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Abstract

Network Intrusion Detection and Prevention Sys-
tems have emerged as one of the most effective ways
of providing security to those connected to the net-
work, and at the heart of almost every modern in-
trusion detection system is a string matching algo-
rithm. String matching is one of the most critical
elements because it allows for the system to make de-
cisions based not just on the headers, but the actual
content flowing through the network. Unfortunately,
checking every byte of every packet to see if it matches
one of a set of ten thousand strings becomes a compu-
tationally intensive task as network speeds grow into
the tens, and eventually hundreds, of gigabits/second.

To keep up with these speeds a specialized device is
required, one that can maintain tight bounds on worst
case performance, that can be updated with new rules
without interrupting operation, and one that is effi-
cient enough that it could be included on chip with ex-
isting network chips or even into wireless devices. We
have developed an approach that relies on a special
purpose architecture that executes novel string match-
ing algorithms specially optimized for implementation
in our design. We show how the problem can be solved
by converting the large database of strings into many
tiny state machines, each of which searches for a por-
tion of the rules and a portion of the bits of each rule.
Through the careful co-design and optimization of our
our architecture with a new string matching algorithm
we show that it is possible to build a system that is
10 times more efficient than the currently best known
approaches.

1 Introduction

Computer systems now operate in an environment
of near ubiquitous connectivity, whether tethered to
a Ethernet cable or connected via wireless technol-
ogy. While the availability of always on communica-
tion has created countless new opportunities for web
based businesses, information sharing, and coordina-
tion, it has also created new opportunities for those
that seek to illegally disrupt, subvert, or attack these

activities. With each passing day there is more criti-
cal data accessible over the network, and any publicly
accessible system on the Internet is subjected to more
than one break in attempt per day. Because we are
all increasingly at risk there is widespread interest
in combating these attacks at every level, from end
hosts and network taps to edge and core routers.

Given the importance of protecting information
and services, there is a great deal of work from the se-
curity community aimed at detecting and thwarting
attacks in the network [19, 28, 6]. Intrusion Detec-
tion Systems (IDS) and Intrusion Prevention Systems
(IPS) have emerged as some of the most promising
ways of providing protection on the network, and the
market for such systems is expected to grow to $918.9
million by the end of 2007 [18]. Network based intru-
sion detection systems can be categorized as either
misuse based or anomaly based. Both systems re-
quire sensors that perform real time monitoring of
network packets, either by comparing network traffic
against a signature database or by finding out-of-the-
ordinary behavior, and triggering intrusion alarms. A
higher level interface provides the management soft-
ware used to configure, log, and display alarms gener-
ated by the lower level processing. These two parts,
working in concert, alert administrators of suspicious
activities, keep logs to aid in forensics, and assist in
the detection of new worms and denial of service at-
tacks. But it is at the lowest level, where data is
actually inspected, that the computational challenge
lays.

To define suspicious activities, most modern net-
work intrusion detection/prevention systems rely on
a set of rules which are applied to matching pack-
ets. A rule consists at minimum of a type of packet
to search, a string of content to match, a location
where that string is to be searched for, and an as-
sociated action to take if all the conditions of the
rule are met. An example rule might match pack-
ets that look like a known buffer overflow exploit in
a web server; the corresponding action might be to
log the packet information and alert the administra-



tor. Rules can come in many forms, but frequently
the heart of the rule consists of strings to be matched
anywhere in the payload of a packet. The problem is
that for the detection to be accurate, we need to be
able search every byte of every packet for a potential
match from a large sets of strings. Searching every
packet for all of these strings requires significant pro-
cessing resources and memory. The problem is that
for the detection to be accurate, we need to be able
to search every byte of every packet for a potential
match from a large set of strings !. Searching ev-
ery packet for all of these strings requires significant
processing resources, both in terms of the amount of
time to process a packet, and the amount of memory
needed. In addition to raw processing speed, a string
matching engine must have bounded performance in
the worst case 2. Due to the fact that rule sets
are constantly growing and changing as new threats
emerge, a successful design must have the ability to
be updated quickly and automatically all the while
maintaining continuous operation.

In order to address these concerns, we take an
approach that relies on a simple yet powerful spe-
cial purpose architecture working in conjunction with
novel string matching algorithms specially optimized
for that architecture. The key to achieving both high
performance and high efficiency is to build many tiny
state machines, each of which searches for a portion
of the rules and a portion of the bits of each rule. Our
new algorithms are specifically tailored towards im-
plementation in an architecture built up as an array
of small memory tiles, and we have developed both
the software and the architecture in concert with one
another. The result of our efforts is a device that
maintains tight worst case bounds on performance,
can be updated with new rules without interrupting
operation, has configurations generated in seconds in-
stead of hours, and is ten times more efficient that the
existing best known solutions.

Specifically, this paper makes the following re-
search contributions:

e We describe a novel configurable String Matching
Architecture that can store the entire Snort rule set
in only 0.4 MB and can operate at upwards of 10
Gbit/sec per instance.

e We present a novel String Matching Algorithm that
operates through the conjunction of many small
state machines working in unison that reduces the
number of required out-edges from 256 to as low as
2.

e Our machine is configured by a Rule Compiler
that partitions and bit-splits a finite state machine

1The rule set from Snort has on the order of 1000 strings
with an average length of around 12 bytes.

