
Data Partitioning for Reconfigurable Architectures with Di stributed block RAM

Wenrui Gong Yan Meng Gang Wang Ryan Kastner
Department of Electrical and Computer Engineering

University of California, Santa Barbara
{gong, yanmeng, wanggang, kastner}@ece.ucsb.edu

Timothy Sherwood
Department of Computer Science

University of California, Santa Barbara
{sherwood}@cs.ucsb.edu

Abstract

Contemporary reconfigurable architectures integrate distrib-
uted block RAM modules on-chip to provide ample storage for
DSP, wireless, and image processing applications. Synthesizing
applications to these complex systems requires an effective and ef-
ficient approach to conduct data partitioning and storage assign-
ment. This work showed that different data partition schemes and
storage assignment solutions, integrated with other memory opti-
mization techniques, dramatically improve overall systemperfor-
mance. Experimental results indicated that partitioned designs
could meet design goals and achieve much better performance.

1 Introduction

Reconfigurable systems are a novel computing paradigm,
which allows different tradeoffs between flexibility and perfor-
mance [2, 5]. In order to offer greater computing capabilities,
high-performance commercial reconfigurable architectures have
integrated a number of fixed components, including microproces-
sor cores, DSPs, custom hardware, and on-chip distributed mem-
ory.

Reconfigurable devices currently lack the tools necessary to
provide the application designer efficient synthesis onto these
complex architectures. In particular, there is a pressing need for
memory optimization techniques as modern reconfigurable archi-
tectures have a complex memory hierarchy. Memory optimiza-
tions for these reconfigurable architectures differs significantly to
previous memory optimizations in parallelizing compilation for
multiprocessor architectures, and closely interfere withhigh-level
synthesis efforts, and physical synthesis results. This paper fo-
cuses on seeking a partitioning-based solution to the storage as-
signment problem for reconfigurable architecture with distributed
block RAM modules.

The central contribution of this paper is an novel approach of
deriving an appropriate data partitioning and synthesizing the pro-
gram behavior to reconfigurable architectures. By intensive re-
search on interferences of data partitions and architectural synthe-
sis decisions, such as scheduling and binding, the synthesized de-
signs are expected to meet the design goals, and minimize theex-
ecution time (or maximize the system throughput) under resource
constraints.

2 Target Reconfigurable Architectures

Contemporary reconfigurable architectures usually integrate a
number of distributed block memories. According to the RAM
blocks, these architectures could be divided into heterogeneous
architectures and heterogeneous ones. Figure 1 presents such a
homogeneousarchitecture. A number of block RAMs are evenly
distributed on the chip, and connected with CLBs using repro-
grammable interconnect. Each block RAM has the same capacity
as others. Usually there is an embedded multiplier located baside
the block RAM for DSP applications.

M
ul

tip
lie

r

B
lo

ck
 R

A
M

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

M
ul

tip
lie

r

B
lo

ck
 R

A
M

M
ul

tip
lie

r

B
lo

ck
 R

A
M

M
ul

tip
lie

r

B
lo

ck
 R

A
M

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

block RAM modules

Figure 1. FPGA with distributed Block RAMs
Access latencies of the on-chip block RAM equals to the prop-

agation delay to the memory port after the positive edge of the
clock signal. This delay is usually a fixed numberα for a spe-
cific FPGA architecture. For example,α is 3.7 ns for Xilinx
XC2V3000 -6 FPGA. And it takes an extraε ns to transfer data
from the memory port to the accessing CLB.

In this paper, we aim for data partitioning and assigning dis-
tributed block RAM modules to data partitions. Compared to off-
chip global memory and using CLBs as distributed RAM, this ap-
proach is an effective and efficient solution to most DSP, image,
and wireless applications.

3 Related Work

Data partitioning and storage assignment problem was well
studied in the field of parallelizing compilation [1, 7, 10].Early
efforts developed effective analysis techniques and program trans-
formations to reduce global communications and hence im-



prove system performance. Shih and Sheu [9], and Ramanu-
jam and Sadayappan [8] addressed the methodology to achieve
communication-freeiteration space and data partitioning problem.
Pande [6] presented ancommunication-efficientdata partitioning
solution when it is impossible to get a communication-free parti-
tioning.

However, the following differences between multiprocessor
architecture and reconfigurable architecture with distributed block
RAM modules make it impossible to directly migrate them in our
system compiler.

• The target architectures are different. Multiprocessor par-
allel system has a fixed number of microprocessors. They
usually exhibit-the non uniform memory access (NUMA) at-
tributes. In reconfigurable architectures, through the number
of block RAM modules are fixed. There is no determinate
CLBs associated with a particular block RAM. Hence the
boundaries between local and remote memory are indistinct.

