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ABSTRACT
Undergraduate research experiences are a promisingway to broaden
participation in computer architecture research and have been
shown to improve student learning, engagement, and retention.
These outcomes can be more profound and lasting if students ex-
perience research early. However, there are many barriers to early
research in computer architecture some of which include the gap
between pedagogy and research, the lower emphasis on hardware
design compared to software in first year courses, and the lack of
online resources. We propose lowering these barriers through a
methodical approach by involving undergraduates in early research
and by creating freely available and innovative educational tools
for designing hardware.

We present the experience of a team of undergraduate students
with research over one academic year using a Python hardware
description language, PyRTL. PyRTL was developed to enable early
entry into digital design. Its overarching goals are simplicity, usabil-
ity, clarity, and extensibility, a stark contrast to traditional languages
like Verilog and VHDL that have a steep learning curve. Instead
of introducing traditional languages early in the undergraduate
curriculum, PyRTL takes the opposite approach, which is to build
on what students already know well: a popular programming lan-
guage (Python), software design patterns, and software engineering
principles. The students conducted their research in the context of
the Early Research Scholars Program (ERSP), a program designed
to expand access to research among women and underrepresented
minority students in their second year through a well designed
support structure.
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1 INTRODUCTION
A recent article in Computer Architecture Today sheds light
on the pipeline problem in computer architecture [5]. While
there are many contributing factors to this problem, it is
well understood that undergraduate research can improve
student retention, increase interest in graduate schools, help
to develop critical thinking, improve motivation and per-
sistence, build confidence, help students clarify their career
goals, and encourage them to apply to graduate school [2].
Research experiences can be particularly important for stu-
dents who are underrepresented in STEM, increasing their
retention in STEM fields [15, 16]. Research provides a con-
nection to a broader academic community, it allows students
to see faculty and graduate students not just as dissemina-
tors but also creators of knowledge, and helps students to
connect the skills they learn in class to real life problems
with tangible impact. As such it seems that undergraduate
research in computer architecture can be an important point
of leverage in addressing this larger pipeline problem.
While research experience has tremendous potential to

be beneficial, there are additional barriers to engaging un-
dergraduates in early research specifically in the domain of
computer architecture. First, there is a lack of “hardware
thinking” developed in the early curriculum (in both Com-
puter Science and Electrical Engineering). Instead, courses
have a much stronger emphasis on the fundamentals of pro-
gramming and data structures than digital design. This in
turn leads students to think almost exclusively about comput-
ing as a sequential set of operations which is in conflict with
the inherently parallel nature of hardware. Whether this is
the right or wrong way to approach computing is not a focus
of our work, we simply note the structure we already see
existing at most universities. Second, most undergraduate
computer architecture courses concentrate on areas which,
while fundamental to understanding how a computer works,
are far from the open research problems and interesting ap-
plications redefining our discipline. Furthermore there is a
lack of online resources for self-learning concepts and test
their understanding, and as one gets closer to open research
problems the problem is even more acute. Contrast this with
data science and that discipline’s use of Jupyter Notebooks
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both in the laboratory and classroom. A third issue is the dif-
ficulty of working with the complex ecosystem of toolchains
required to develop, play with, test, and evolve a hardware
design as compared to software. Student’s early debugging
skills which they develop from software design do not map
cleanly over into the hardware world.
While these barriers are significant, with a combination

