Data Partitioning for Reconfigurable Arch

Wenrui Gong Yan Meng Gang Wang

University of California, Santa Barbara

{gong, yanmeng, wanggang, kastner }@ce. ucsb.

Abstract

Contemporary reconfigurable architectures integrate ritist
uted block RAM modules on-chip to provide ample storage
DSP, wireless, and image processing applications. Syizihgs
applications to these complex systems requires an eféemtiet ef-
ficient approach to conduct data partitioning and storageigs-
ment. This work showed that different data partition screarel
storage assignment solutions, integrated with other mgrapti-
mization techniques, dramatically improve overall sysparfor-
mance. Experimental results indicated that partitionedigies
could meet design goals and achieve much better performance

for

1 Introduction

Reconfigurable systems are a novel computing paradigm,
which allows different tradeoffs between flexibility andrfoe-
mance [2, 5]. In order to offer greater computing capabtiti
high-performance commercial reconfigurable architestinave
integrated a number of fixed components, including micropse
sor cores, DSPs, custom hardware, and on-chip distribuésd-m
ory.

Reconfigurable devices currently lack the tools necessary t
provide the application designer efficient synthesis oiesée
complex architectures. In particular, there is a presseedrfor
memory optimization techniques as modern reconfiguralslei-ar
tectures have a complex memory hierarchy. Memory optimiza-
tions for these reconfigurable architectures differs Sicgtly to
previous memory optimizations in parallelizing compitetifor
multiprocessor architectures, and closely interfere Wigjn-level
synthesis efforts, and physical synthesis results. Thiepéo-
cuses on seeking a partitioning-based solution to the gioas-
signment problem for reconfigurable architecture withribsted
block RAM modules.

The central contribution of this paper is an novel approdch o
deriving an appropriate data partitioning and synthegitire pro-
gram behavior to reconfigurable architectures. By intensas
search on interferences of data partitions and architelctynthe-
sis decisions, such as scheduling and binding, the syatudie-
signs are expected to meet the design goals, and minimizaxthe
ecution time (or maximize the system throughput) underueso
constraints.

Ryan Kastner
Department of Electrical and Computer Engineering

itectures with Di stributed block RAM

Timothy Sherwood
Department of Computer Science
University of California, Santa Barbara

edu {sherwood}@s. ucsh. edu

2 Target Reconfigurable Architectures

Contemporary reconfigurable architectures usually iatega
number of distributed block memories. According to the RAM
blocks, these architectures could be divided into hetereges
architectures and heterogeneous ones. Figure 1 pres@htasu
homogeneouarchitecture. A number of block RAMs are evenly
distributed on the chip, and connected with CLBs using repro
grammable interconnect. Each block RAM has the same cgpacit
as others. Usually there is an embedded multiplier locatsitle
the block RAM for DSP applications.

ool o o] o [I e
s |- s .
e = H e =i H e
el il EeEaEHHEE
[cte]|[cre]|[]| J|[cte] [cue]|[cue]|[cre]| |||]|[cte]|[cte]
[N N J
RN E N
...%%%%
ciel|[ciel|| & ||| 2| Fecs]|[cig]|[cie el & 3|(Tca]|[cie
o [3]
cel/[cell| ||| | @ cLB CLB L | [eee]|[cee
[J [e} [IaN J []
[} o o [I J []
L4 ® ® ock RAM modules e o L4

Figure 1. FPGA with distributed Block RAMs

Access latencies of the on-chip block RAM equals to the prop-
agation delay to the memory port after the positive edge ef th
cl ock signal. This delay is usually a fixed numbeerfor a spe-
cific FPGA architecture. For example, is 3.7 ns for Xilinx
XC2V3000 -6 FPGA. And it takes an exteans to transfer data
from the memory port to the accessing CLB.

In this paper, we aim for data partitioning and assigning dis
tributed block RAM modules to data partitions. Comparedffo o
chip global memory and using CLBs as distributed RAM, this ap
proach is an effective and efficient solution to most DSPgena
and wireless applications.