250 that a performance based attack cannot be mounted
against it [10]

(FSM) representation of the strings into a set of
small implementable state transition tables. The
compiler takes only on the order of seconds to com-
plete.

e We compare our design to the state of the art in
string matching algorithms and hardware based de-
signs. The key metric is the efficiency (perfor-
mance/area) and we beat the best existing tech-
niques by a factor of 10 or more.

e We propose a replacement update model that allows
non-interrupting rule update which can complete in
the order of seconds while FPGA based methods
generally require days or months to recompile rules.

The rest of the paper is laid out as follows. In
Section 2 we begin with a description of the string
matching architecture which implements the many
state machines and the way in which the algorithm
runs. The actual method of generating the state ma-
chines from a given rule set, the tradeoffs and heuris-
tics used to do so, and the details of our Rule Com-
piler implementation are all described in Section 3.
Section 4 presents an analysis of design in terms of
performance and efficiency and compares our work to
past efforts in the area. In Section 5 a discussion of
the related work is presented, and finally we conclude
with Section 6.

2 Architecture

Intrusion Detection/Prevention Systems (IDS or
IPS) play an increasingly important role in network
protection and at the core of most Network IDSs is
a computationally challenging problem because net-
work intrusion systems, require a deep packet inspec-
tion. Every byte of every packet must be examined
which means gigabytes of data must be searched each
and every second of operation. In this section we be-
gin by briefly describing the requirements that have
driven our design, the main ideas behind our string
matching technique, and the details of our architec-
ture.

2.1 IDS/IPS Requirements

In designing our system we have identified
the following requirements for Intrusion Detec-
tion/Prevention Systems (IDS/IPS).

Worst Case Performance: In order to check
incoming packets in real time, without degrading
the total throughput, Intrusion Detection/Prevention
Systems need string matching algorithms that can
keep up with this speed. More specifically, a robust
Intrusion Detection Systems should require that its
string matching algorithm have stringent worst case
performance, otherwise the worst case may be ex-
ploited by an adversary to either slow down the net-
work or to force the systems to not inspect some pack-



ets, which may include an attack. Neither of these
two choices is desirable.

Non-Interrupting Rule Update: Currently the
Snort rule set is updated roughly monthly but re-
searchers are currently working on systems that will
provide a real-time response to new attacks and
worms. In addition to performance requirements, we
also want an architecture that can be updated quickly
and that can provide continuous service even during
an update.

High Throughput per Area: The advantages of
small area are twofold. A design that is small enough
to be fit completely on chip consumes less resources
and can operate much faster than one that relies on
off chip memory. Furthermore, many designs use
replication to boost performance, and in these cases
efficiency becomes performance because of the sheer
number of copies you can fit onto a single die.

2.2 String Matching Engine

At a high level, our algorithm works by breaking
the set of strings down into a set of small state ma-
chines. Each state machine is in charge of recognizing
a subset of the strings from the rule set. The details
of the algorithm are presented in Section 3, but we
begin with a description of our architecture.

Our architecture is built hierarchically around the
way that the sets of strings are broken down. At
the highest level is the full device. Each device holds
the entire set of strings that are to be searched, and
each cycle the device reads in a character from an
incoming packet, and computes the set of matches.
Matches can be reported either after every byte, or
can be accumulated and reported on a per-packet ba-
sis. Devices can be replicated, with one packet sent
to each device in a load balanced manner, to multiply
the throughput, but for our purposes in this paper we
concentrate on a single device.

Inside each device is a set of rule modules. The
left side of Figure 1 shows how the rule modules in-
teract with one another. Each rule module acts as a
large state machine, which reads in bytes and outputs
string match results. The rule modules are all struc-
turally equivalent, being configured only through the
loading of their tables, and each module holds a sub-
set of the rule database. As packet flows through
the system, each byte of the packet is broadcast to
all of the rule modules, and each module checks the
stream for an occurrence of a rule in its rule set. Be-
cause throughput, not latency, is the primary concern
of our design the broadcast has limited overhead be-
cause it can be deeply pipelined if necessary.

The full set of rules is partitioned between the rule
modules. The way this partitioning is done has an
impact on the total number of states required in the

3

machine, and will hence have an impact on the total
amount of space required for an efficient implemen-
tation. Finding an efficient partitioning is discussed
in Section 3. When a match is found in one or more
of the rule modules, that match is reported to the
interface of the device so that the intrusion detec-
tion system can take the appropriate actions. It is
what happens inside each rule module that gives our
approach both high efficiency and throughput.

If we look into what goes into each rule module,
we find that each is made up of a set of tiles. The
right hand side of Figure 1 shows the structure of each
and every tile in our design. Tiles, when working to-
gether, are responsible for the actual implementation
of a state machine that really recognizes a string in
the input. If we just generated a state machine in
a naive manner, each state may transition to one of
potentially 256 possible next states at any time. If
we were to actually keep a pointer for each of these
256 possibilities, each node would be on the order
a kilobyte. A string of length [ requires [ states 3,
and then if you multiply that by the total number
of rules you quickly find yourself with far more data
than is feasible to store on-chip. So the trade-off is
either store the state off-chip and loose your bounds
on worst case performance, or find a way to compress
the data is some way. Past techniques have relied on
run length encoding and/or bit-mapping which have
been adapted from similar techniques used to speed
IP-lookup [27]. Our approach is different in that we
split the state machines apart into a set of new state
machines each of which matches only some of the bits
of the input stream. In essence each new state ma-
chine acts as a filter, which is only passed when a
given input stream could be a match. Only when all
off the filters agree is a match declared. While we
briefly describe the way the algorithm runs for the
purpose of describing our architecture here, a full de-
scription can be found in Section 3.