of technical advances and careful mentoring we believe that
meaningful undergraduate research experiences can be had
as early as the second year. In this paper we describe our
experiences attempting to overcome these barriers in the
context of a focused undergraduate research experience sup-
ported by PyRTL. PyRTL is python-based hardware design
framework designed to help both students and researchers
concisely and precisely describe a digital hardware structure
in Python. It gives developers a restricted set of blocks from
which to build their digital designs (addition, multiplications,
arrays, etc.) and naturally avoids many of the pitfalls and
confusing boilerplate that dominates the student experience
in more traditional hardware design approaches. For exam-
ple, the clock and resets are implicit, block memories are
synchronous by default, there are no "undriven" states, and
no unregistered feedback is allowed. In the end everything
that is described in PyRTL is synthesizable. While those re-
strictions can limit what can be described in PyRTL, those
limitations were chosen to be in line with best practices
today on hardware development and to free developers to
treat hardware design more like a software problem. Similar
to software it allows more advanced abstractions to unfold
naturally from these primitives (e.g. building hardware re-
cursively, writing introspective containers, the creation of
hardware analysis and transform functions) which creates
more friendly learning curve without sacrificing expressive
power.

For early undergraduate researchwe find that PyRTL helps
resolve some of the barriers by providing a gateway to hard-
ware design in the more familiar environment of Python. Stu-
dents are able to write and test normal Python programs in a
way that they are already used to. PyRTL tries hard to avoid
any dependence on advanced Python concepts such as dec-
orators, comprehensions, and inheritance1. There certainly
are both advantages and disadvantages to this approach (e.g.
PyRTL does rely on both contexts and some degree of global
state to present a reasonable abstraction to users), however
being able to write hardware designs, synthesize them, and
compute area and latency numbers, all without ever leaving
a very understandable Python interface makes it possible to

1We use all of these concepts extensively as researchers when we build
advanced hardware with PyRTL, but one is not required to understand these
concepts to use PyRTL.

start with research questions rather than more traditional
toy digital designs.

Although open and usable tools are important, tools alone
are not sufficient to create a positive research experience for
novices. Performing research challenges students to learn
in ways they are not socialized to expect [8]. While experts
may find open-ended problems with unpredictable outcomes
an appealing aspect of research, to a novice research can be
intimidating, foreign, and chaotic. Schultz points out that
although some planned chaos is good in undergraduate re-
search to challenge traditional thinking, too much unpre-
dictability leads to ineffective, energy draining, and non-
productive cycling [25]. As such, we describe more than just
the technical tools we use, but how those tools connected
(and in some cases failed to connect) with both our mentor-
ing approach and the students academic preparation at this
early stage. Our contributions are as follows:

• We present an experience report on the use of PyRTL
for a year-long undergraduate research project involv-
ing four second year students in the context of the
early research scholars program [9] [4].

• We present outcomes in terms of the students’ suc-
cess with conducting research, and changes to their
learning in the cognitive and affective domains.

• We reflect on how PyRTL leveraged student’s current
knowledge to enable research, which aspects/concepts
that the students found most difficult, and the ways
in which this experience points to improvements and
changes in both PyRTL and our approach to mentor-
ing.

We begin with details of our early research program, follow
that with a discussion of PyRTL specific to early research,
present the outcomes of our effort, and finally conclude.

2 PROGRAM OVERVIEW
At most R1 universities undergraduates have to seek out
research opportunities individually and they typically do
so late in their studies. Those who get involved in research
early can find it difficult to succeed due to the lack of domain-
specific knowledge and skills, training in research, and in-
adequate support structures. The Early Research Scholars
Program (ERSP) was designed to address these challenges in
a systematic way [4] [9]. ERSP students complete a full year
apprenticeship, in which they take an introductory computer
science research course; observe a research group’s activi-
ties; and then propose and complete an independent project
with guidance from a team of mentors consisting of research
mentors (faculty member and their graduate student men-
tor), the program coordinator and their graduate assistant.
The program was originally created at UC San Diego and
we have been involved in its recent adoption at UC Santa
Barbara as part of a multi-institutional scaling effort.
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Figure 1: ERSP timeline of activities showing the main ac-
tivities and deliverables by students over the course of the
academic year [4]

