems [Ngo et al. 2005], to wireless
networks [Salefski and Caglar 2001], intrusion detection systems [Hutchings
et al. 2002], and supercomputers [Bondhugula et al. 2006]. In fact, it is esti-
mated that in 2005 alone there were over 80,000 different commercial FPGA
design projects started [McGrath 2005].

Since major IC manufacturers outsource most of their operations to a variety
of countries [Milanowski and Maurer 2006], the theft of IP from a foundry is
a serious concern. FPGAs provide a viable solution to this problem, since the
sensitive IP is not loaded onto the device until after it has been manufactured
and delivered. This makes it harder for the adversary to target a specific appli-
cation or user. In addition, device attacks are difficult on an FPGA, since the
intellectual property is lost when the device is powered off. Modern FPGAs use
bit-stream encryption and other methods to protect the intellectual property
once it is loaded onto the FPGA or an external memory.

Although FPGAs are currently fielded in critical applications that are part of
the national infrastructure, the development of security primitives for FPGAs
is just beginning. Reconfigurable systems are often composed of several mod-
ules (called IP cores) on a single device. Since cost pressures necessitate

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:3

object reuse, a typical embedded system will incorporate soft IP cores that
have been developed by third parties. Just as software designers must rely on
third-party classes, libraries, and compilers, hardware designers must also cope
with the reality of using third-party cores and design tools. This issue will grow
in importance as organizations increasingly rely on incorporating commercial
off-the-shelf (COTS) hardware or software into critical projects.

The goal of this article is to examine the practicality of recently proposed se-
curity primitives for reconfigurable hardware [Huffmire et al. 2007, 2006], by
applying them to an embedded system consisting of multiple cores on a single
FPGA. Through our red-black design example, we attempt to better understand
how the application of these security primitives impacts the design, in terms
of both complexity and performance, of a real system. Integrating several cores
together with reconfigurable protection primitives enables the effective imple-
mentation of realistic security policies on practical embedded systems. We begin
with a description of work related to reconfigurable security (Section 2), and
then explain the underlying theory of separation in reconfigurable devices in
Section 3. We then present our design example, a red-black system, and discuss
how to secure this design through the application of moats, drawbridges, and
reference monitors in Section 4.

2. RELATED WORK

While there is a large body of work relating to reconfigurable devices and their
application to security, we can broadly classify the work related to securing
reconfigurable designs into three broad categories: IP theft prevention; isolation
and protection; and covert channels.

2.1 IP Theft

Most of the work relating to FPGA security targets the problem of preventing
the theft of intellectual property and securely uploading bit-streams in the field,
which is orthogonal to our work. Since such theft directly impacts their bottom
line, industry has already developed several techniques to combat the theft of
FPGA IP, such as encryption [Bossuet et al. 2004; Kean 2002, 2001], finger-
printing [Lach et al. 1999a], and watermarking [Lach et al. 1999b]. However,
establishing a root of trust on a fielded device is challenging because it requires
a decryption key to be incorporated into the finished product. Some FPGAs can
be remotely updated in the field, and industry has devised secure hardware-
update channels that use authentication mechanisms to prevent a subverted
bit-stream from being uploaded [Harper et al. 2003; Harper and Athanas 2004].
These techniques were developed to prevent an attacker from uploading a ma-
licious design that causes unintended functionality. Even worse, the malicious
design could physically destroy the FPGA by causing the device to short-circuit
[Hadzic et al. 1999].

2.2 Isolation and Protection

Besides our previous work [Huffmire et al. 2007, 2006], there is very little other
work on the specifics of managing FPGA resources in a secure manner. Chien

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:4 • T. Huffmire et al.

and Byun have perhaps the closest work, where they addressed the safety and
protection concerns of enhancing a CMOS processor with reconfigurable logic
[Chien and Byun 1999]. Their design achieves process isolation by providing
a reconfigurable virtual machine to each process, and their architecture uses
hardwired translation look-aside buffers (TLBs) to check all memory accesses.
Our work could be used in conjunction with theirs, using soft-processor cores on
top of commercial off-the-shelf FPGAs, rather than a custom silicon platform. In
fact, we believe one of the strong points of our work is that it may provide a viable
implementation path to those that require a custom secure architecture, for
example, execute-only memory [Lie et al. 2000] or virtual secure coprocessing
[Lee et al. 2005].

A similar concept to moats and drawbridges is discussed in McLean and
Moore [2007]. Though they do not provide great detail about much of their
work, they use a similar technique to isolate regions of the chip by placing a
buffer between them, which they call a fence. Gogniat et al. propose a method
of embedded system design that implements security primitives such as AES
encryption on an FPGA, which is one component of a secure embedded sys-
tem containing memory, I/O, CPU, and other ASIC components [Gogniat et al.
2006]. Their security-primitive controller (SPC), which is separate from the
FPGA, can dynamically modify these primitives at runtime in response to the
detection of abnormal activity (attacks). In this work, the reconfigurable nature
of the FPGA is used to adapt a crypto-core to situational concerns, although the
concentration is on how to use an FPGA to help efficiently thwart system-level
attacks, rather than chip-level concerns. Indeed, FPGAs are a natural platform
for performing many cryptographic functions because of the large number of
bit-level operations that are required in modern block ciphers. However, while
there is a great deal of work centered around exploiting FPGAs to speed cryp-
tographic or intrusion detection primitives, systems researchers are just now
starting to realize the security ramifications of building systems around hard-
ware which is reconfigurable.