Each tile is essentially a table with some number
of entries (256 entries are shown in Figure 1), and
each row in the table is a state. Each state has two
parts. It has some number of next state pointers,
which encode the state transitions (4 possible next
states are shown and each is indexed by a different 2
bits from the byte stream), and it has a partial match
vector. The partial match vector is a bit-vector that
indicates the potential for a match for every rule that
the module is responsible for. If there are up to r
rules mapped to a rule module, then each state of
each tile will have a partial match vector of length
r bits (Figure 1 shows a module with r = 16). By
taking the AND of each of the partial match vectors
we can find a full match vector, which indicates that

3Some states can be shared by different strings, the total
number of states is however on the same order of magnitude.
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Figure 1: The String Matching Engine of the High Throughput Architecture. The left side is a full Device, comprised
of a set of Rule Modules. FEach rule module acts as a large state machine and is responsible for a group of rules, r
rules. Each rule module is made of a set of tiles (4 tiles are shown in this figure). The right side shows the structure
of a tile. Each tile is essentially a table with some number of entries (256 entries are shown in this figure) and each
row in the table is a state. Each state has some number of next state pointers (4 possible next states are shown) and
a partial match vector of length r. A rule module takes one character (8 bits) as input at each cycle and output the
logical AND operation result of the partial match vectors of each tile.
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Figure 2: Non-interrupting Update

all of the partial match vectors are in agreement and
that a true match for a particular rule has been found.

Before accepting any input characters and at the
beginning of each packet, all tiles are reset to start
from state 0. Omn each cycle, the input byte is di-
vided into groups of bits (in the example the 8-bits
are divided into 4 groups of 2). Each tile then gets
its own group of bits. Each tile uses its own inter-
nal state to index a line in the memory tile, and the
partial match vector is read out along with the set
of possible state transitions. The input bits are used
to select the next state for updating, and the partial
match vector is sent to an AND unit where it is com-
bined with the others. Finally all full match vectors
for all modules are concatenated to indicate which of
the strings was matched.

2.3 Architectural support for Non-

Interrupting Update

A major weaknesses of past techniques which re-
lied on FPGA reconfiguration to encode the strings

to be matched is that when the rule database is to
be updated, the device needs to go offline. The Snort
database, and other proprietary signature databases,
have been changing at a rate of more than one rule
every days [27]. It is simply unacceptable to the end
user to have their network traffic either uninspected
or undelivered for minutes or even hours while the
rule database is recompiled and transfered to the de-
vice. This problem is only going to grow in impor-
tance in the coming years as more attacks are un-
leashed and as automated systems are put in place
that can detect new worms and denial of service at-
tacks and generate useful signatures at real time.
Our architecture can easily support this functional-
ity through the addition of a temporary tile used for
updates.

Figure 2 shows the addition of an new rule mod-
ule which acts as a temporary state machine. The
rule set is already partitioned into several smaller
parts that each fit onto a rule module. To replace
the contents of one rule module, the rules are first
updated and copied to the temporary rule module.
At the start of the next packet, the control bit for
the module about to be overwritten is set to override
with the results from the replacement rule module.
The main rule module can then be written (with the
same contents as the replacement module) with no
stop in service. When the main rule module is com-
pletely updated, the control bit is switched back and
the replacement module is wiped clean and overwrit-
ten with the state machine for the next module in
line. Writing to an entire rule module will take on



the order of 1.6 microseconds, and to finish an en-
tire update would take less than 108 microseconds.
While for our architecture the procedure for updat-
ing rules is very straightforward, this is by design and
most other techniques we have examined require at
least some amount of downtime to performance an
update.

3 Algorithm Mapping

In Section 2 we presented the architectural issues
in implementing a high speed string matching engine,
and in this section we describe the software system,
also referred to as the rule compiler, which makes it
work.

Readers may already be familiar with efficient algo-
rithms for string matching such as Boyer-Moore (7],
which are designed to find a single string in a long
input. Our problem is slightly different, as we are
searching for one of a set of strings from the input
stream. While simply performing multiple passes of a
standard one-string matching algorithm will be func-
tionally correct, it does not scale to handle the tens of
thousands of strings that are required by modern in-
trusion detection systems. Instead, the set of strings
that we are looking for can be folded together into
a single large state-machine. This method, the Aho-
Corasick algorithm [2], is what is used in the fgrep
utility as well as in some of the latest versions of the
Snort [19] network intrusion detection system.