3 Related Work

Data partitioning and storage assignment problem was well
studied in the field of parallelizing compilation [1, 7, 1@arly
efforts developed effective analysis techniques and pragrans-
formations to reduce global communications and hence im-

prove system performance. Shih and Sheu [9], and Ramanu- In order to simplify our problem, we assume tlathe input
jam and Sadayappan [8] addressed the methodology to achievgrograms are perfectly nested loopsindex expressions of array
communication-freéeration space and data partitioning problem. references are affine functions of loop indicesthere is no in-
Pande [6] presented aommunication-efficierdata partitioning direct array references, or other similar pointer operetid) all
solution when it is impossible to get a communication-fraetip data arrays will be assign to block RAM modules; adeach
tioning. data element will be assigned one and only one single blodd RA
However, the following differences between multiprocesso modules, i.e. no duplicate data.We further assume thatasdi d
architecture and reconfigurable architecture with distet block types are fix-point numbers due to the current capabilitywof o
RAM modules make it impossible to directly migrate them imou system compiler and synthesis tools.
system compiler. The problem is to minimize the total execution time (or max-
e The target architectures are different. Multiprocessar pa jmize the system throughput) under the resource conssraint
allel system has a fixed number of microprocessors. They gpecific reconfigurable architectures by partitioning datays
usually exhibit-the non uniform memory access (NUMA) at- and assigning these portions into the distributed RAM meslul
tributes. In reconfigurable ar(;hltectures, through thebm Our proposed approach is based on our current efforts on syn-
of block RAM modules are fixed. There is no determinate hegjzing C programs into RTL designs. Our system compiler
CLBs associated with a particular block RAM. Hence the (4165 C programs, performs necessary transformations @nd o
boundaries between local and remote memory are indistinct. +jmizations. By specifying target architecture, and desiper-
e Programs are executed sequentially or with limited instruc tqrmance (throughput), this compiler performs resourdecat
tion level parallelism (ILP) on multiprocessor paralleksy tion, scheduling, and binding tasks, and generates VeRIBY

tems, though parallelizing compiler exploits coarsewzéli designs, which can then be synthesized or simulated usimg co
parallelism. However, computing tasks runs in a fully par- earcial tools.

allelized and concurrent manner on reconfigurable architec

tures.
Most of the previous efforts assumed that global communica-

tions or latencies to remote memory are an order of magnitude
slower than access latencies to local memory. This makait re
sonable to simplify the objective function to simply redute
amount of global communications. This assumption is nodong
true in the context of reconfigurable architectures. As ipresly
described, access latencies to block RAM modules depentti@on
distance between the accessing CLBs and the memory poss. It
difficult to determine the exact delay before obtained pieeeat

and routing results.

Second, data partition and storage assignment have more com
pound effects on system performance. While synthesiziog pr
grams into reconfigurable systems, it is extremely diffituiitle-
termine the execution time before physical synthesis. Gae
scheduled design, there could be a 30-50% variation in ¢xecu
time, even though numbers of clock cycles are almost the same
Not only the memory access delays but also the control I@gids
computations are affected.

In summary, our architectures differ from traditional NUM
machines. It is difficult to estimate candidate solutionsrdythe X : S
early stage of synthesis. Flexibilities in configuring idRAM tion of data space. If we could not find a communication-free

modules greatly enlarge the solution spaces, and hence timake partitioning, we look for acommunication-efficienpartitioning
problem more challenging. to minimize the execution time.