2.3 Memory Protection on an FPGA

On a modern FPGA, the memory is essentially flat and unprotected by hardware
mechanisms because reconfigurable architectures on the market today support
a simple linear addressing of the physical memory. On a general-purpose pro-
cessor, interaction via shared memory can be controlled through the use of page
tables and associated TLB attributes. While a TLB may be used to speed-up
page-table accesses, this requires additional associative memory (not available
on FPGAs) and greatly decreases the performance of the system in the worst
case. Therefore, few embedded processors and even fewer reconfigurable devices
support even this most basic method of protection. Use of superpages, which are
very large memory pages, makes it possible for the TLB to have a lower miss
rate [Navarro et al. 2002]. Segmented memory [Saltzer 1974] and Mondrian
memory protection [Witchel et al. 2002], a finer-grained scheme, address the
inefficiency of providing per-process memory protection via global attributes by
associating each process with distinct permissions on the same memory region.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:5

2.4 Covert Channels, Direct Channels, and Trap Doors

Although moats provide physical isolation of cores, it is possible that cores could
still communicate via a covert channel. In a covert-channel attack, classified
information flows from a “high” core to a “low” core that should not access
classified data. Covert channels work via an internal shared resource, such as
processor activity, disk usage, or error conditions [Percival 2005]. There are
two types of covert channel: storage channels and timing channels. Classical
covert-channel analysis involves articulation of all shared resources on the
chip, identifying the share points, determining whether the shared resource
is exploitable, and determining the bandwidth of the covert channel as well as
whether remedial action can be taken [Kemmerer 1983; Millen 1987]. Storage
channels can be mitigated by partitioning the resources, while timing channels
can be mitigated with sequential access. Examples of remedial action include
decreasing the bandwidth (e.g., the introduction of artificial spikes (noise) in
resource usage [Saputra et al. 2003]) or closing the channel. Unfortunately, an
adversary can extract a signal from the noise, given sufficient resources [Millen
1987].

A slightly different type of attack is the side-channel attack, such as a power-
analysis attack on a cryptographic system, which can extract the keys used by
a crypto-core [Kocher et al. 1999; Standaert et al. 2003]. Finally, there are overt
channels (i.e., trap doors or direct channels) [Thompson 1984]. One example of
a direct channel is a system that lacks memory protection: A core simply writes
data to a chunk of memory, and another core reads it. Another example of a
direct channel is a tap that connects two cores. An unintentional tap is a direct
channel that can be established due to implementation errors, faulty design, or
malicious intent. For example, the place-and-route tool’s optimization strategy
may interleave the wires of two cores. Although the chances of this are small,
CAD tools are not perfect and errors do occur. Much greater is the threat of
designer errors, incorrect implementation of the specification, and malicious
code or logic. We leave to future work the development of automated methods
of detecting covert, side, and direct channels in embedded designs.

3. MOATS, DRAWBRIDGES, AND REFERENCE MONITORS

3.1 Motivation for Isolation and Separation

The concept of isolation is fundamental to computer security. Saltzer and
Shroeder use diamonds as a metaphor for sensitive data [Saltzer and Schroeder
1974]. To protect the diamonds, you must isolate them by placing them in a
vault. To access the diamonds, you must have a method of controlled sharing
(a vault door with a combination lock). The term separation describes the con-
trolled sharing of isolated objects. In a system with a mandatory access control
(MAC) policy, objects may belong to different equivalence classes, such as classi-
fied and unclassified. Therefore, we must isolate the various equivalence classes
and control their interaction.

Isolation and separation are crucial to the design of military avionics, which
are designed in a federated manner so that a failure of one component (e.g.,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:6 • T. Huffmire et al.

Fig. 1. Alternative strategies for providing protection on embedded systems. From a security

standpoint, a system with multiple applications could allocate a dedicated physical device for each

application, but economic realities force designers to integrate multiple applications onto a single

device. Separation kernels use virtualization to prevent applications from interfering with each

other, but these come with the overhead of software and are therefore restricted to general-purpose

processor-based systems. The goal of this project is to evaluate reconfigurable isolation and con-

trolled sharing mechanisms that provide separation for FPGA-based embedded systems.

by the enemy’s bullet) is contained [Rushby 2000]. Since having a separate de-
vice for each function incurs a high cost in terms of weight, power, cooling, and
maintenance, multiple functions must be integrated onto a single device with-
out interfering with each other. Therefore, avionics was the drive behind the
development of the first separation kernels [Rushby 1984]. In military-avionics
systems, sensitive targeting data is processed on the same device as unclassified
maintenance data, and keeping processing elements that are “cleared” for
different levels of data, properly separated, is critical [Weissman 2003].

Separation and isolation are also fundamental to the design of cryptographic
devices. In a red-black system, plaintext carried over red wires must be segre-
gated from ciphertext carried over black wires, and the NSA has established
requirements for the minimum distance and shielding between red and black
circuits, components, equipment, and systems [National Security Telecommu-
nications and Information Systems Security Committee 1995]. We extend the
red-black concept in this article to an embedded system-on-a-chip with a red
domain and a black domain.

3.2 Mechanisms for Isolation and Separation

One option for providing separation in embedded systems is purely physical sep-
aration, shown in the left of Figure 1. With physical separation, each application
runs on its own dedicated device, and gate keepers provide a mechanism of con-
trolled interaction between applications. Requiring a separate device for each
application is very expensive and therefore impractical for embedded systems.
In contrast to strictly physical protection, separation kernels [Rushby 1984;
Irvine et al. 2004; Levin et al. 2004] use software virtualization to prevent
applications from interfering with each other. A separation kernel, shown in
the right of Figure 1, provides isolation of applications but also facilitates their

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:7

controlled interaction. However, separation kernels come with the overhead of
software and can only run on general-purpose processors.

Reference monitors. In our prior work we proposed a third approach, called
reconfigurable protection [Huffmire et al. 2006] and shown in the middle of
Figure 1, that uses a reconfigurable reference monitor to enforce the legal
sharing of memory among cores. A memory-access policy is expressed in a spe-
cialized language, and a compiler translates this policy directly to a circuit that
enforces the policy. The circuit is then loaded onto the FPGA along with the
cores. The benefit of using a language-based design flow is that a design change
that affects the policy simply requires a modification to the policy specification,
from which a new reference monitor can be automatically generated.

Moats and drawbridges. In our prior work [Huffmire et al. 2007], we pro-
posed a spatial isolation mechanism called a moat and a controlled sharing
mechanism called a drawbridge as methods for ensuring separation on recon-
figurable devices. Moats exploit the spatial nature of computation on FPGAs
to provide strong isolation of cores. A moat surrounds a core with a channel
in which routing is disabled. In addition to isolation of cores, moats can also
be used to isolate the reference monitor and provide tamper resistance. Draw-
bridges allow signals to cross moats, letting the cores communicate with the
outside world. Finally, static analysis of the bit-stream is used to ensure that
only specified connections between cores can be established. This analysis can
also be used to ensure that the reference monitor cannot be bypassed and is
always invoked.