• Programs are executed sequentially or with limited instruc-
tion level parallelism (ILP) on multiprocessor parallel sys-
tems, though parallelizing compiler exploits coarse-grained
parallelism. However, computing tasks runs in a fully par-
allelized and concurrent manner on reconfigurable architec-
tures.

Most of the previous efforts assumed that global communica-
tions or latencies to remote memory are an order of magnitude
slower than access latencies to local memory. This make it rea-
sonable to simplify the objective function to simply reducethe
amount of global communications. This assumption is no longer
true in the context of reconfigurable architectures. As previously
described, access latencies to block RAM modules depends onthe
distance between the accessing CLBs and the memory ports. Itis
difficult to determine the exact delay before obtained placement
and routing results.

Second, data partition and storage assignment have more com-
pound effects on system performance. While synthesizing pro-
grams into reconfigurable systems, it is extremely difficultto de-
termine the execution time before physical synthesis. Given a
scheduled design, there could be a 30-50% variation in execution
time, even though numbers of clock cycles are almost the same.
Not only the memory access delays but also the control logicsand
computations are affected.

In summary, our architectures differ from traditional NUMA
machines. It is difficult to estimate candidate solutions during the
early stage of synthesis. Flexibilities in configuring block RAM
modules greatly enlarge the solution spaces, and hence makethe
problem more challenging.

4 Data Partitioning and Storage Assignment

This section discusses the data partitioning and storage assign-
ment problem and some techniques we use to reduce memory ac-
cesses and improve system performance for FPGA-based recon-
figurable architectures with distributed block RAM modules.

4.1 Data Partitioning

At the current stage, we mainly focus on data-intensive appli-
cations in DSP and image processing. These applications usually
contain nested loops and multiple data arrays.

In order to simplify our problem, we assume thata) the input
programs are perfectly nested loops;b) index expressions of array
references are affine functions of loop indices;c) there is no in-
direct array references, or other similar pointer operations; d) all
data arrays will be assign to block RAM modules; ande) each
data element will be assigned one and only one single block RAM
modules, i.e. no duplicate data.We further assume that all data
types are fix-point numbers due to the current capability of our
system compiler and synthesis tools.

The problem is to minimize the total execution time (or max-
imize the system throughput) under the resource constraints of
specific reconfigurable architectures by partitioning dataarrays
and assigning these portions into the distributed RAM modules.

Our proposed approach is based on our current efforts on syn-
thesizing C programs into RTL designs. Our system compiler
takes C programs, performs necessary transformations and op-
timizations. By specifying target architecture, and desired per-
formance (throughput), this compiler performs resource alloca-
tion, scheduling, and binding tasks, and generates VerilogRTL
designs, which can then be synthesized or simulated using com-
mercial tools.

As discussed before, in reconfigurable architectures, the
boundaries between local and remote accesses are indistinct. In
our preliminary experiments, we found that, given the same data-
path with memory accesses to block RAM modules with different
locations, the lengths of critical path achieved after placement and
routing have a 30-50% variation. And a limited number of data-
paths could be placed near the block RAM modules which they
access.

Therefore, we could still assume that, once the data space are
partitioned, we could obtain a corresponding partitioningof the it-
eration space, or the computations. Each portion of the dataspace
could be mapped to one portion of the iteration space. Then we
divide all memory accesses into local accesses and remote ones
(or communications). However, these local and remote memory
accesses distinguish from those in parallel multiprocessor systems
on that the differences of access latencies are usually in the same
magnitude rather than in orders of magnitude.

Based on this further assumption, we adapt some concepts
and analysis techniques in tradition parallelizing compilation.
Communication-freepartitioning refers to a situation that each
partition of the iteration space only access the associatedparti-
tion of data space. If we could not find a communication-free
partitioning, we look for acommunication-efficientpartitioning
to minimize the execution time.

Our proposed approach integrates traditional program testand
transformation techniques in parallelizing compilation into our
system compiler framework. In order to tackle the performance
estimation during data space partitioning, we use our specific
behavioral-level synthesis techniques, such as resource allocation,
scheduling and binding.

4.2 Performance Estimation and Optimizations

In order to evaluate our data partition and storage assign-
ment solutions, we apply architectural-level synthesis techniques
to each portion of the partitioned design. Sophisticated algorithms
during scheduling and binding are applied to benefit some critical
computations and controls.



Besides traditional architectural-level synthesis techniques,
we apply other optimization techniques, especially those ones tak-
ing advantages of FPGA-based reconfigurable architectures, such
as scalar replacement, and input prefetching. These optimization
techniques could be utilized to reduce memory access, and im-
prove overall performance.