Our proposed approach integrates traditional progranatest
4 Data partitioning and Storage Assignment transformation techniques in parallelizing compilatianoi our
system compiler framework. In order to tackle the perforogan
estimation during data space partitioning, we use our fipeci

This section discusses the data partitioning and storagigras) ; X .
atlap 9 behavioral-level synthesis techniques, such as resolliocaton,
ment problem and some techniques we use to reduce memory ac-

cesses and improve system performance for FPGA-based-reconSChEdu“ng and binding.
figurable architectures with distributed block RAM modules 4.2 Performance Estimation and Optimizations

4.1 Data Partitioning In order to evaluate our data partition and storage assign-
ment solutions, we apply architectural-level synthesitiméques
At the current stage, we mainly focus on data-intensiveiappl to each portion of the partitioned design. Sophisticatgdrithms
cations in DSP and image processing. These applicatioradlysu during scheduling and binding are applied to benefit sontieati
contain nested loops and multiple data arrays. computations and controls.

As discussed before, in reconfigurable architectures, the
boundaries between local and remote accesses are intdidtinc
our preliminary experiments, we found that, given the saata-d
path with memory accesses to block RAM modules with differen
locations, the lengths of critical path achieved after @haent and
routing have a 30-50% variation. And a limited number of eata
paths could be placed near the block RAM modules which they
access.

Therefore, we could still assume that, once the data space ar
partitioned, we could obtain a corresponding partitiorohthe it-
eration space, or the computations. Each portion of theietee
could be mapped to one portion of the iteration space. Then we
divide all memory accesses into local accesses and remet on
(or communications). However, these local and remote mgmor
accesses distinguish from those in parallel multiprocesgiems
on that the differences of access latencies are usuallyeisame
magnitude rather than in orders of magnitude.

Based on this further assumption, we adapt some concepts
and analysis techniques in tradition parallelizing comatmin.

A Communication-fregartitioning refers to a situation that each
partition of the iteration space only access the associsetil

Besides traditional architectural-level synthesis téphes,
we apply other optimization techniques, especially thossdak-
ing advantages of FPGA-based reconfigurable archite¢tsueh
as scalar replacement, and input prefetching. These @atiion
techniques could be utilized to reduce memory access, and im
prove overall performance.

4.2.1 Scalar replacement of array elements

Scalar replacement, or register pipelining, is an effectiv

5.1 Communication-free: correlation

The bank of correlators multiplies each sample of the reckiv
vectorr with the corresponding sample of a column in&ma-
trix, i.e. G = z'jzlrj x §j i, wherer is a vector ol complex num-
bers, andSis amx | real numbers. In this case for the matching
pursuit algorithm, botth andm equal to 88. If theSmatrix is kept
packed, the most advanced commecial high-level synthesis t
either generates a design with an extremely slow execuioa t

method to reduce the number of memory accesses. This methogf about 77,440 ns, or fails to synthesize this design dudeo t

takes advantage of sequential multiple accesses to aegmeats
by making them available in registers. While executing paogg,
especially nested loops, one array element may be accesdiéd i
ferent iterations. In order to reduce the amount of memocg s&,
the array element could be stored in registers after thenfiesh-
ory access, and the following references are replaced Hgirsca
temporaries. Furthermore, registers are much cheaper GAFP
designs compared with ASIC ones.

4.2.2 Data prefetching and buffer insertion

Data prefetching was originally introduced to reduce cache
miss latencies. The microprocessor issues a prefetchatiguiaa
tion to load a data block which may be accessed very soonhwhic
is most useful that access large array sequentially. Hawave
FPGA-based reconfigurable architectures with block RAM mod
ules, there is no cache hit or misses. We apply a similar fotefe
ing techniques to reduce the delay of critical path, and awgr
system performance.

Before placement and routing, it is difficult to accuratety e
timate clock frequency, and to determine how many clockesycl
it takes to access a particular block RAM modules. An acaess t
block RAM module far away from the CLB may reduce the sys-
tem maximal frequency due to the interconnect delay, eafhgci
in some high-speed designs. In order to reduce the memory ac
cess time, we schedule the memory access one clock cydiergarl
and insert a register on the data path. Hence the critichlrpay
be reduced and the data will available on time.