4. AN APPLICATION OF SEPARATION THROUGH DESIGN

To test the practicality of moats, drawbridges, and reference monitors, we need
to apply them to a real design. Our test system is a red-black system running on
a single FPGA device. As discussed in Section 3, the red and black components
must be separated. We will use two types of separation in our design: spa-
tial separation using moats and drawbridges, and temporal separation using
a reference monitor. The combination of moats, drawbridges, and a reference
monitor allows us to develop a more secure system that can run on a single
device and make use of shared resources to conserve power, cost, and area. Our
design allows us to gain further knowledge about the ease of design and about
performance in applying these mechanisms to a real system.

4.1 Red-Black System: A Design Example

The system we designed is a multicore system-on-a-chip which can be seen in
Figure 3. There are two μBlaze processors in the system: one belongs to the
red domain, and the other to the black. These processors communicate with
the memory and various peripherals over a shared bus. A traditional shared
bus is insecure because there is nothing to prevent one processor from reading
the other processor’s memory or accessing information from a peripheral that
it is not supposed to access. To address this problem, the reference monitor was
integrated into the on-chip peripheral bus (OPB), so that all bus accesses by
the two processors must be verified by the reference monitor.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:8 • T. Huffmire et al.

Fig. 2. The inputs to the reference monitor are the module ID, op, and address. The range ID

is determined by performing a parallel search over all ranges, similar to a content-addressable

memory (CAM). The module ID, op, and range ID together form an access descriptor, which is the

input to the state-machine logic. The output is a single bit: either grant or deny the access. Moats

and drawbridges ensure that the reference monitor is tamper-proof and always invoked.

The design consists of seven different “cores”: We have μBlaze0, μBlaze1,
the OPB (along with its arbiter and the reference monitor), the AES core,
DDR SDRAM, the RS-232 interface, and the Ethernet interface. These com-
ponents share resources and interact with one another. The on-chip peripheral
bus (OPB) was modified to create a custom OPB containing a reference monitor
which must approve all memory accesses. Shared external memory (SDRAM),

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:9

Fig. 3. System architecture. The system is divided into two isolation domains to prevent the

mixing of data of different sensitivity levels. The first domain (shown as a hatched pattern) contains

μBlaze0 and the local RS-232 interface, which can be connected to an iris or fingerprint scanner.

The second domain (white) contains μBlaze1 and the Ethernet interface. Both processors share the

AES core and external memory, and the reference monitor enforces the sharing of these resources

as well as the isolation of domains.

the AES core, RS-232 interface, and Ethernet interface are also connected to
the bus as slave devices, so access to these devices must go through the refer-
ence monitor. These seven different cores are then physically partitioned using
moats and drawbridges.

The integration of the reference monitor into the OPB allows for ease of
system design. This custom OPB is available to incorporate into any system
using the Xilinx Platform Studio. The OPB is the most commonly used bus to
connect the peripherals together in a system, so adding a reference monitor to
a new system design is as simple as “dragging and dropping” the custom OPB
into the design.

The AES core has a custom-designed controller that allows it to be con-
trolled through shared memory. When a processor wants to encrypt or decrypt
data, the processor places this data in the shared memory and writes several
control words to indicate to the AES core what operation to perform, where
the data is located, and how much data there is. When the AES core is done
performing the requested operation, it signals the processor, and the proces-
sor can then retrieve the data from the shared memory buffer. The shared
memory buffer allows the AES core to work like a coprocessor, freeing up the
regular processor to perform other tasks while encryption/decryption is being
performed.

In order to allow both processors to use the AES core, access to it is strictly
regulated by our stateful security policy in the reference monitor. The shared
memory buffer is divided into two parts, one for each processor. This keeps
each processor’s data separate and prevents one processor from reading data
that has been decrypted by the other, but this does not solve the problem of
regulating access to the core. Access to the core is controlled by restricting

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:10 • T. Huffmire et al.

access to the control words, and this will be discussed in further detail in the
following sections.

All these components form our red-black system, which has two isolation
domains. The red domain, shown in Figure 3 with a hatched pattern, consists
of its own region of memory in the SDRAM and AES core, the RS232 interface
along with the authentication module, and μBlaze0. We currently have a Secu-
gen fingerprint reader; however, other authentication methods such as retinal
scanning or voice recognition could also be used. The second isolation domain
(the black domain) is shown with no pattern in Figure 3 and consists of its
own region of memory in the SDRAM and AES core, the Ethernet interface,
and μBlaze1. Since the Ethernet can be connected to the much less secure In-
ternet, it is isolated from the red part of the system, which handles sensitive
and authentication data. This separation is achieved through the use of moats,
drawbridges, and a reference monitor.

4.2 A Reference Monitor

Commonly implemented in software, a reference monitor is used to control ac-
cess to data or devices in a system. In our system, the reference monitor is im-
plemented in hardware and used to regulate access to the memory and peripher-
als. When a core makes a request to access memory, the reference monitor (RM)
makes a decision to either allow the access or deny it. The RM can provide pro-
tection for any device connected to the OPB. For example, a MicroBlaze CPU and
an AES-encryption core can share a block of BRAM. The CPU encrypts plaintext
by copying it to the BRAM and then signaling to the AES core via a control word.
The AES core retrieves the plaintext from the BRAM and encrypts the plaintext
using a symmetric key. After encrypting the plaintext, the AES core places the
ciphertext into the BRAM and then signals to the CPU via another control word.
Finally, the CPU retrieves the ciphertext from the BRAM. A similar process is
used for decryption. A simple memory-access policy can be constructed with two
states: one that gives the CPU exclusive access to the shared control buffer and
another that gives the AES core exclusive access to the control buffer. Tran-
sitions between these two states occur when the cores signal to the reference
monitor via performing a write to a reserved address. We extend this idea to con-
struct a policy which will be applied to our red-black system, consisting of three
states for a system with two CPU cores, a shared AES core, and shared external
memory.