We report on a team of four second year undergraduates
who worked on a machine learning project in PyRTL in the
context of ERSP at UCSB. The timeline and structure pro-
vided by ERSP is shown in Figure 1. Students applied to
the program in the Spring quarter. Over the Summer, the
research mentors worked on scoping a research project for
the incoming students. In the Fall, students took a research
methods course where they learned and practiced critical
skills in the context of their research project. Students en-
gaged in activities such as reading and summarizing research
papers, conducting a literature search, and writing a research
proposal. In the same quarter students had regular weekly
meetings with their research mentors and observed the ac-
tivities of the group in the ArchLab [1].
We refer the interested reader to previous publications

for more details about the ERSP program [4] [9]. Here, we
highlight some of the key strategies used for a successful im-
plementation of the program. In describing these strategies
we hope to give the reader an idea of the support and struc-
ture provided to the students. This helps us contextualize
and interpret the outcomes presented later.

Scoping the research problem
Defining a well-scoped research problem is an important
first step in setting up students for success. The challenge
is to find a problem that is open-ended yet approachable to
second year students. Preferably students should be able to
carry out their investigation without the need for extensive
engineering or advanced knowledge of architecture.

The research mentors brainstormed on a number of prob-
lems before honing in on one that related to the design and
study of neural networks in hardware. The concepts that
students needed to carry out this work were scoped to in-
clude a specific neural network architecture (fully connected
networks), combinational and sequential circuits, and an un-
derstanding of the performance metrics of neural networks
and hardware. Students also needed to learn two new tools
to implement their design: PyRTL [11] and PyTorch [24], a
Python-based scientific computing package targeted for ma-
chine learning applications. These tools would allow them
to start with a “pure software” implementation of a neural
network for an image classification application in PyTorch

and translate it to a circuit design using the software abstrac-
tions provided by PyRTL. The students would later collect
and analyze their data, all without ever leaving the familiar
world of Python. The beauty of this research problem is that
it is investigative, cutting edge, and yet approachable.
Mentoring strategies
Effective mentoring requires striking a fine balance between
giving students structure and freedom. At the onset of the
program, the mentors gave students concrete weekly goals to
make sure they have tangible and regular accomplishments.
They structured researchmeetings to facilitate discussion. As
an example, the graduate student mentor asked each student
to present a slide where they spoke to three prompts, each
describing: a new accomplishment, a new learning outcome,
and a new challenge they had faced that week. This format
allowed the students to have many productive discussions
during weekly meetings.

In the first quarter of the program, the graduate and faculty
mentors focused on developing a positive rapport with the
students and integrating them into the larger research group.
The ArchLab weekly group meetings were so popular that
other undergraduates in ERSP attended them. These students
anecdotally told the coordinator of the program that they
came to see the positive exchange between research mentors
and the undergraduates during these meetings.
3 PYRTL
PyRTL is an embedded hardware design language with a
small and mathematically well-defined set of composable
“core” primitives wrapped in a user-friendly syntax. Design-
ing hardware in a dynamic language in general, and in
Python specifically, introduces new opportunities to early
undergraduate researchers with a concise, broadly under-
standable, and familiar syntax. Unlike Verilog, anything ex-
pressible as valid code in PyRTL always corresponds to syn-
thesizable hardware; PyRTL intentionally restricts users to a
set of reasonable digital designs practices.
PyRTL treats hardware design like a software problem,

allowing us to build recursive hardware, write introspective
containers, and concentrate on building hardware using soft-
ware abstractions. As future code examples will demonstrate,
the use of list slicing, recursion, dynamic typing, introspec-
tion, and the creation and use of design patterns is the natu-
ral way to code in PyRTL. With just 17 primitives, PyRTL
makes it simple to add new functionality that works across
every design, including logic transforms, static analysis, and
optimizations.

The goals of PyRTL are to—
• enable the rapid prototyping of complex digital hard-
ware,

• make all hardware decisions explicit and concrete (rather
than inferred, as is the case with HLS),



WCAE’19, June 22, 2019, Phoenix, AZ, USA Mirza, Dangwal, Sherwood

• lower the barrier of entry to digital design (for both
students and software engineers),

• promote the co-design of hardware transforms and
analysis with digital designs (through a simple core
and translation interface), and ultimately,

• allow complex hardware design patterns to be expressed
in a way that promotes reuse beyond just hardware
blocks.