4.2.1 Scalar replacement of array elements

Scalar replacement, or register pipelining, is an effective
method to reduce the number of memory accesses. This method
takes advantage of sequential multiple accesses to array elements
by making them available in registers. While executing programs,
especially nested loops, one array element may be accessed in dif-
ferent iterations. In order to reduce the amount of memory access,
the array element could be stored in registers after the firstmem-
ory access, and the following references are replaced by scalar
temporaries. Furthermore, registers are much cheaper in FPGA
designs compared with ASIC ones.

4.2.2 Data prefetching and buffer insertion

Data prefetching was originally introduced to reduce cache
miss latencies. The microprocessor issues a prefetching instruc-
tion to load a data block which may be accessed very soon, which
is most useful that access large array sequentially. However, in
FPGA-based reconfigurable architectures with block RAM mod-
ules, there is no cache hit or misses. We apply a similar prefetch-
ing techniques to reduce the delay of critical path, and improve
system performance.

Before placement and routing, it is difficult to accurately es-
timate clock frequency, and to determine how many clock cycles
it takes to access a particular block RAM modules. An access to
block RAM module far away from the CLB may reduce the sys-
tem maximal frequency due to the interconnect delay, especially
in some high-speed designs. In order to reduce the memory ac-
cess time, we schedule the memory access one clock cycle earlier,
and insert a register on the data path. Hence the critical path may
be reduced and the data will available on time.

5 Experimental Results

This section presents experimental setup and results. Two ex-
amples are intensively examined. The first benchmark is a bank
of correltors, which is very popular in DSP and wireless applica-
tions, such as Kalman filters, RLS, and MMSE [4]. The second
benchmark is Sobel edge detection, which applies horizontal and
vertical Sobel edge detection masks to an input image.

The target architecture is Xilinx Virtex II FPGA series, which
contains evenly distributed block RAM modules. Target fre-
quency was set to 200 MHz for the DSP application, and 150
MHz for the image processing application. We partitioned the ar-
rays using the approach proposed in Section 4.2, and performed
program transformations, and then used commercial tools toob-
tain area and timing results. Experiments results are collected
after RTL synthesis and placement and routing.

5.1 Communication-free: correlation

The bank of correlators multiplies each sample of the received
vectorr with the corresponding sample of a column in anS ma-
trix, i.e. Ci = ∑l

j=1 r j ×Sj,i , wherer is a vector ofl complex num-
bers, andS is am× l real numbers. In this case for the matching
pursuit algorithm, bothl andmequal to 88. If theSmatrix is kept
packed, the most advanced commecial high-level synthesis tool
either generates a design with an extremely slow execution time
of about 77,440 ns, or fails to synthesize this design due to the
hugeSmatrix.

The original data space could be partitioned by column or by
row direction. Our proposed approach showed us that column-
wise partition could achieve communication-free partitioning. In
a column-wise partition, computations of each correlator are con-
ducted using embedded multipliers beside the block RAM in a
multiplication and accumulation (MAC) manner. For each corre-
lator, control logic and computation resources could be treated as
local to the block RAM module. Table 2 presents experimental
results of the column-wise data partitioning.

Table 2 also presented area and timing trends of different gran-
ularity for the column-wise scheme. When assigning one block
RAM to one column, the design takes the shortest execution time,
but requires the greatest hardware resources. When more columns
are packed into one block RAM, the requirements on hardware
decreased. However, the execution time increases linearlyto the
number of columns in one block RAM.

To evaluate different partitioning schemes, we also obtained
performance results for row-wise partitions, as shown in Table 1,
we found more interesting results. In the term of numbers of clock
cycles, the differences are really small. However, if we check the
achieved maximal frequencies, or the latencies for the whole bank
of correlators, designs of the column-wise partitioning scheme
are 30-50% faster than those of the row-wise partitioning scheme.
Deeper analysis showed that the performance gaps are mainlydue
to the great amount of global communications.

Data # of Pre-layout Timing Post-layout Timing
per BRAM cycles F(MHz) L(ns) F(MHz) L(ns)

1 row 184 140.5 1309 133.5 1378
4 rows 710 157.0 4520 129.4 5486
8 rows 1413 147.1 9602 138.7 10183

Table 1. Experimental results of row-wise partition

Data # of Pre-layout Timing Post-layout Timing
per BRAM cycles F(MHz) L(ns) F(MHz) L(ns)
1 column 178 214.7 829 171.6 1037
4 columns 706 205.0 3436 178.2 3961
8 columns 1410 198.6 7099 161 8752

Table 2. Experimental results of column-wise partition

In summary, different partitions of the arrayS deliver a wide
variety of candidate solutions. Synthesized designs showed that
data partitioning and storage assignment not only affect the num-
ber of clock cycles, but also affect the achieved clock frequencies.
Generally speaking, the design with less remote accesses orless
communications could achieve better performance.