Typically, the different cores are connected to the memory and peripherals
through a shared bus. This bus (OPB) can connect the CPU, external DRAM,
RS232 (serial port), general-purpose I/O (to access the external pins), shared
BRAM, and DMA. To prevent two cores from utilizing the bus at the same
time, an arbiter sits between the modules and the bus. The reference moni-
tor can be placed between the bus and the memory, or the reference monitor
can snoop on the bus. Our goal is to make sure that our memory protection
primitive achieves efficient memory-system performance. This will also be an
opportunity to design meaningful policies for systems that employ a shared
bus.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:11

4.2.1 A Hardware Implementation. Figure 2 shows the hardware decision
module we wish to build. An access descriptor specifies the allowed accesses
between a module and a range. Each DFA transition represents an access de-
scriptor consisting of a module ID, an op, and a range ID bit-vector. The range
ID bit-vector contains a bit for each possible range, and the descriptor’s range
is indicated by the (one) bit that is set.

A memory-access request consists of three inputs: the module ID, the op {read,
write, etc.}, and the address. The output is a single bit: 1 for grant and 0 for
deny. First, the hardware converts the memory-access address to a bit-vector.
To do this, it checks all the ranges in parallel and sets that bit corresponding
to the range ID that contains the input address (if any). Then, the memory-
access request is processed through the DFA. If an access descriptor matches
the access request, the DFA transitions to the accept state and outputs a 1.

By means of the reference monitor, the system is divided into two systems
which are isolated, yet share resources. The first system consists of μBlaze0, the
DDR SDRAM, and the RS-232 device. The second system consists of μBlaze1,
the DDR SDRAM, and the Ethernet device. Everything is interconnected with
the OPB (on-board peripheral bus), which is the glue for the systems, and both
systems make use of the AES core as well.

These two different systems save on power and area by sharing resources (the
bus and the AES core); however, this can be a problem if we want to isolate the
two systems. The Ethernet interface could be connected to the Internet, which
has a lower security level than the RS-232 interface, which is a local connection.
We want to prevent the mixing of data of different security levels. First, we
assign a processor to each communication interface. Using the OPB that is
provided with the EDK allows for both processors to share the peripherals but
is very insecure, since they would have unregulated access to all regions of
memory and all peripherals on the bus. Also, there is the issue of arbitrating
access and preventing the mixing of data of different sensitivity levels in the
shared AES core.

The reference monitor, which is integrated into the OPB, addresses these
problems. Since we are using memory-mapped I/O, the reference monitor allows
us to control access to the two I/O devices and to split the shared DDR SDRAM
into two isolated blocks, one for each processor. In this way we restrict access so
that each processor can access only that I/O device which is intended for its use.
Access to the AES core is arbitrated by having multiple states in our memory-
access policy. Our system can regulate access to any of the slave devices on the
bus with little overhead. Furthermore, the system can easily be scaled to add
more masters, and the policy implemented by the reference monitor can easily
be modified.

4.2.2 A Security-Policy Design Example. While the reference monitor can-
not be bypassed and can control access to all peripherals, it is useless without a
good security policy. Our system makes use of a simple stateful policy to control
access to the peripherals and to allow the sharing of the AES core. We will de-
scribe this policy and how it is transformed into a hardware reference monitor
that can easily be added to any design.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:12 • T. Huffmire et al.

Fig. 4. This diagram shows how the memory and different memory-mapped I/O devices are divided

into regions by the reference monitor.

The designer expresses the access policy in our specialized language. The
access policy consists of three states: one state for the case in which μBlaze0 (or
Module1) has access to the AES core, one state for the case where μBlaze1 (or
Module2) has access to the AES core, and one state for the case where neither
has access to the AES core. A processor obtains access to the AES core by writing
to a specific control word (Control Word 1), and a processor relinquishes access
to the AES core by writing to another specific control word (Control Word 2).
Therefore, the transitions between states occur when one of the processors
writes to one of these specified control words.

In addition to permitting temporal sharing of the AES core, the policy isolates
the two MicroBlaze processors such that Processor1 and RS-232 data items are
in a separate isolation domain from Processor2 and Ethernet data items. Since
each component of our system is assigned a specific address range, our reference
monitor is well suited for enforcing a resource-sharing policy. We specify the
policy for our system as follows. The first part of the policy specifies the ranges
(a graphical depiction of the ranges can be seen in Figure 4).

Range1 → [0x28000010,0x28000777]; (AES1)
Range2 → [0x28000800,0x28000fff]; (AES2)
Range3 → [0x24000000,0x24777777]; (DRAM1)
Range4 → [0x24800000,0x24ffffff]; (DRAM2)
Range5 → [0x40600000,0x4060ffff]; (RS-232)
Range6 → [0x40c00000,0x40c0ffff]; (Ethernet)
Range7 → [0x28000004,0x28000007]; (Ctrl Word1)
Range8 → [0x28000008,0x2800000f]; (Ctrl Word2)
Range9 → [0x28000000,0x28000003]; (Ctrl WordAES)

The second part of the policy specifies the different access modes, one for
each state.

Access0 → {Module1, rw, Range5}
| {Module2, rw, Range6}
| {Module1, rw, Range3}
| {Module2, rw, Range4}

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:13

Access1 → Access0

| {Module1, rw, Range1}
| {Module1, rw, Range9};

Access2 → Access0

| {Module2, rw, Range2}
| {Module2, rw, Range9};

The third part of the policy specifies the transitions between states.

Trigger1 → {Module1, w, Range7};
Trigger2 → {Module1, w, Range8};
Trigger3 → {Module2, w, Range7};
Trigger4 → {Module2, w, Range8};

The final part of the policy uses regular expressions to specify the structure
of the policy’s state machine.

Expr1 → Access0 | Trigger3 Access2* Trigger4;
Expr2 → Access1 | Trigger2 Expr1* Trigger1;
Expr3 → Expr1* Trig ger1 Expr2*;
Policy → Expr1* | Expr1* Trig ger3 Access2*

| Expr3 Trigger2 Expr1* Trigger3 Access2*
| Expr3 Trigger2 Expr1* | Expr3 | ε;

Since some designers may be uncomfortable with complex regular expres-
sions, in Section 5.3 we describe our efforts to increase the usability of our
scheme by developing a higher-level language. In this language, access poli-
cies can be expressed in terms of more abstract concepts such as isolation and
controlled sharing.