3.1 The Aho-Corasick Algorithm

The essence of the Aho-Corasick algorithm involves
a pre-processing step which builds up a state machine
that encodes all of the strings to be searched. The
state machine is generated in two stages. The first
stage builds up a tree of all the strings that need to
be identified in the input stream. The root of the tree
represents the state where no strings have been even
partially matched. The tree has a branching factor
equal to the number of symbols in the language. For
the Snort rules, this is a factor of 256 because snort
can specify any valid byte as part of a string 4. All the
strings are enumerated from this root node, and any
strings that shares a common prefix will share a set
of parents in the tree. The left hand side of Figure 3
shows an example Aho-Corasick state machine con-
structed for keywords “he”, “she” “his”, and “hers”.
To match a string, you start at the root node and
traverse edges according to the input characters ob-
served. The second half of the preprocessing is insert-
ing failure edges. When a string match is not found
it is possible for the suffix of one string to match the
prefix of another. To handle this case failure edges are
inserted which shortcut from a partial match of one

4this feature can be used to identify a particular 4 byte IP
address for example

string to a partial match of another. In Figure 3 we
show the full state machine with failure edges (how-
ever failure edges that point back to the root node
are not shown for clarity).

Let us suppose that the input stream is “hxhe”,
which would match the string “he”. Traversal starts
at state 0, and then proceeds to state 1 (after read-
ing “h”), 0 (after reading “x”), back to 1 (after read-
ing “h”), and finally ending at state 2. State 2 is
an accepting state and matches the string “he”. In
the Aho-Corasick algorithm there is a one-to-one cor-
respondence between accepting states and strings,
where each accepting state indicates the match to an
unique string.

3.2 Implementation Issues

The Aho-Corasick algorithm has many positive
properties, and perhaps the most important is that
after the strings have been preprocessed the algo-
rithm always runs in time linear to the length of the
input stream, regardless of the number of strings. It
is impossible for a crafty adversary to construct an in-
put stream that will cause an IDS to lag behind the
network resulting in either reduced traffic speed or
uninspected data. The problems with the algorithm
lie in realizing a practical implementation, and the
problems are two-fold. Both problems stem from the
large number of possible out edges that are directed
out of each and every node. Implementing those out
edges requires a great deal of next pointers, 256 for
each and every node to be exact. In our simple exam-
ple, we only have 4 possible characters so it is easier,
but in reality encoding these potential state transi-
tions requires a good deal of space. If we were just to
encode the state transitions as 32-bit pointers the size
of the rule database would balloon to 12.5 megabytes,
far larger than what could economically fit on a chip.
This brings us to the second problem which is the se-
rial nature of the state machine. The determination
of which state we are to go to is strictly dependent on
that state that we are currently in. The determina-
tion of the next state from the current state forms a
critical loop, and because that next state could be one
of 256 different memory locations throughout a large
data structure it is very difficult to make this fast.
While in [27] Tuck et al. show how these structures
could be compressed, they still take on the order of
megabytes and the compression greatly complicates
the computation that needs to be performed.

To examine the behavior of string matching on real
data, we generated the Aho-Corasick state machine
for a set of strings used for actual intrusion detection
and packet filtering. For this we used the default
string set supplied with Snort, which includes, as
part of its rule base, a set of over 1000 suspicious



Figure 3: Extracting bit-level parallelism from the Aho-Corasick algorithm by splitting the state machine into 8 parallel
state machines. The leftmost state machine is the Aho-Corasick state machine (D) constructed for strings “he”, “she”,
“his” and “hers”. Next state pointers pointing back to State 0 is not shown in the graph because it is unrealistic and
also unclear to show all of the 256 next state pointers for each state. The other two state machines are two binary

state machines Bz and Ba among the eight state machines, Bo, B1 ...

, and By, split from D. State machine Bz is

only responsible for Bit 3 of any input character, while state machine Ba is only responsible for Bit 4 of any input

character.

strings resulting in an Aho-Corasick state machine
with around 10,000 nodes.

3.3 Splitting Apart the State Machines

While Aho-Corasick state machines can be
searched in constant time per character, a real
implementation requires large amounts of storage
and requires a memory reference for each character
searched. Storing each state as an array of 256 next
pointer is wasteful. Furthermore there is a high vari-
ation in the number of next pointers that any given
state needs. Nodes near the root of the tree need
more than 200 next pointers, while nodes near the
leafs need only 1 or 2. We need a way of breaking
this problem into a set of smaller problems each of
which has more regular behavior.

To solve this problem, we split the state machines
apart into a new set of 8 state machines. (8 is not
optimal which we will show in Section 4.) Each state
machine is then responsible for only one of the eight
bits of an input character.

Three advantages of this technique are:

e The split machines have exactly two possible next
states (not a large and variable number as in the
original design). This is far easier to compact into
a small amount of memory.

e The 8 state machines are loosely coupled, and they
can be run independently of one another (assuming
we can merge the results back together).

e Each state machine is essentially a binary tree with
back edges. This means we can speed the tree up by
traversing multiple edges at a time (as in a multi-bit
trie [23]).

From the state machine D constructed in Aho-
Corasick Algorithm, each bit of the 8-bit ASCII code
is extracted to construct its own Binary State Ma-
chine, a state machine whose alphabet contains only
0 and 1. Let By, B, ..., B7 be these state machines
(1 per bit). For each bit position i we take the fol-
lowing steps to build the binary state machine B;.
Starting from the start state of D, we look at all of
the possible next states. We partition the next states
of D into two sets, those that come from a transition
with bit ¢ set to 1, and those which transition with
bit ¢ set to 0. These sets become two new states in
B;. This process is repeated until we fill out all of the
next states in the binary state machine in a process
analogous to subset construction (although our bi-
nary state machines can never have more states that
D). Each state in B; maps to one or more states in
D.

