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ABSTRACT
A�ective virtual spaces are of interest in many virtual reality ap-
plications such as education, wellbeing, rehabilitation, and enter-
tainment. In this paper we present Auris, a system that attempts
to generate a�ective virtual environments from music. We use mu-
sic as input because it inherently encodes emotions that listeners
readily recognize and respond to. Creating virtual environments is
a time consuming and labor-intensive task involving various skills
like design, 3D modeling, texturing, animation, and coding. Auris
helps make this easier by automating the virtual world generation
task using mood and content extracted from song audio and lyrics
data respectively. Our user study results indicate virtual spaces
created by Auris successfully convey the mood of the songs used
to create them and achieve high presence scores with the potential
to provide novel experiences of listening to music.
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• Human-centered computing → Virtual reality; • Comput-
ing methodologies → Computer vision;
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1 INTRODUCTION
Light, color, texture, geometry and other architectural design el-
ements have been shown to produce predictable and measurable
e�ects on our minds, brains, and bodies [Ellard et al. 2015]. This
suggests spaces that can mirror or transform feelings or serve spe-
ci�c purposes like improving learning or enhancing wellbeing can
be designed. With Auris, we take a �rst step towards the design of
such spaces in virtual reality (VR) by attempting to automatically
generate virtual environments (VEs) that can a�ect our emotions.
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Few scholars dispute the claim that listeners recognize and re-
spond to emotions in music as indicated by �ndings from stud-
ies using behavioral, physiological, and neurological measures
[Gagnon and Peretz 2003; Krumhansl 1997; Mitterschi�thaler et al.
2007]. Studies measuring physiological e�ects of music have shown
changes in listeners’ heart rate, skin temperature, skin conductance,
and breathing. Listening to music has been shown to activate brain
areas previously known to be associated with emotional responses.
Expressive behavior such as laughing, crying, smiling as indicated
by observations and electromyographic (EMG) measures of facial
muscles are further evidence of emotive response to music [Juslin
2011]. Since our goal is to design emotive virtual spaces and music
universally evokes emotional responses, we chose to use music as
one of the inputs into our design pipeline.

A variety of consumer VR device setups are now available of-
fering di�erent features and capabilities. However, developing VR
applications remains a di�cult and time-consuming task that re-
quires specialist skills. Building 3D models of objects is the �rst step
of creating a VR world. To complete the design, one also needs to
add user interactions, specify materials for all objects in the world,
and consider lighting and other environmental elements. While the
models and textures de�ne the shape and look of a virtual space,
lights and color de�ne the mood of the 3D environment. Putting
material and lights together to create a world that is aesthetically
pleasing, regardless of realism, is thus a di�cult task and requires
knowledge and an aesthetic eye. One way to facilitate VE creation
is to do it automatically from 3D scans of real world spaces [Sra
et al. 2016].

In this paper we present Auris, a novel system to automatically
generate VR worlds from music. The input to our system is a song
(audio and lyrics) and the output is a VR world that encapsulates
the mood and content of the song in the design of the space, the
objects added, and the textures applied. Additional information
about objects and lighting comes from an online study where we
asked participants about their associations between places, objects,
lighting and moods. While the virtual world is generated and tex-
tured automatically, interactive elements and lighting are currently
added manually as needed. Using creative license we decided to
transform the generated virtual landscapes into psychedelic and
surreal places by pre-processing textures that are applied to objects
through a DeepDream like neural network.

A user experiences the generated VE immersively through an
HTC Vive head-mounted display (HMD). We demonstrate the out-
put of Auris with two generated worlds that correspond to the two
broad mood classes of happy and sad Table 1). The happy world is
generated from the song The Bird and the Worm by Owl City and
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the sad world from the song Blue Prelude by Nina Simone. Speci�c
contributions of our work include:

• The concept of using music data (audio and lyrics) to gen-
erate 3D virtual worlds.

• The implementation of the end-to-end pipeline to demon-
strate the concept of a data centric approach to automatic
generation of emotive VEs.

• Encoding of high level features like mood in the image
generation process.