Figure 5 shows a system-level view of the policy. From this policy, our pol-
icy compiler automatically generates a hardware description in Verilog of a
reference monitor.

To further understand this security policy we will go through a simple ex-
ample. The system starts out in Access0, meaning neither processor can write
to the AES core. Then, if μBlaze0 needs to use the AES core, it first writes
to cntrl word1, which triggers the reference monitor to transition to Access1.
Now that the reference monitor is in Access1, the two processors can still ac-
cess their peripherals and memory regions as they could in Access0, except that
μBlaze0 can now access cntrl wordAES as well as AES1. This allows μBlaze0 to
place data into its portion of the shared AES-core memory and write the con-
trol words of the AES core, thus performing an encrypt/decrypt operation on the
data. When the operation is done and μBlaze0 has finished, it performs a write
to cntrl word2, thus relinquishing control of the AES core and transferring the
reference monitor back to Access0. Similarly, μBlaze1 can do the same to obtain
use of the AES core. If one core tries to use or gain control of the AES core while
it is being used by the other core, the reference monitor will simply deny access.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:14 • T. Huffmire et al.

Fig. 5. This system-level diagram shows the three states of the reference monitor and what devices

are in each isolation domain. The first domain is represented by the hatched pattern, and the second

domain is represented by white background with no pattern. The SRAM is shared between the two

and is therefore represented with half of each pattern.

Ensuring that the reference monitor cannot be bypassed is essential to the
security of the system, since it regulates access to all the peripherals. The
hardware must be verified to make sure that the reference monitor can in
no way be tampered with or bypassed. Moats and drawbridges address this
problem by allowing us to partition the system and then verify the connectivity
of the various components in the system. For example, our tracing technique
can detect an illegal connection between a core and memory that bypasses
the reference monitor, an illegal connection between two cores, or an illegal
connection that allows a core to snoop on the memory traffic of another core.
In addition, the reference monitor itself can be isolated using a moat, which
increases the reference monitor’s resistance to tampering.

4.2.3 Policy Compiler. To understand how the access policy is converted to
a reference monitor, we provide a condensed description of our policy compiler

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:15

Fig. 6. Reference-monitor design flow for a toy policy. Our policy compiler first coverts the access

policy to a regular expression, from which an NFA is contructed. Then, the NFA is converted to a

minimized DFA, from which a hardware description of a reference monitor that enforces the policy

is constructed.

here. Huffmire et al. [2006] provides a full description of our policy compiler.
Figure 6 shows the reference-monitor design flow for a simple toy policy with
one state. First, the access policy is converted to a regular expression by build-
ing and transforming a parse tree. Next, the regular expression is converted to
a NFA using Thompson’s algorithm. Then, the NFA is converted to a DFA using
subset construction, and Hopcroft’s minimization algorithm is used to produce
a minimized DFA. The minimized DFA is then converted into a hardware de-
scription in Verilog HDL of a reference monitor that enforces the policy.

4.2.4 Scalability. In our design example, the system is protected by a sin-
gle reference monitor. For larger, more complex systems, it may be necessary to
have multiple reference monitors to ensure scalability. Reference monitors that
enforce stateless policies (i.e., policies which have only one state) can simply
be copied, since they can operate independently. However, for stateful policies,
(i.e., those having more than one state) there is some communication overhead
required so that all of the reference monitors share the same state. To reduce
this overhead, system designers can make design decisions that minimize the
amount of state that must be shared among all the reference monitors.

4.2.5 Covert Channels. There are several options for preventing a covert
channel between the red and black domains. First, the AES core can be wiped
between uses, and we describe a scrubbing technique in Huffmire et al. [2007]
that exploits partial reconfiguration. To prevent a timing channel in which the
red domain grabs and releases the AES core frequently (a behavior that can be

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:16 • T. Huffmire et al.

observed by the black domain), one way of limiting the bandwidth is to require
that the AES core be used for a minimum amount of time. Another option is to
use a statically scheduled sharing scheme in which each domain is allowed to
use the AES core during a fixed interval. Another option is to introduce noise.
Yet another option is to use counters to measure how many times the AES
core is grabbed and released by the red domain, taking corrective action if this
activity exceeds a predetermined threshold. We are also developing methods
to prevent the internal state of the reference monitor from being used as a
covert storage channel; these methods will include a policy checker that looks
for cycles in the DFA that enforces the policy which indicates a possible covert
channel, language features that prevent these cycles, dummy states that break
up the cycles, only allowing a trusted module to change the state of the policy,
and system-level techniques.

4.3 Moats and Drawbridges

Moats and drawbridges comprise two methods of providing spatial separation of
cores on the chip. As previously discussed, spatial separation provides isolation,
which in turn provides increased security and fault tolerance. Moats consist of a
buffer zone of unused CLBs which are placed around cores. Their main purpose
is to provide isolation and to enable the verification of this isolation. The size
of the moat can be varied depending on the application, and is measured as
the number of CLBs that are used as a buffer between cores. There is even
the concept of a virtual moat (a moat of size 0), which occurs when the cores
are placed right next to each other. Although they are touching and have no
buffer zone around them, static analysis ensures that they are still isolated
and placed in their own region. While this allows for lower area overhead, it
requires greater verification effort.