5 Experimental Results

This section presents experimental setup and results. Xwo e
amples are intensively examined. The first benchmark is & ban
of correltors, which is very popular in DSP and wireless ayapl
tions, such as Kalman filters, RLS, and MMSE [4]. The second
benchmark is Sobel edge detection, which applies horizanta
vertical Sobel edge detection masks to an input image.

The target architecture is Xilinx Virtex || FPGA series, whi
contains evenly distributed block RAM modules. Target fre-
guency was set to 200 MHz for the DSP application, and 150
MHz for the image processing application. We partitionezlah
rays using the approach proposed in Section 4.2, and pextbrm
program transformations, and then used commercial toabdto
tain area and timing results. Experiments results are aele
after RTL synthesis and placement and routing.

hugeS matrix.

The original data space could be partitioned by column or by
row direction. Our proposed approach showed us that column-
wise partition could achieve communication-free pantiiig. In
a column-wise partition, computations of each correlatercan-
ducted using embedded multipliers beside the block RAM in a
multiplication and accumulation (MAC) manner. For eaclreor
lator, control logic and computation resources could batée as
local to the block RAM module. Table 2 presents experimental
results of the column-wise data partitioning.

Table 2 also presented area and timing trends of differemt-gr
ularity for the column-wise scheme. When assigning onekbloc
RAM to one column, the design takes the shortest executiog, ti
but requires the greatest hardware resources. When maraes|
are packed into one block RAM, the requirements on hardware
decreased. However, the execution time increases lineathe
number of columns in one block RAM.

To evaluate different partitioning schemes, we also obkthin
performance results for row-wise partitions, as shown iold4,
we found more interesting results. In the term of numbersomke
cycles, the differences are really small. However, if weckithe
achieved maximal frequencies, or the latencies for the evbahk
of correlators, designs of the column-wise partitioninesoe
are 30-50% faster than those of the row-wise partitionifgste.
Deeper analysis showed that the performance gaps are ndaialy
to the great amount of global communications.

Data # of Pre-layout Timing | Post-layout Timing
per BRAM cycles | F(MHz) L(ns) F(MHz) L(ns)
1 row 184 140.5 1309 1335 1378
4 rows 710 157.0 4520 129.4 5486
8 rows 1413 147.1 9602 138.7 10183

Table 1. Experimental results of row-wise partition

Data # of Pre-layout Timing | Post-layout Timing
per BRAM cycles | F(MHz) L(ns) F(MHz) L(ns)
1 column 178 214.7 829 171.6 1037
4 columns 706 205.0 3436 178.2 3961
8 columns 1410 198.6 7099 161 8752

Table 2. Experimental results of column-wise partition

In summary, different partitions of the arr&deliver a wide
variety of candidate solutions. Synthesized designs stidthazt
data partitioning and storage assignment not only affechtim-
ber of clock cycles, but also affect the achieved clock feagpies.
Generally speaking, the design with less remote accesdessor
communications could achieve better performance.

5.2 Efficient communication: Sobel

bodies. Furthermore, we wish to integrate layout infororatiur-
ing our architectural-level synthesis. It would be promdsio

Sobel edge detection applies horizontal and vertical Sobel obtain more accurate estimation of interconnect delay aredtd
edge detection masks to an input image. This application is aphysical design tools using our architectural-level sgsis.

2-level nested loop. A number of image application have the

same control structure and memory access patterns, suel-ast References

ture smoothing, and convolution [3].

for (i=1; i<N-1; i++)
for (j=1; j<M1; j+){

100=in[i-1[j-1; i01=in[i-1[j]; i02=in[i-1[j+];
i10=in[i][j-1]; ;oi12=in[io][j+1];

i20=in[i+1][j-1]; i21=in[i+1][j]; i22=in[i+1][]+1];

}
Figure 2. Memory accesses in Sobel edge detection

Based on results from code analysis stage, we could notobtai
a communication-free partition. Now the task is to find a camm
nication efficient partition which could meet design goals.