We envision musicians and listeners creating and sharing immer-
sive musical experiences and in the future perhaps even allowing for
their individual personalities to be incorporated into the creation
process through physiological sensors.

2 RELATEDWORK
In this section we review prior literature on the a�ective dimensions
of architecture and music, and also explore data-driven content
creation methodologies along with image generation techniques.

2.1 Music, Space & Emotion
Our motivation for using music to create a�ective virtual spaces
comes from the fact that music can both convey emotion as well
as in�uence listeners’ emotions. There have been several studies
that indicate that listeners respond a�ectively to music [Krumhansl
1997; Witvliet and Vrana 2007]. In the literature, di�erent models of
emotion have been used that lend themselves to di�erent measure-
ment techniques. Categorical models make use of distinct labels
(e.g., happy, sad, etc.), whereas dimensional models are consistent
with the use of rating scales (often for arousal and valence) [Hunter
and Schellenberg 2010]. Background music is often used in �lm
or video games to induce mood and emotional context [Cohen
1999]. Paiva et al. describe the architecture for an agent that can
generate appropriate background music by matching the current
mood of a virtual environment [Casella and Paiva 2001]. Chen et al.
classify nature images into eight mood classes and extract emotion
from music audio. They match the classi�ed images with music
segments based on similar emotions to present the listener with
a 2D music visualization [Chen et al. 2008]. In Auris we attempt
to embed moods extracted from audio into the spatial and visual
design of a 3D virtual experience.

With the rise of a�ective computing and increased collaborations
between architects and neuroscientists, we are beginning to see
the design of real world spaces that evoke speci�c emotions or put
occupants in predetermined moods by measuring and predicting
the psychological e�ects of the built environment [Ellard et al. 2015].
The idea of using landscape design to promote the reintegration
of nature and the healing process [Marcus and Barnes 1999] has
been around for centuries. However, VEs have yet to be examined
in the emotional and psychological dimensions [Naz et al. 2017].
We believe architecture is an important connection between the
real and the virtual worlds. Auris takes a �rst step towards building
VEs that encapsulate emotions in the spatial and visual design and
in turn elicit emotional responses from users.

2.2 Data-driven Content Creation
With the availability of 3D models and sensors for generating 3D
point clouds, data-driven content creation has attracted much in-
terest in recent years. Di�erent techniques have been proposed
for purposes like scene arrangement [Fisher et al. 2012], modeling
[Chen et al. 2014], generation [Sra et al. 2016], and interactive syn-
thesis of virtual worlds [Emilien et al. 2015]. Aesthetiscope is an
artwork whose grid of colors are dynamically generated from a
poem or song, to illustrate the power and potential of going beyond
literal understandings of text [Liu and Maes 2005]. Many successful
procedural methods have been proposed for di�erent domains (ter-
rains, forests, cities, etc.), some have been combined to synthesize
complex virtual worlds [Smelik et al. 2011] with automatic material
suggestions for 3D scenes [Chen et al. 2015]. Our work shares the
same spirit of the above methods and uses song audio and lyrics to
generate 3D virtual worlds.

2.3 Mood-Based Image Generation
Even though there is a lot of work overall related to generative
models for image generation [Denton et al. 2015; Goodfellow et al.
2014; Mansimov et al. 2015], there is not much on image genera-
tion using moods or emotions. Most of the work associated with
images and moods has been done with discriminative models [Ng
and Jordan 2002]. In EmoNets [Kahou et al. 2016], the authors use
multimodal deep learning techniques to predict moods in videos.
For sentiment analysis in the same videos, they use progressively
trained and domain transferred Deep Networks by You et al. [You
et al. 2015]. In Auris, we build a generative model using mood and
text labels for the image generation task. The mood is extracted
from song audio data and text labels come from song lyrics. Our
generative model is a variant of the PixelCNN Decoders [van den
Oord et al. 2016] model and explores conditional image generation
with a new image density model.