Physically separating or partitioning the cores using moats and drawbridges
provides increased security and fault tolerance, as discussed in Section 3. Phys-
ical separation is especially important if one or more of the cores was developed
by a third-party designer (e.g., a COTS IP core). The third-party core may have
a lower trust level than the other cores, resulting in a system with cores of
varying trust levels. Physically separating the cores allows for isolation of the
domains of trust. Communication with cores in a different domain of trust can
go through a gatekeeper or reference monitor (as discussed before). This can
all be verified using our verification technique. In addition to security, physi-
cal separation provides an additional layer of fault tolerance. If the cores are
physically separated, it becomes more difficult for an invalid connection to be
established between them. If the cores are intertwined and a bit is flipped by
something such as an single-event upset (SEU) there is a chance that an in-
valid connection could be established between two cores; however, with the
cores physically separated this chance is greatly reduced. In systems composed
of cores of varying security levels, moats allow us to verify that only speci-
fied information flows are possible between cores. Moats prevent unintended
information flows due to implementation errors, faulty design, or malicious
intent.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:17

Moats not only let us achieve physical separation, but also ease the process
of verifying it. With moats and drawbridges, it is possible to analyze the in-
formation flow between cores and to ensure that the intended flow cannot be
bypassed and is correctly implemented in hardware. The verification process
would be very difficult if not impossible without them. Verification takes place
at the bit-stream level. Since this is the last stage of design, there are no other
design tools or steps that could introduce an error into the design. In a design
without moats, the cores are intertwined, and trying to verify such a design at
the bit-stream level is a hard problem because of the difficulty of determining
where one core ends and another begins. Since modern FPGA devices have the
capacity to hold designs with millions of gates, reverse engineering such a de-
sign is very complex. With the cores placed in moats, the task of verification
becomes much simpler, and the physical isolation is stronger as well.

4.3.1 Constructing Moats. The construction of moats is a fairly simple pro-
cess. First, the design is partitioned into isolation domains. This step is highly
design dependent. Once the design is partitioned, we can construct the moats
using the Xilinx PlanAhead [Xilinx 2006] software. PlanAhead allows the de-
signer to constrain cores to a certain area on the chip. The moats are constructed
by placing the cores in certain regions on the chip. The remaining space not oc-
cupied by the cores effectively becomes the moat. The size of the moat changes
based on the spacing between cores. PlanAhead then creates a user-constraints
file which can be used to synthesize the design with the cores constrained to a
certain area of the chip. Although the cores are constrained, the performance
is not adversely affected. The tool simply confines the cores to a certain region,
and the place-and-route tool can still choose an optimal layout within this re-
gion. One factor affecting performance is use of the drawbridges, which carry
signals between cores. Since the cores are separated by a moat, a slightly longer
delay may occur than if the cores were placed without a moat. However, this
effect can be minimized if the drawbridge signals are properly buffered and the
cores placed carefully.

Ensuring that a design is prepared to be partitioned using moats and draw-
bridges is very simple, and most designs should be ready with absolutely no
modification. As long as the cores, or isolation domains, are separated into dif-
ferent design files (netlist or HDL) during the design phase, then the addition
of moats using PlanAhead is trivial. We divided our test system into seven
different cores: μBlaze0, μBlaze1, OPB with an integrated reference monitor,
Ethernet, RS232, DDR SDRAM, and AES core. Since these were all separate
cores added in XPS, the process of implementing the moats was as simple as
selecting the core and then selecting a region for it on the chip with PlanAhead.

The separation of the design into seven different cores may seem unneces-
sary, since our design consists only of two isolation domains. However, since the
cores all communicate through the OPB and since system security relies on the
reference monitor, this is a necessary step. It allows us to verify that all cores go
through the reference monitor and that there are no illegal connections between
two cores. Doing this with only two isolation domains is not possible. It is also
desirable to partition cores of different trust levels, since our design uses a mix

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:18 • T. Huffmire et al.

of third-party IP cores and custom-designed cores, resulting in different levels
of trust. We can partition the third-party cores such as the Ethernet, RS232,
and μBlaze processors away from our custom OPB and AES core, which have
a higher level of trust. After one knows what cores to partition, it only remains
to lay out the partitions on the chip.

The decision of where to place the cores and moats can involve some trial and
error. We experimented with several different layouts before choosing the final
one. Achieving a good layout is critical to the performance of the design. The
key factors to achieving a good layout are placing the cores close to the I/O pins
which they use, and placing cores which are connected close to each other. The
moats were constructed for several different sizes so that the effect of moat size
on performance could be observed. The size of the moat also affects the amount
of required verification effort, the details of which are beyond the scope of this
article.

5. DESIGN FLOW AND EVALUATION

The goal of this project was to analyze our secure design methods and determine
the feasibility of implementing them in a real design. There are several main
factors that determine the practicality of the methods. The two that we are
concerned with are ease of design and the performance effect on design. Our
techniques have been shown to be efficient and designer friendly.

5.1 Reference Monitor Implementation and Results

The actual implementation of the system was accomplished using Xilinx Plat-
form Studio (XPS) software. The system was assembled using the graphical
user interface in XPS; this entails separately loading the different components
of our design into XPS, defining the interface between them, and specifying
the device into which the design is to be loaded. The reference monitor was
generated by the policy compiler described in Section 4.2.3. Integration of the
reference monitor was accomplished by modifying the on-board peripheral bus
(OPB) that came with the XPS software to create a custom OPB. Testing of
the custom OPB as well as the other cores was performed through Modelsim
simulations by specifying an array of inputs and verifying their respective out-
puts as correct. Once this was complete, the various components and the sys-
tem’s connectivity were synthesized to a hardware netlist and loaded into our
FPGA.

The performance and area overheads of the design were analyzed with and
without a reference monitor, and the results can be seen in Table I. The number
of bus cycles was calculated by counting the number of cycles it took to perform
10,000 memory accesses to the DDR SRAM and then dividing by 10,000 to get
the average cycles per access. The overhead due to our reference monitor was
very small in terms of area and had little effect on performance.

The next step was the design of the software to run on the two μBlaze pro-
cessors. The software was also developed and compiled using the XPS software.
Testing and debugging of the software was done by downloading and run-
ning the software on the development board, using the Xilinx microprocessor

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:19

Table I. Area and Performance Effects of Reference Monitor

on System

Effects are shown on the synthesis of just the OPB and the

synthesis of the entire system. This table also shows the

average number of cycles per bus access, both with and

without the reference monitor.

Metric W/O RM With RM

OPB LUTs 158 208

System LUTs 9881 9997

OPB Max Clk (MHz) 300.86 300.86

System Max Clk (MHz) 73.52 65.10

Cycles/Bus Access 25.76 26.76

debugger (XMD). Software was also developed on the PC to allow send-
ing/receiving of files to/from the board over RS-232 and Ethernet.