Table 3 and 4 showed timing results for two Sobel edge detec-
tion with different input sizes. If we only partition the dadrrays,
the number of clock cycles are reduced. However, the maximal
frequencies after placement and routing are slower thardeur
sired frequencies. In order to reduce memory accessesiapti
tion techniques such as scalar replacement for array etsraed
buffer insertion for data prefetching are utilized. In theadler
design, we finally achieve the 150 MHz design goal, and with a
46x speedup compared to the original design.

256% 8 # of Pre-layout Timing Post-layout Timing
Sobel cycles F(MHz) L(ns) F(MHz) L(ns)
original 12,196 159.5 76,481 152.2 80,444
partitioned 2,032 150.4 13,514 140.7 14,445
+scalar replacement| 771 166.1 4,642 145.7 5,291
+prefetching 263 185.0 1,421 150.8 1,744

Table 3. Comparing optimization techniques (1)

256x 16 # of Pre-layout Timing Post-layout Timing
Sobel cycles | F(MHz) L(ns) F(MHz) L(ns)

partitioned 2,032 145.9 13,925 105.6 19,155
+scalar replacement| 7,71 153.4 5,026 118.2 6,522
+prefetching 263 185.0 1,421 125.9 2,088

Table 4. Comparing optimization techniques (2)

In summary, different optimization techniques could be uti
lized to increase memory bandwidth, reduce memory acceds, a
improve overall performance. When the sizes of designeass,
it becomes more difficult to achieve design goals since kddhe
support from down-stream tools, especially physical desigls.

6 Concluding Remarks

This work showed that a data and iteration space partition-
ing approach integrated with existing architectural-leyathesis
techniques could parallelize input designs, and dranibtioa-
prove system performance or system throughput. Experahent
results indicated that partitioned designs achieve mutteyger-
formance.

In future work, we plan to investigate analysis and transfor
mation techniques to deal with heterogeneous architeciame
generate heterogeneous partitions. It will also be intiergdo
handle irregular iteration space and control constructtemtion

(6]

(7]

[1] R. Allen and K. KennedyOptimizing Compilers for Modern Archi-
tectures Morgan Karfmann Publishers, San Francisco, CA, 2002.

[2] K.Bondalapati and V. K. Prasanna. Reconfigurable Compys-
tems.Proc. of the IEEE90(7):1201-17, July 2002.

[3] R. C. Gonzalez and R. E. Wood®igital Image Processing, 2nd
Edition. Prentice Hall, Englewood Cliffs, NJ, 2002.

[4] S. Haykin. Adaptive Filter Theory, Fourth EditianPrentice Hall,
Englewood Cliffs, NJ, 2001.

[5] R. Kastner, A. Kaplan, and M. Sarrafzade8ynthesis Techniques
and Optimizations for Reconfigurable Systeidkiwer Academic,
Boston.

S. Pande. A Compile Time Partitioning Method for DOALL &jos
on Distributed Memory Systems. Proceedings of 1996 Interna-
tional Conference on Parallel Processintp96.

S. Pande and D. P. Agrawal, editor&ompiler Optimizations for
Scalable Parallel Systems: Languages, Compilation Tegehes,
and Run Time SystemSpringer, Heidelberg, Germany, 2001.

[8] J. Ramanujam and P. Sadayappan. Compile-time Techmifpre
Data Distribution in Distributed Memory MachinesEEE Trans-
actions on Parallel and Distributed Systen2¢4):472—-82, October
1991.

[9] K.-P. Shih, J.-P. Sheu, and C.-H. Huang. StatementiLeve
Communication-Free Partitioning Techniques for Paraley
Compilers. InProceedings of the 9th Workshop on Languages and
Compilers for Parallel Computingl996.

M. Wolfe. High Performance Compilers for Parallel Computing
Addison-Wesley, Redwood City, CA, 1996.

[10]