Instead of introducing an early undergraduate researcher
to hardware design, a vastly different programming style, in
an unfamiliar programming language, PyRTL tries to build
on top of concepts that students have learnt in their intro-
ductory undergraduate classes. In the rest of this section,
we present the features of PyRTL and how undergraduate
students at different phases of their studies can leverage their
current knowledge to use PyRTL.

Programming in PyRTL
At the end of their first year of undergraduate studies, stu-
dents have learned and understood recursion. As seen in
Figure 2, with PyRTL we can treat hardware design of a
ripple-carry adder much like a software problem. Building
recursive hardware using PyRTL’s software-like abstractions
can be used to create simple and succinct hardware. Com-
plex interwoven structures are particularly cumbersome to
specify in many hardware design languages. As students’
Python knowledge advances in their second year of under-
graduate studies, they can begin to describe complex struc-
tures through hardware comprehension. An implementa-
tion of AES decryption, for example, which performs data
unscrambling operations on 8-bit data blocks, can concisely
be described using comprehensions in just a few lines of code
as seen in Figure 3. PyRTL leverages introspection for build-
ing structures that depend on runtime values within objects.
For example, we can implement a pipeline as a class where
methods of that class define the pipeline stages. A specific
type of pipeline is then derived from this base class. When a
design is ready, it can be simulated with PyRTL’s built-in
simulator; the waveforms can be rendered directly on the
terminal or as designs scale can be output to VCD. PyRTL
also has a testing and general purpose instrumentation
framework for the more advanced user. Undergraduates in
their third or fourth year will be able to build transforma-
tion passes for optimization, synthesis, and more.

As a beginner-friendly hardware design language, PyRTL
provides a library of commonly used hardware blocks, such
as adders, multipliers, encryption primitives, generators, etc.
and these can easily be imported from pyrtl.rtllib and
pyrtl.generators. For early researchers, the provision of
such functions can save design time and enables design reuse.
PyRTL also provides tools for analyzing aspects of PyRTL

def one_bit_add(a, b, cin=0):
return pyrtl.concat (* _one_bit_add_no_concat(a,

b, cin))

def ripple_add(a, b, cin=0):
if len(a) < len(b):# ensure b is shorter

b, a = a, b
cin = pyrtl.as_wires(cin)
if len(a) == 1:

return one_bit_add(a, b, cin)
else:

rcarry = one_bit_add(a[0], b[0], cin)
if len(b) == 1:

msbits = ripple_half_add(a[1:], rcarry [1])
else:

msbits = ripple_add(a[1:], b[1:], rcarry
[1])

return pyrtl.concat(msbits , rcarry [0])

Figure 2: PyRTL can be used to build hardware using recur-
sion. One place recursion fits nicely is in the design of a
ripple-carry adder. We first define what a one_bit_add looks
like and then call the one_bit_add in the ripple-carry adder
function recursively.

def inv_shift_rows(in_vector):
a = [in_vector[offser - 0: offset] for offser

in range (128, 0, -8)]
out_vector = pyrtl.concat(a[0], a[13], a[10],

a[7],a[4], a[1], a[14], a[11], a[8], a[5],
a[2], a[15], a[12], a[9], a[6], a[3],)

return out_vector

Figure 3: Hardware comprehension in PyRTL demonstrated
through inv_shift_rows function from AES.

designs such as estimating area, finding maximum frequency
of a hardware block in Mhz, etc.