After the construction, the mapping to non-output
states of D are not needed any more and so can be
eliminated from the resulting state machines. On the
other hand, the mapping to output states of D still
needs to be stored for all states. Because each output
state in D corresponds to a string in the rule set,
these lists of output states for a state a in binary state
machine indicate strings matched when these states



are visited. A resulting state in B; is an accepting
state if it maps back to any of the accepting states of
D. A small bit-vector is kept for each state in binary
state machines, indicating which of the strings might
be matched at that point. Only if all of the bit-
vectors agree on the match of at least one string has
a match actually occurred.

Figure 3 shows two of the binary state machines
generated from the state machine on the left. The
state machine in the middle is state machine B3 which
is only responsible for bit 3 of the input and the state
machine on the right is state machine B4. As you
can see, state 2 in the original state machine maps to
state 3 and 6 in B3 and state 4, 6, and 8 in Bj.

Now let us see how a binary state machine is con-
structed from an Aho-Corasick state machine by con-
structing Bs in this concrete example. Starting from
State 0 in D, which we call D-State 0, we construct
a State 0 for Bz, which is called Bs-State 0, with a
state set {0}. Numbers in a state set are D-State
numbers. We examine all states kept in the state set
of B3-State 0, which is D-State 0 in this example, and
see what D-States can be reached from them reading
in input value “0” and “1” in bit 3 respectively. For
example, D-State 0 and D-State 1 are reachable from
D-State 0 reading in input value “0”. A new state,
Bs-State 1, with state set {0,1,} is then created. Sim-
ilarly, Bs-State 2 with state set {0,3} is created as the
next state for Bs-State 0 for input value “1”. Then
Bs-State 3 with state set {0,1,2} is created as the
next state for Bs-State 1 for input value “0”. The
next state for Bs-State 1 for input value “1” is an
existing state Bs-State 2, then there is no need to
create a new state. Bgs is constructed by following
this process until next states of all states are con-
structed. After the construction, non-output states
kept in state sets, such as 0, 1 and 3, are eliminated,
resulting in Bs shown in the middle of Figure 3.

3.4 Finding a Match

Let us examine the search processes in both the
original Aho-Corasick state machine and in the cor-
responding binary state machines for the example in-
put stream “hxhe” used before. Reading in “hxhe”,
D will be traversed in the order of State 0, State 1,
State 0, State 1 and State 2. The last state traversed,
namely State 2, indicates the match of string “he”.
Because each state machine takes only one bit at a
time, we will need the binary encoding of this input
shown in Table 1. Binary state machine B3 will see
only the 3rd bit of the input sequence, which will be
0100. Looking to binary state machine Bs, the state
traversal for this input will be State 0, State 1, State
2, State 4 and State 6. State 6 maps to states {2,5}
in D. Similarly, the binary state machine By will see
the input 1110, and will be traversed in the order of

Char |0 |1 |2 |3 |4|5|6|7
h O(1}(1({0}1}(0]01]O0
X O(1|1|(1}]1(0]0]0
h O(1}(1({0}1(0]01]O0
e oOfrj1fojof1j0f|1

Table 1: Binary Encoding of input stream “hzhe”

State 0, State 2, State 5, State 5 and State 8, whose
state set is {2,7}. The actual output state is the in-
tersection of state sets of all 8 binary state machines.
In this example, the intersection is State 2, which is
the same as the result of Aho-Corasick. In the archi-
tecture described in Section 2 this intersection step is
completed by taking the logical AND of bit vectors
in the on chip interconnect.

The intersection of state sets can be empty, which
means there is no actual output but there is partial
output for some binary state machines. Let us take
input “xehs” for example. The ASCII encoding of bit
3 and bit 4 of “xehs” is 1001 and 1010 respectively.
For state machine Bg, the state machine in the middle
of Figure 3, the traversal of states is State 0, State 2,
State 4, State 6 and State 5, whose state set is {7}.
For state machine By, the rightmost state machine in
Figure 3, the resulting state set is {2,5} of State 6.
The intersection of these two sets are empty, hence
no string is matched.

3.5 Partitioning the Rules

If we put all of the more than 1,000 strings into
a big state machine and construct the correspond-
ing bit-split state machines, a partial match vector of
more than 1,000 bits, most of which are zeros, will be
needed for each entry in tiles described in Section 2.
This is a big waste of storage. Our solution to this
problem is to divide the strings into small groups so
that each group contains only a few strings, e.g. 16
strings, so that each partial match vector is only 16
bits. In this way each tile will be much smaller and
thus faster to be accessed.