5.2 Moat Implementation and Results

The last stage in the design process is partitioning the design into moats. This
is done by using the Xilinx PlanAhead software, which allows us to partition
the chip into separate areas containing the cores, as shown in Figure 9. The
moats are highlighted in Figure 9 as well, by the shaded areas surrounding
each component. The design is then placed and routed using ten iterations in
the multipass place-and-route for each different moat size and with no moats
at all. Using multipass place-and-route allows us to find the best layout on the
chip and to compare the tradeoffs of each chip layout generated.

Security is very important, but its cost must be managed; therefore, moats
are only feasible if they do not have a significant impact on performance. The
performance and area overheads of the system with various moat sizes were
compared to the performance without moats. Figure 7 shows the performance
effect of the moats, while Figure 8 shows the area overhead due to moats. For
a moat size of 0, there was no effect on performance and none on area either,
since there is no wasted moat area. A moat size of 6 would clearly consume
more area since the moat occupies the unused CLBs. For this design, the extra
overhead for the moat is over 1,000 CLBs, or 28% of the total chip. Performance
overhead generally increases with moat size, but the impact is still very small,
with a maximum decrease of less than 2%. Adding moats and a reference mon-
itor to our system enhances the security with an almost negligible impact on
performance and area. With a moat size of 0 there is no impact on the area,
either.

5.3 Ease of Design

The cost of adding security is just as important as adding the security itself.
No matter how many security advantages they provide, complex techniques
will not be adopted unless they can easily be applied to a design. Although it
cannot be quantified or tested, after evaluating our methods we believe that
using moats, drawbridges, and reference monitors is effective and relatively
simple.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:20 • T. Huffmire et al.

Fig. 7. Relationship between moat size and minimum clock period (performance) for the design.

Performance is not greatly affected, with a maximum increase in clock speed of only 1.81% for a

moat size of 6.

Fig. 8. Relationship between number of CLBs used by the design and the moat size. Since no logic

can be placed in the moat, the number of CLBs required increases with moat size. The area impact

for larger moats can be quite significant.

Moats and drawbridges are very simple to add to a design because they are
simply a form of floorplanning and can be implemented quickly and easily.
While it may take a little work to get the right floorplan in order to achieve
maximum performance, an experienced designer should have no trouble with
this. The reference monitor is also very easy to add to a design. Since the ref-
erence monitor was integrated into the OPB, it is trivial to add it to any design
using an on-chip bus. Futhermore, the designer does not have to worry about
the low-level details of the reference monitor. The designer specifies the access

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:21

Fig. 9. Floorplan view of our design in PlanAhead. The shaded areas between the cores are the

moats.

policy in our laguage, and our policy compiler automatically generates the nec-
cessary Verilog files for the reference monitor. We are developing a higher-level
language for expressing access policies so that the designer does not have to
be an expert with regular expressions. For example, this higher-level language
allows designers to express access policies in terms of abstract concepts such as
isolation and controlled sharing. We are also developing a compiler to translate
the policy from this higher-level language.

6. CONCLUSIONS AND FUTURE WORK

Addressing the problem of security on reconfigurable-hardware designs is very
important because reconfigurable devices are used in a wide variety of critical
applications. We have built an embedded system for the purpose of evaluating
security primitives for reconfigurable hardware. We have developed a stateful
security policy that divides the resources in the system into two isolation do-
mains. A reference monitor enforces the isolation of these domains, but also
permits controlled sharing of the encryption core. A spatial isolation technique,
using regions called moats, further isolates the domains, and a static analysis
technique, using interconnections called drawbridges, facilitates the controlled
interaction of isolated components. Together, moats and drawbridges comprise
a separation technique that also helps to ensure that the reference monitor
is tamperproof and cannot be bypassed. Our results show that these security
primitives do not significantly impact the performance or area of the system.

We see many possibilities for future work. The DMA (direct memory ac-
cess) controller introduces a new security challenge because of its ability to

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:22 • T. Huffmire et al.

independently copy blocks of memory. The development of a secure DMA con-
troller with an integrated reference monitor requires understanding the trade-
offs between security and performance. In addition, memory-access policies may
need to be constructed differently for systems that use a DMA controller. For
example, the request to the DMA could include the requesting module’s ID.

We leave to future work the problem of denial of service because the primary
focus of this article is data protection. Although there is no overhead in denying
a request, a subverted core could launch a denial-of-service attack against the
system by repeatedly making an illegal request.

The state of computer security is grim, as increased spending on security
has not resulted in fewer attacks. Embedded devices are vulnerable because
few embedded designers even bother to think about security, and many peo-
ple incorrectly assume that embedded systems are secure. A holistic approach
to system security is needed, and new security technologies must move from
the lab into widespread use by an industry which is often reluctant to em-
brace them. Fortunately, the reprogrammable nature of FPGAs allows security
primitives to be immediately incorporated into designs. In order to be adopted
by embedded designers, who are typically not security experts, security prim-
itives need to be usable and understandable to those outside the security dis-
cipline. They must also be easy to use and have little performance impact. The
primitives implemented in this article have been shown to have very low per-
formance and area overheads, and would be rather easy to integrate into a
design.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their comments.

REFERENCES

BONDHUGULA, U., DEVULAPALLI, A., FERNANDO, J., WYCKOFF, P., AND SADAYAPPAN, P. 2006. Parallel

FPGA-based all-pairs shortest-paths in a directed graph. In Proceedings of the 20th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS).

BOSSUET, L., GOGNIAT, G., AND BURLESON, W. 2004. Dynamically configurable security for SRAM

FPGA bitstreams. In Proceedings of the 18th International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, NM.

CHIEN, A. AND BYUN, J. 1999. Safe and protected execution for the Morph/AMRM reconfigurable

processor. In 7th Annual IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, Napa, CA.

GOGNIAT, G., WOLF, T., AND BURLESON, W. 2006. Reconfigurable security support for embedded

systems. In Proceedings of the 39th Hawaii International Conference on System Sciences.

HADZIC, I., UDANI, S., AND SMITH, J. 1999. FPGA viruses. In Proceedings of the 9th International
Workshop on Field-Programmable Logic and Applications (FPL), Glasgow, UK.

HARPER, S. AND ATHANAS, P. 2004. A security policy based upon hardware encryption. In Proceed-
ings of the 37th Hawaii International Conference on System Sciences.