4 OUTCOMES
Project Outcomes
In their project, students studied how the choice of neural
network hyperparameters in software affect energy and la-
tency at the custom hardware level. This project involved the
design of neural networks in software using PyTorch [24],
the design of hardware blocks in PyRTL, and understand-
ing how hyperparameter choices affect the energy and la-
tency numbers in the hardware. In effect, this work comes
up with rules of thumb to inform neural network design in
software to build energy-efficient systems. When the stu-
dents first arrived, they had not taken any digital design
classes and did not have any experience in hardware design.
They had previously taken software engineering classes and
were very comfortable in object-oriented design. As a result,
when the students were introduced to hardware design in
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def __matmul__(self , other):
''' Performs the matrix multiplication

operation.
Is used with a @ b
:param PyRTLMatrix a: the first matrix.
:param PyRTLMatrix b: the second matrix.
:return: a PyRTL Matrix that contains the dot

product of the two PyRTL Matrices.'''
assert (type(other) == PyRTLMatrix)
assert (self.columns == other.rows)
result = PyRTLMatrix(self.rows , other.columns)
for i in range(self.rows):

for j in range(other.columns):
for k in range(self.columns):

result[i, j] = mult.fused_multiply_adder
(self[i, k], other[k, j], result[i,
j])

result[i, j] = result[i, j][:32]
result.bits = len(result[0, 0])
return result

Figure 4: The implementation of the matrix multiply func-
tion by the ERSP students.

PyRTL, they leveraged their knowledge of object-oriented
programming practices and came up with a hardware de-
sign pattern to concisely instantiate machine learning primi-
tives in hardware. They defined the hardware blocks in their
PyRTLMatrix class, instantiated designs with varying pa-
rameters, and studied their effect on area and latency. They
wrote a paper about their paper which has been accepted for
publication at a workshop in the area of machine learning
and embedded systems. The matrix multiplication function
from their PyRTLMatrix class is shown in Figure 4.

Student Outcomes
We used surveys to collect student feedback on PyRTL’s us-
ability, its impact on their learning, and their perceptions
about research. The survey contained a set of Likert-scale and
free-form questions [3]. All four students responded. Since
our sample size is very low, a quantitative analysis of the
data is not meaningful. Instead, we discuss some of the inter-
esting themes that emerged from a qualitative examination.
All students reported knowing one or more programming
language prior to the start of the project among them were
C++, Python, Java, C#, and Swift. None of them had any prior
experience with hardware, except for one student who took
the introductory course in digital design in the first quarter
of ERSP.
We asked students to describe computer architecture re-

search and found their responses insightful. In Table 1, we
present their responses in the voice of a single student and
grouping responses that speak to the same theme. Students’
responses describe architecture research as an integral part

of computing, understand its significance, and see connec-
tions with software and performance. Our hypothesis is that
they came to this understanding not only by working on
their specific research project, but also by engaging in the
structured activities that ERSP provided. As an example, one
of the assignments that students completed in the research
methods course was to conduct a literature search. As part
of this, students read and summarized nine research papers:
[11, 13, 14, 19–21, 23, 26, 28]. They discussed these papers
with their research mentors during weekly meetings, which
encouraged them to think about architecture research more
broadly and connect their specific problem to the field.

Themes in student responses to the question:
“What is Computer architecture research”?

Connection to computing and software: “Approaching computing ques-
tions from a hardware level. The study of the interaction layer between hard-
ware and software.”
Significance of architecture research: “It’s a really interesting, and very
important, area of research due to the decline of Moore’s law. Computer Archi-
tects have to come up with different ways to optimize computer performance
since they can’t rely on making transistors smaller anymore.”
The place of performance: “Creating efficient hardware designs to make
better computers, reducing hardware area and critical path.”

Table 1: Student description of architecture research

Later in the course, students used the results of their liter-
ature search to write a research proposal. In their proposal,
students motivated the research problem, discussed their pro-
posed solution in the context of related work, and described
an evaluation plan. The learning goal of this activity was
to integrate new information and develop additional clarity
(or build awareness of the lack thereof) about their research
problem. An excerpt from the introduction of their proposal
is shown in Table 2. We note the reference to Moore’s Law
which also features in their description of architecture re-
search in Table 1.