Many different grouping techniques can be used for
this purpose and can result in various storage in bits.
In order to find the best dividing methods, we want
to consider the following constraints. The number of
bits of partial match vector determine the maximum
number of strings each tile can handle. In addition,
each tile can only store a fixed number of states, i.e.
256 states. We want to make full use of the storage of
both partial match vectors and state entries, which
means we want to pack as many strings in without
going over 16 strings or 256 states. Otherwise, we will
have to divide this group into two to let the number
of states fit, resulting in wasted partial match vectors.
By analyzing the distribution of strings in Snort rule
set, we find that generally 16 strings require approx-
imately 256 states. And a more detailed discussion
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Figure 4: The state transitions of input stream “hxhe” on the rule module for strings “he”, “she”, “his” and “hers”.
Only the first 4 bits of 16-bit Partial Match Vectors (PMV) are shown in this diagram because the rest of 12 bits are
all zeros for only 4 strings are mapped onto the Rule Module. Here instead of splitting into 8 state machines, we split
the Aho-Corasick state machine into 4 state machines, each of which is responsible for 2 bits of an input byte. The
Full Match Vector output on Cycle 3+P, 1000, shows that by this cycle string “he” is matched.

about selecting the size of each tile can be found in
Section 4.

A good solution is therefore to sort all strings lexi-
cographically and then divide them sequentially into
groups so that all the common prefixes can share
states in state machines and thus use less states in
total. While this is not the optimal solution, it beats
the two alternatives, dividing by length and dividing
randomly. The dividing by length method would con-
sume 21.9% more states and 13.6% more groups than
the method we use, and the random grouping tech-
nique would use 12.1% more states and 4.5% more
groups.

3.6 Filling the Tables

Until now, we have shown how to break a rule
set into a set of groups, the way to construct Aho-
Corasick state machines for each group, and the algo-
rithm to split these Aho-Corasick state machines into
new sets of state machines. The final step to mapping
a rule set onto our architecture is then filling the ta-
bles in all modules. As described in Section 2.2 , each
entry in a table is for one state. The next state point-
ers and the partial match vector for state z is stored
in entry z. Figure 4 shows an example of 4 state ma-
chines split from the Aho-Corasick state machine in
Figure 3 mapped onto our architecture. Here instead
of splitting into 8 state machines, we split the Aho-
Corasick state machine into 4 state machines, which
is optimal in terms of storage which we will show in

Section 4. Each of these 4 state machines is responsi-
ble for 2 bits of an input byte. Still taking “hxhe” as
an example input stream, the transitions of all of the
4 state machines starting from state 0 are shown by
arrows. At each cycle, a partial match vector is pro-
duced by each tile, and the logic AND of these partial
match vectors are outputted. According to different
requirements of Intrusion Detection/Prevention Sys-
tems, our architecture can output only after an entire
packet is scanned instead of at each cycle.

4 Analysis of Design

Now that we have presented our string matching
architecture and the algorithm used to construct its
configuration from a set of strings, we now present
an analysis of several important design options and
compare against prior work.

4.1 Theoretical Optimal Module Sizes
and Group Sizes

As we mentioned in the prior section, we can di-
vided the Aho-Corasick state machine into 8 binary
state machines, each of which processes only 1 bit at
a time. While 8 binary state machines is the easiest
to understand, we could also split the Aho-Corasick
algorithms into 4 state machines, each of which pro-
cesses 2 bits at a time, or 2 state machines that pro-
cess 4 bits at a time. A different way to divide up
the original state machine is to partition the strings
into groups of different sizes, such as 8, 16, 32, 64 and
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Table 2: Optimal Module Sizes. [log2(gL)] is denoted by
p for clarity.

O =~ DB

128 strings per group. We would like to know which
combination of the two parameters, module size n
(the number of state machines per rule module) and
group size g (the number of strings per group), is
the best in terms of total storage in bits among all
possible combinations.

Given a rule set of S strings, each of which has L
characters per string on average (length), the total
number of bits our architecture requires is approxi-
mately,

Tog = n[5 12100 ([logy(gL) ]2 + g)

From this formula, we can see that the smaller the
group size g is the smaller T}, 4 is.

The effect of n on T}, 4 is not that direct from the
formula above. We can see this effect more clearly if
we plug numerical n into T}, ;. The concrete results
after variable n is plugged in are shown in Table 2.
Fanout is the number of next state pointers for each
state.

We can see from Table 2 that T} 4 is minimum when
the constraint g < 8p is satisfied, which is always true
in practice when r is not very big, say less or equal
to 64.

4.2 Practical Optimal Module Sizes and
Group Sizes

We have obtained the theoretical optimal param-
eters for our architecture from the previous section.
We are now going to confirm some of these results and
point out some of the problems of them and obtain
the optimal parameters in practice.

There are three problems with the theoretical anal-
ysis above. First, the approximation of the number
of rule modules used in T, 4, [%], is for the ideal
case and in reality more rule modules may be needed.
Second, p = [loga(gL)] is used as the approximation
of the number of bits to encode each state. If the
longest string is longer than gL, requiring more than
gL states, more bits than p will be needed to do the
encoding. The length of the longest string in the
Snort rule set we use is between 64 and 128, which
means at least 7 bits are needed. In short, p values
that is not large enough to accommodate the longest
string have to be eliminated. Finally, the total stor-
age consists of the total number of bits and some
circuit overhead, e.g. decoder and multiplexer. The
more groups the strings are divided into, the more
overhead the entire system will have.
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Figure 5: Practical Memory Comparison for Different
Fan-out and Group Sizes. X-axis is the number of strings
per rule module, also referred to as group sizes, on a log-
arithmic scale. The four lines correspond to data for four
different fanout.