HARPER, S., FONG, R., AND ATHANAS, P. 2003. A versatile framework for FPGA field updates: An ap-

plication of partial self-reconfiguration. In Proceedings of the 14th IEEE International Workshop
on Rapid System Prototyping.

HUFFMIRE, T., BROTHERTON, B., WANG, G., SHERWOOD, T., KASTNER, R., LEVIN, T., NGUYEN, T., AND

IRVINE, C. 2007. Moats and drawbridges: An isolation primitive for reconfigurable hard-

ware based systems. In Proceedings of the IEEE Symposium on Security and Privacy,

Oakland, CA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

Designing Secure Systems on Reconfigurable Hardware • 44:23

HUFFMIRE, T., PRASAD, S., SHERWOOD, T., AND KASTNER, R. 2006. Policy-Driven memory protection

for reconfigurable systems. In Proceedings of the European Symposium on Research in Computer
Security (ESORICS), Hamburg, Germany.

HUTCHINGS, B., FRANKLIN, R., AND CARVER, D. 2002. Assisting network intrusion detection with

reconfigurable hardware. In Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM).

IRVINE, C., LEVIN, T., NGUYEN, T., AND DINOLT, G. 2004. The trusted computing exemplar project.

In Proceedings of the 5th IEEE Systems, Man and Cybernetics Information Assurance Workshop,

West Point, NY. 109–115.

KEAN, T. 2001. Secure configuration of field programmable gate arrays. In Proceedings of the
11th International Conference on Field Programmable Logic and Applications (FPL), Belfast,

UK.

KEAN, T. 2002. Cryptographic rights management of FPGA intellectual property cores. In 10th
ACM International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey, CA.

KEMMERER, R. 1983. Shared resource matrix methodology: An approach to identifying storage

and timing channels. ACM Trans. Comput. Syst.
KOCHER, P., JAFFE, J., AND JUN, B. 1999. Differential power analysis. In Proceedings of the 19th

Annual International Cryptology Conference.

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999a. FPGA fingerprinting techniques for pro-

tecting intellectual property. In Proceedings of the IEEE Custom Integrated Circuits Conference,

San Diego, CA.

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999b. Robust FPGA intellectual property pro-

tection through multiple small watermarks. In Proceedings of the 36th ACM/IEEE Conference
on Design Automation (DAC), New Orleans, LA.

LEE, R. B., KWAN, P. C. S., MCGREGOR, J. P., DWOSKIN, J., AND WANG, Z. 2005. Architecture for pro-

tecting critical secrets in microprocessors. In Proceedings of the 32nd International Symposium
on Computer Architecture (ISCA). 2–13.

LEVIN, T. E., IRVINE, C. E., AND NGUYEN, T. D. 2004. A least privilege model for static separation

kernels. Tech. Rep. NPS-CS-05-003, Naval Postgraduate School.

LIE, D., THEKKATH, C., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J., AND HOROWITZ, M. 2000.

Architectural support for copy and tamper resistant software. In Proceedings of the 9th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), Cambridge, MA.

MCGRATH, D. 2005. Gartner dataquest analyst gives ASIC, FPGA markets clean bill of health.

EE Times.

MCLEAN, M. AND MOORE, J. 2007. Securing FPGAS for red/black systems, FPGA-based single chip

cryptographic solution. In Military Embedded Systems.

MILANOWSKI, R. AND MAURER, M. 2006. Outsourcing poses unique challenges for the U.S. military-

electronics community. Chip Des. Mag.
MILLEN, J. 1987. Covert channel capacity. In Proceedings of the IEEE Symposium on Security

and Privacy, Oakland, CA.

NATIONAL SECURITY TELECOMMUNICATIONS AND INFORMATION SYSTEMS SECURITY COMMITTEE. 1995.

NSTISSAM Tempest/2-95 red/black installation guidance.

NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. 2002. Practical, transparent operating system

support for superpages. In 5th Symposium on Operating Systems Design and Implementation
(OSDI), Boston, MA.

NGO, H., GOTTUMUKKAL, R., AND ASARI, V. 2005. A flexible and efficient hardware architecture

for real-time face recognition based on Eigenface. In Proceedings of the IEEE Computer Society
Annual Symposium on VLSI.

PERCIVAL, C. 2005. Cache missing for fun and profit. In BSDCan, Ottowa, Ontario, Canada.

RUSHBY, J. 1984. A trusted computing base for embedded systems. In Proceedings of the 7th
DoD/NBS Computer Security Conference, 294–311.

RUSHBY, J. 2000. Partitioning in avionics architectures: Requirements, mechanisms, and assur-

ance. In DOT/FAA/AR-99/58.

SALEFSKI, B. AND CAGLAR, L. 2001. Reconfigurable computing in wireless. In Proceedings of the
Design Automation Conference (DAC).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

44:24 • T. Huffmire et al.

SALTZER, J. 1974. Protection and the control of information sharing in Multics. Commun.
ACM 17, 7 (Jul.), 388–402.

SALTZER, J. AND SCHROEDER, M. 1974. The protection on information in computer systems. Com-
mun. ACM 17, 7 (Jul.).

SAPUTRA, H., VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M., BROOKS, R., KIM, S., AND ZHANG, W. 2003.

Masking the energy behavior of DES encryption. In IEEE Design Automation and Test in Europe
(DATE).

STANDAERT, F., OLDENZEEL, L., SAMYDE, D., AND QUISQUATER, J. 2003. Power analysis of FPGAs: How

practical is the attack? Field-Program. Logic Appl. 2778, 2003 (Sept.), 701–711.

THOMPSON, K. 1984. Reflections on trusting trust. Commun. ACM 27, 8.

WEISSMAN, C. 2003. MLS-PCA: A high assurance security architecture for future avionics. In

Proceedings of the Annual Computer Security Applications Conference, Los Alamitos, CA. 2–12.

WITCHEL, E., CATES, J., AND ASANOVIC, K. 2002. Mondrian memory protection. In 10th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), San Jose, CA.

XILINX INC. 2006. Planahead methodology guide. Xilinx, San Jose, CA.

Received August 2007; revised March 2008; accepted March 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 3, Article 44, Pub. date: July 2008.