“With increasing demand for faster machines, computer architects have turned
toward optimizing hardware design to further increase performance in terms
of speed, energy efficiency, and computational accuracy. Due to the increased
popularity of mobile platforms, power consumption and energy efficiency have
become the top priority and design constraint within systems [23]. In recent
decades, very-large-scale integration (VLSI) technology has reduced the size
of transistors to nanometers. However, quantum physics effectively slows the
progress of developing smaller transistors; therefore, speed of computers can no
longer increase based on transistor size alone [20]. Additionally, as hardware
shrinks, more energy is leaked than applied, leading to thermal runaway and
hardware damage [23]. Therefore, researchers must look to other solutions to
increase speed and reduce energy leakage. One way to do this is using tools
that can learn from past behavior to improve future performance.”

Table 2: An excerpt from the introduction of the research
proposal that students wrote as part of ERSP’s Research
Methods course
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Students speak to the usability of PyRTL and its impact
on their learning as summarized by the responses in Table 3.
All four students found significant value in PyRTL and re-
port specific features that helped them understand hardware
design. Two key PyRTL features that students identified as
helpful to their learning are: (1) the use of software frame-
works familiar to them, referring to PyRTL test cases, classes
and github examples (2) PyRTL’s high level abstractions of
low level hardware concepts, referring to the WireVector
class. These two features helped students understand hard-
ware design by building on what they already knew. They
also describe specific problems that helped them understand
the difference between regular Python programs and PyRTL
code (referring to the different types of if statements in Ta-
ble 3). Identifying these differences motivated the need to
“think in hardware”, potentially priming students for later
coursework in computer architecture.
Using PyRTL, students were able to successfully apply

software design patterns to create new hardware designs
in a familiar medium. However, in making this significant
transition from software to hardware, some students felt a
bit like Alice in Wonderland. At times, PyRTL code, although
familiar, did not work as expected. It was during these times,
when students’ existing knowledge broke down, that they
learned and struggled the most, as seen in their comments:
“I think I learned the most when I messed up” and “things not
clicking intuitively”.

Impact of PyRTL on student learning

Usability of PyRTL and knowledge transfer from software: “The doc-
umentation was pretty thorough, and the python syntax made it a lot easier
to work with. [Documentation] helped me see how to use PyRTL features in
test cases. The examples available on github were also helpful.”
Understanding low level concepts via PyRTL’s high level abstrac-
tions: “It helped me understand how multiple wires (ie wirevectors) work
together in a bitwise way. Wirevectors are interesting to think about and made
me understand how things operate in hardware. Because at the very lowest
level, computers are just a bunch of wires carrying information so the use of
that class helped me visualize that.”
Understanding the difference between software and hardware de-
sign: “The structure of pyrtl files (the design, then the sim step) really helped
to convey the differences between hardware and software design. I think when
I messed up I learned the most. For instance, learning more about floats and
logical ifs. It helped me understand why hardware cannot have conditional
logic and how to reuse pieces of hardware, such as the matrix. I think PyRTL
has helped me understand digital design extremely well.”

Table 3: Themes in student feedback about the impact of
PyRTL on their learning

We asked students to rate the level of difficulty and re-
ward of learning specific concepts on a scale of 1 to 5. Their
average ratings are summarized in Table 4. We interpret this
data with some caution because of the small sample size. Our
main takeaways from the data are: (1) In most cases students
experienced a higher level of reward than difficulty. (2) They

Concept/skill Difficulty Reward

Implementing a feed-forward NN in PyTorch 2.5 3.25
Implementing a hardware design in PyRTL you
(a) sketched on paper 4 4
(b) had NOT sketched on paper 4.25 3.75
Creating new hardware designs 3.25 3.25
Creating new algorithms 3.25 4
Crossing over from PyTorch to PyRTL 3.25 4.35
Understanding hardware concepts 3.25 4
Understanding concepts related to NNs 2.75 3.2
Making sense of data collected from PyRTL 3 3.75
Collecting performance metrics in PyRTL 2.75 3
Understanding hardware performance metrics 3 3.75