We tune the two parameters on the real Snort rule
set and these practical results are shown in Figure 5.
The X-axis is the group sizes g on a logarithmic scale,
and the y-axis is memory in megabytes. Four lines in
the figure correspond to data for four different fanout.
We can see from the graph that the line for fanout
256 is prominently high above in the graph, which in-
dicates that the traditional way with state machines
with 256 next state pointers use way more storage
than our bit-split state machines. Even if the group
size is as small as 8, 3.74MB are needed, which is
more than 7 times of the storage of the other fanout.
The fact that all lines increase monotonically con-
firms that the smaller the group size the smaller the
total memory needed. We can see that the two best
points are for fanout 4 and group size 8 and group size
16, which only use 0.4MB to store the entire Snort
rule set. We chose group size 16 which allows for
longer strings, with the concern that string length is
growing and larger size causes less overhead.

4.3 Detailed Throughput and Area Com-
parison

As we mentioned in Section 2, IDS/IPS have three
main requirements on string matching algorithms,
which are worst case throughput, non-interrupting
update and area efficiency. So here we compare
these three requirements on our design and a num-
ber of other designs. In Section 2, we have described
our architectural support for incremental and non-
interrupting update, therefore we concentrate on the
other two requirements, the worst case throughput
and area efficiency, as well as performance per area
(Throughput*Characters/Area) in the rest of this
section.

From Table 3, we can see that our design can
achieve worst case throughput of over 10 Gbit/sec



even if only 1 byte is read in at each cycle time,
while the best of all FPGA-based methods we ex-
amined can only achieve throughput over 3 Gbit/sec
with this read-in rate. Even the smallest through-
put of our design is over 8 Gbit/sec with a great in-
crease in area efficiency and performance per area. In
addition to throughput, we do actual area efficiency
(in char/mm?) comparison among different designs.
We explore tradeoffs in SRAM memory bank sizes
using a modified version of CACTI 3.2 [21]. Area
results of FPGA-based methods are calculated from
the number of LUTs and area needed by each LUT
and are normalized to the same technology (0.13
um). Our design achieves area efficiency of 320.972
characters/mm?2, which is more than 4 times of that
of the best FPGA-based designs examined. The per-
formance per area of our design is near 12 times of
that of the best examined FPGA-based methods.

Figure 6 shows the efficiency comparison of our bit-
split FSM (Finite State Machines) design and FPGA-
based designs. The X-axis is the area efficiency, the
number of characters per square millimeter can sup-
port. The Y-axis is the throughput in Gbit/sec. All
points on the same dashed line in the figure have the
same performance per area value. Dashed lines on the
upper right part of the figure have higher performance
per area value. So the points on the upper right part
denote more efficient designs. We can clearly see that
even the least efficient configuration of our bit-split
FSM design beats the best FPGA-based designs ex-
amined and most of the bit-split FSM design are far
better than these FPGA-based designs.

Our method is also better than the best software
method we examined. Tuck et al. [27] optimized the
Aho-Corasick algorithm by looking at bitmap com-
pression and path compression to reduce the amount
of memory needed to 2.8MB and 1.1MB respectively,
which are still at least about 3 times of that of our
design, which is only 0.4MB.

5 Related Work

Recently there has been a flurry of work related to
string matching in many different areas of computer
engineering. This work can be broadly broken down
by the target of its intended implementation, either in
software, or in an FPGA. While we could not hope to
provide a comprehensive set, we attempt to contrast
our work with several key representatives from each
area.

Software-based: Most software based tech-
niques concentrate on the reducing the common case
performance. Boyer-Moore [7] is a prime exam-
ple of such technique, as it lets its user search for
strings in sub-linear time if the suffix of the string to
be searched for appears rarely in the input stream.
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Figure 6: Efficiency (Throughput*Char/Area) Compari-
son of String Matching Designs. Each dashed line is ag-
gregation of all points that have the same performance per
area value. The points on the upper right part denote more
efficient designs. We can clearly see that even the least ef-
ficient configuration of our bit-split FSM design beats the
best FPGA-based designs examined and most of the bit-
split FSM design are far better than these FPGA-based
designs.

While Boyer-Moore only searches for one string at
a time, Fisk and Varghese [12] present a multiple-
pattern search algorithm that combines the one-pass
approach of Aho-Corasick with the skipping feature
of Boyer-Moore as optimized for the average case by
Horspool. The work by Tuck, et al. [27] take a differ-
ent approach to optimizing Aho-Corasick by instead
looking at bitmap compression and path compression
to reduce the amount of memory needed.