5.2 Efficient communication: Sobel

Sobel edge detection applies horizontal and vertical Sobel
edge detection masks to an input image. This application is a
2-level nested loop. A number of image application have the
same control structure and memory access patterns, such as tex-
ture smoothing, and convolution [3].

for (i=1; i<N-1; i++)
for (j=1; j<M-1; j++){

...
i00=in[i-1][j-1]; i01=in[i-1][j]; i02=in[i-1][j+1];
i10=in[i ][j-1]; ; i12=in[i ][j+1];
i20=in[i+1][j-1]; i21=in[i+1][j]; i22=in[i+1][j+1];
...

}

Figure 2. Memory accesses in Sobel edge detection

Based on results from code analysis stage, we could not obtain
a communication-free partition. Now the task is to find a commu-
nication efficient partition which could meet design goals.

Table 3 and 4 showed timing results for two Sobel edge detec-
tion with different input sizes. If we only partition the data arrays,
the number of clock cycles are reduced. However, the maximal
frequencies after placement and routing are slower than ourde-
sired frequencies. In order to reduce memory accesses, optimiza-
tion techniques such as scalar replacement for array elements and
buffer insertion for data prefetching are utilized. In the smaller
design, we finally achieve the 150 MHz design goal, and with a
46x speedup compared to the original design.

256× 8 # of Pre-layout Timing Post-layout Timing
Sobel cycles F(MHz) L(ns) F(MHz) L(ns)

original 12,196 159.5 76,481 152.2 80,444
partitioned 2,032 150.4 13,514 140.7 14,445

+scalar replacement 771 166.1 4,642 145.7 5,291
+prefetching 263 185.0 1,421 150.8 1,744

Table 3. Comparing optimization techniques (1)

256× 16 # of Pre-layout Timing Post-layout Timing
Sobel cycles F(MHz) L(ns) F(MHz) L(ns)

partitioned 2,032 145.9 13,925 105.6 19,155
+scalar replacement 7,71 153.4 5,026 118.2 6,522

+prefetching 263 185.0 1,421 125.9 2,088

Table 4. Comparing optimization techniques (2)

In summary, different optimization techniques could be uti-
lized to increase memory bandwidth, reduce memory access, and
improve overall performance. When the sizes of designs increase,
it becomes more difficult to achieve design goals since it lacks the
support from down-stream tools, especially physical design tools.

6 Concluding Remarks

This work showed that a data and iteration space partition-
ing approach integrated with existing architectural-level synthesis
techniques could parallelize input designs, and dramatically im-
prove system performance or system throughput. Experimental
results indicated that partitioned designs achieve much better per-
formance.

In future work, we plan to investigate analysis and transfor-
mation techniques to deal with heterogeneous architectures and
generate heterogeneous partitions. It will also be interesting to
handle irregular iteration space and control constructs initeration

bodies. Furthermore, we wish to integrate layout information dur-
ing our architectural-level synthesis. It would be promising to
obtain more accurate estimation of interconnect delay and direct
physical design tools using our architectural-level synthesis.

References

[1] R. Allen and K. Kennedy.Optimizing Compilers for Modern Archi-
tectures. Morgan Karfmann Publishers, San Francisco, CA, 2002.

[2] K. Bondalapati and V. K. Prasanna. Reconfigurable Computing Sys-
tems.Proc. of the IEEE, 90(7):1201–17, July 2002.

[3] R. C. Gonzalez and R. E. Woods.Digital Image Processing, 2nd
Edition. Prentice Hall, Englewood Cliffs, NJ, 2002.

[4] S. Haykin. Adaptive Filter Theory, Fourth Edition. Prentice Hall,
Englewood Cliffs, NJ, 2001.

[5] R. Kastner, A. Kaplan, and M. Sarrafzadeh.Synthesis Techniques
and Optimizations for Reconfigurable Systems. Kluwer Academic,
Boston.

[6] S. Pande. A Compile Time Partitioning Method for DOALL Loops
on Distributed Memory Systems. InProceedings of 1996 Interna-
tional Conference on Parallel Processing, 1996.

[7] S. Pande and D. P. Agrawal, editors.Compiler Optimizations for
Scalable Parallel Systems: Languages, Compilation Techniques,
and Run Time Systems. Springer, Heidelberg, Germany, 2001.

[8] J. Ramanujam and P. Sadayappan. Compile-time Techniques for
Data Distribution in Distributed Memory Machines.IEEE Trans-
actions on Parallel and Distributed Systems, 2(4):472–82, October
1991.

[9] K.-P. Shih, J.-P. Sheu, and C.-H. Huang. Statement-Level
Communication-Free Partitioning Techniques for Parallelizing
Compilers. InProceedings of the 9th Workshop on Languages and
Compilers for Parallel Computing, 1996.

[10] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, Redwood City, CA, 1996.