Table 4: Average level of difficulty and reward reported by
students on a scale of 1 to 5

found crossing over from PyTorch to PyRTL to be the most
rewarding learning experience, reporting an average diffi-
culty rating of 4.25 out of 5. (3) As such, students did not find
designing hardware in PyRTL easy, reporting an average
difficulty rating of 3.25 out of 5. This is not surprising given
that they had no prior experience and very limited concep-
tual understanding of digital design. The main difficulties
students faced were debugging PyRTL code, understanding
hardware concepts (which at times seemed indistinguishable
from difficulties with PyRTL concepts), time management
andworking as a team.We summarize student responses that
speak to each of these themes in Table 5. Students suggested
improving PyRTL for use by novices by having clearer error
messages, simpler examples in the documentation and tuto-
rial videos that illustrate the hardware designer’s thought
process as they program in PyRTL.
So, what did students find rewarding? Their responses

in Table 5 provide some clues. We interpret these answers
together with our observations of the students over the past
academic year. Students had their aha moments when they
were able to collect latency and area data in PyRTL. To ex-
plain the trends in the data, they had to revisit and under-
stand their circuit design more deeply. Students also enjoyed
the creative process and the social connections they had
made as part of ERSP.
Finally, we summarize changes in student perceptions of

their abilities and preparation for the future in Table 6. Stu-
dents report increased self-efficacy in tackling new problems
and just-in-time learning, resilience to failures, and seeing
the value of collaboration when tackling hard problems. Stu-
dents also report feeling better prepared for coursework and
graduate studies. Finally, their comments suggest a better
understanding of the research process. For example students
said that while solutions to open problems are often not
straightforward, unlike their experiences with tests and ex-
aminations, many solutions exist with their own relative
merits. Students speak with a sense of realism about the time
it takes to tackle new and challenging problems.
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Types of difficulties faced by students

Debugging: “Encountering errors generated by backend PyRTL code, which
were mostly based on our misunderstanding of how hardware worked on
the lowest level. Working through several levels of highly abstracted code to
pinpoint source of error.”
Learning PyRTL and hardware concepts: “Having zero prior knowledge
in hardware design, things just weren’t clicking intuitively . . . PyRTL had a bit
of a learning curve . . . I got stuck trying to integrate floating point numbers
within PyRTL”
Team dynamics and time management: “I would allocate a certain
amount of time to work on our project, I would get stuck on something and
end up not getting much done, then stress about having something to show by
the end of the week which was not easy.”

Summary of most rewarding experiences

Collecting and interpreting data: “The moment when we had collected
data from a fully functioning model, and were able to correctly interpret it
. . . seeing the designs actually come into fruition and getting an output.”
Creating new knowledge: “I had gone into this project with almost no
knowledge about any of the related fields. It was incredibly rewarding to
analyze and develop new knowledge from something we had built.”
Building social connections: “It would definitely be meeting all the awe-
some students, advisors, and professors. Everyone is so nice, helpful, and gen-
uinely cared. That was really uplifting. I also got close to a lot of the other
students, especially my group mates so it was nice to see us grow closer to-
gether as the year went on. This program has done so much for me to grow as
a computer scientist. I credit that to all the amazing help our professors and
advisors provided. ”

Table 5: Feedback on the difficulties and rewards of research

5 RELATEDWORK
A clear understanding of computer architecture concepts is
necessary to begin early research in the area. In order to start
gaining an in-depth understanding of hardware design for
computer architecture research, it is important for students
to program designs themselves. This has been transformative
in computer architecture education, with the introduction of
HDLs in the classroom [17, 27].We stress that when introduc-
ing students to early research, we need the introduction of a
productive, familiar, but expressive and feature-rich HDLs,
like PyRTL. PyRTL’s open-source community also makes
seeking help and collaborating easy.