FPGA-based: The area that has seen the most
amount of string matching research is in the recon-
figurable computing community [9, 15, 22, 13, 4, 5,
8, 11, 3]. Proponents of the work in this area argue
intrusion detection is a perfect application of recon-
figurable computing because it is computationally in-
tensive, throughput oriented, and the rule sets change
overtime but only relatively slowly. Because FPGAs
are inherently reconfigurable, the majority of prior
work in this area focuses on efficient ways to map the
a given rule set down to a specialized circuit that im-
plements the search. The configuration (the circuit
implemented on the FPGA) is custom designed to
take advantage of the nature of a given specific rule
set, and any change to the rule set will require the
generation of a new circuit (usually in a hardware
description language) which is then compiled down
through the use of CAD tools. The work of Sour-
dis and Pnevmatikatos [22] describes an an approach
that is specifically tuned to the hardware resource
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Description Throughput| Char/Area | Throughput* Notes
(Gbps) (1/mm?) Char/Area
(Gbps/mm?)
10.074 55.219 556.306 Bank size 64B
9.759 72.592 708.424 Bank size 128B
Bit Split FSM 9.326 156.569 1460.092 Bank size 256B
9.042 198.442 1794.316 Bank size 512B
(Group Size 16) 8.706 285.676 2487.194 Bank size 1024B
8.408 320.972 2699.210 Bank size 2048B
Sourdis and Pnevmatikatos [22] 9.708 23.482 227.968 4B/cc, Virtex2-6000
4.913 22.682 111.434 4B/cc,Spartan3-5000
3.080 64.990 200.170 Virtex2-3000, g=64
Pre-decoded 2.975 76.035 226.203 Virtex2-3000, g=128
CAMs 2.678 86.076 230.510 Virtex2-3000, g=256
2.086 56.709 118.295 Spartan3-1500, g=64
2.107 65.350 137.693 Spartan3-1500, g=128
2.000 75.851 151.703 Spartan3-1500, g=256
Hutchings et al. [15] 0.248 32.496 8.059 1B/cc, Virtex-1000
Regular 0.400 32.496 12.998 1B/cc, Virtex-1000
Expressions 0.396 33.353 13.208 1B/cc, Virtex-2000
Cho et al. [8] Dis. Comparators 2.880 ~ 7.911 ~ 22.785 1B/cc, Altera EP20K
Clark et al. [9] NFAs-Shared Decoders 0.800 ~ 74.733 ~ 59.787 1B/cc, Virtex-1000

Table 3: Detailed Comparison of Our Bit Split FSM Design and FPGA-based Designs. g = group size. 1B /cc = read

in one byte per cycle time.

available to devices available from Xlinix to provide
near optimal resource utilization and performance.
Because they demonstrate that there mapping is
highly efficient, and they compare against prior work
in the domain of reconfigurable computing, we com-
pare directly against their approach. Even though
every shift-register and logic unit is being used in a
highly efficient manner, the density and regularity of
SRAM are used to a significant advantage in our ap-
proach resulting in silicon level efficiencies of 10 times
or more. It should be also noted that most FPGA
based approaches are usually truly tied to an FPGA
based implementation because they lie on the under-
lying reconfigurability to adjust to new rule sets. In
our approach this is provided simply by updating the
SRAM and can be done in a manner that does not
require a temporary loss of service.

While in this paper we have explored an applica-
tion specific approach, it is certainly feasible that the
techniques we have developed and presented would
allow for the efficient mapping of string matching to
other tile based architecture. For example, instead of
using a specialized memory tile, if the tiles are pro-
grammable in a more general sense [16, 26, 24] the
optimizations we present would still be valuable. We
will make our rule compiler freely available for aca-
demic use once published.

6 Conclusions

While in this paper we examine the use of our tech-
nique strictly for intrusion detection with Snort, our
methodology is general purpose enough to be use-
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ful across a variety of other application domains.
String matching plays a crucial part in the execu-
tion of many spam detection algorithms (to match
strings which are most likely spam) [1]. In general,
any state machine problem where there is a high
fanout from each of the nodes can be improved dra-
matically. Run-time model checking, which work by
comparing executed state against a known model of
accepted computation is an example of one such ap-
plication which would benefit greatly. Even outside
of security we see opportunities for high-speed string
matching. For example, in peephole optimization,
we want to replace a sequence of instructions with
another functionally equivalent but more efficient se-
quence to achieve higher overall performance of pro-
grams [25, 17]. A sequence of instructions to be re-
placed can be of different lengths and can appear at
any location of programs. A faster string matching
algorithm could boost optimization speed and enable
the creation of simplified run-time optimizers for em-
bedded systems. There may also be opportunities
to apply our technique to well studied areas of IP
lookups [20], and packet classification [14].

As security becomes an increasingly important con-
cern, computer systems will almost certainly need to
change to help address this problem. While Network
Intrusion Detection and Prevention Systems are cer-
tainly not a silver bullet to the complex and dynamic
security problems faced by today’s system designers,
they do provide a powerful tool. Because network
IDSs require no update or modification to any of the
systems they help to protect, they have grown rapidly



in recent years both in adoption and power. In this
paper we present an architecture and algorithm that
is small enough to be included on existing network
chips as a separate accelerator, that is fast and ef-
ficient enough to keep up with aggressive network
speeds, and that supports always on capability with
tight worst case bounds on performance. To provide
this functionality we rely on the combination of a sim-
ple yet scalable special purpose architecture working
in tandem with a new specialized rule compiler which
can extract bit-level parallelism from the state of the
art string matching algorithms. In the end, we have
shown how the problem of high-speed string matching
can be addressed by converting the large database of
strings into many tiny state machines, each of which
searches for a portion of the rules and a portion of
the bits of each rule.
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