Verilog and VHDL are traditional HDLs with steep learn-
ing curves and require prior knowledge about how hardware
must function, making them difficult to integrate into early
research. While there are techniques such as High-Level Syn-
thesis (HLS) which produce logic elements from high level
code written in C/C++, these high level abstractions can be
difficult to reason about and debug. Understanding what
logic blocks some C/C++ code would synthesize requires
a deep understanding of how these tools perform the syn-
thesis. PyRTL tries to bridge this gap by providing a middle
ground, a high level language with which to write hardware
directly. PyRTL is not the first, nor will it be the last to try
to bridge this gap. Chisel [7] is a Scala-based tool to design

Impact of research on students’ perceptions

Increased self-efficacy in tackling new problems: “It’s definitely made
me feel more capable of diving into problems I’ve never experienced before
and learning advanced skills on the fly . . . it has made me more confident in
my abilities to tackle problems, simply because with research, there is no real
wrong answer.”

Increased resilience to failure: “If the solution you thought of does not
work, it’s not considered a failure but becomes a learning experience.”

Increased value for collaborations: “I used to always think working
independently is better, this research experience has made me realize that’s
not the case at all. You always need to work with other people, learn from each
other, and feed on each other’s ideas if you want to tackle difficult problems.”

Increased preparation for coursework: “I think my research experience
has helped me learn a lot of computer architecture concepts before I come
across them in my courses. For instance, I just learned about floating points in
hardware in CS 111 (Introduction to Computational Science) when I learned
about it over winter break for research. A lot of the things we touched on in
research have been occurring in all of my CS classes, not just hardware so
there is a lot of connection.”

Increased preparation for graduate school: “I’m planning to pursue a
research project in my master’s year, and this experience has definitely helped
me prepare for the process. I hope to go in to machine learning in the future
so working with NNs at such a low level has definitely helped solidify the
foundational understanding of ML.”

Increased understanding of the research process: “I think research has
taught me that things take time. Several times during the project, we have
hit stopping blocks. I think by working through them we got better but it still
takes time . . . it has made me realize there are A LOT of difficult problems to
solve, and there always would be . . . I think research is more about motivation
than knowledge. There is not always one answer to a problem. We can usually
understand what the answer to a problem should be, but sometimes it is outside
our expectations. It’s made me realize that there are a lot of problems that
don’t have straightforward answers or ways of getting those answers, which is
a little discouraging but also very exciting.”

Table 6: Student feedback on the impact of research on their
personal growth

hardware. It uses many high level programming features of
Scala to provide features like elaboration-through-execution,
just like PyRTL. CλaSH [6] is written in Haskell and supports
the generation of synthesizable Verilog code. Lava [10], also
a Haskell-based HDL comes in variants and provides fea-
tures like simulation, formal verification and generation of
code for implementable circuits. But, the use of a functional
programming language like Haskell comes with its own chal-
lenges, and the learning curve for early researchers might
still be steep. MyHDL [12] is a Python-based embedded lan-
guage which uses Python generators and decorators, and
looks very similar to Verilog. It comes with a wide variety of
features like synthesis, simulation, test bench creation, and
optimization. PyMTL [18, 22], also Python-based, provides
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a vertically integrated tool for functional-level, cycle-level
and register-transfer level modeling.

6 CONCLUSION
In this paper we have identified three key barriers to early
undergraduate research: (1) lack of “hardware thinking”, lead-
ing students to think almost exclusively about computing as
a sequential set of operations, (2) the gap between pedagogy
and research in undergraduate architecture curricula, and
(3) complexity of toolchains to develop, play with, and test
new hardware designs, and the misalignment of their early
debugging skills when applied to the hardware world. We
report on a case study of a structured year-long undergradu-
ate research experience with a team of second-year students.
The data collected from the students points to the presence
of all three barriers. However, our initial results show that
PyRTL lowers these barriers by building on what students
already know and second year students can contribute to
early research in architecture with the thoughtful mentoring
and structure that was provided by ERSP.
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