3 AURIS OVERVIEW
We use music and data from users in an online study as input
for generating virtual spaces. To demonstrate our pipeline, two
VR worlds are generated corresponding to the two broad mood
classes of happy and sad which are among the most frequently felt
musical emotions according to survey studies [Juslin and Laukka
2004; Sloboda 1992; Zentner et al. 2008]. The Auris pipeline (Fig. 1)
consists of the following steps.

(1) Mood identi�ed by feeding Mel-frequency Cepstral Coef-
�cients (MFCC) features [Müller 2007] of the song audio
through a gated recurrent neural network (RNN) [Chung
et al. 2014].

(2) Noun-phrases are extracted from song lyrics using the
Stanford part-of-speech tagger. [Manning et al. 2014].

(3) Images are generated by providing mood + noun-phrase
pairs obtained in steps 1) and 2) to our Mood-Conditional
PixelCNN (MC-PixelCNN) model trained on our image
dataset.
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Figure 1: Illustration of the Auris pipeline to generate a VR world from one song. The input to the system is a song (audio and
lyrics). Noun-phrases are extracted from the lyrics and mood from the audio. The mood and noun-phrases e.g., ‘happy + bird’
are used to generate images using a trained MC-PixelCNN model. The generated images are fed through a DeepDream based
convolutional neural network to create surreal textures which are applied to objects in an automatically created VR world.
The noun-phrases are used to select objects from a tagged 3Dmodel dataset to add to the scene. Additional information about
which objects to add to the scene comes from data collected in User Study I.

(4) Textures are created by feeding the output from step 3)
into a DeepDream1 like deep convolutional neural network
(CNN) codenamed Inception [Szegedy et al. 2015].

(5) A genetic algorithm is used to procedurally create a VR
world where the objects are textured with the output from
step 4). Objects added to the VE are chosen from a database
of tagged 3D models. Search terms used are the noun-
phrases extracted from song lyrics in step 2) and feedback
from participants in User Study I.

To summarize, we extract the mood of a song from its audio
and the contents of a song from its lyrics. Using the mood and the
content, we generate 2D images with MC-PixelCNN, transform the
images into textures with DeepDream, and apply the textures to
objects in a 3D scene. The 3D scene is made up of objects from the
song lyrics and objects that users in our online study suggested
should be part of places associated with speci�c moods.

3.1 Song Audio
3.1.1 Mood Dataset. The �rst step of our approach consists

of accessing song audio data needed for mood prediction and for
building our image dataset (Section 3.3.1). We use the Million Song
Dataset (MSD) [Bertin-Mahieux et al. 2011] that comes as a collec-
tion of meta-data such as song names, artists and albums, together
with MFCC features , loudness, and tempo extracted with the The
Echo Nest API 2. Automatic emotion analysis from song audio is a
complex and challenging task, and beyond the scope of this work.
Instead, we use metadata tags added by millions of listeners through
a community voting process on LastFM3, to build our song-mood
dataset as described in [Van Zaanen and Kanters 2010]. To select
songs to be included in our dataset, we require each song to be
tagged at least twice with at least one mood tag to avoid retrieving
1https://en.wikipedia.org/wiki/DeepDream
2http://the.echonest.com/
3http://www.last.fm/

songs with no tags or with tags that are not synonyms of tags in
our list. This results in a subset of songs from the MSD with an
associated mood tag. While using LastFM tags simpli�es our task,
we acknowledge that the tags may not accurately represent emo-
tions in the songs, considering individual di�erences in expressing
and describing emotions. For mood classi�cation, similar to prior
work [Lu et al. 2006; Yang and Lee 2004; Yang et al. 2008], we adopt
Russell and Thayer’s arousal-valence emotion plane [Russell 2003;
Thayer 1990] as our taxonomy and de�ne four mood classes happy,
angry, sad, and calm, according to the four quadrants of the emotion
plane, as shown in Figure 2. These four mood classes (see Table 1)
are also among the most frequently felt emotions by music listeners
[Juslin and Laukka 2004; Sloboda 1992; Zentner et al. 2008].

Figure 2: Russell and Thayer’s arousal-valence emotion
plane. We de�ne four emotion classes according to the four
quadrants of the emotion plane.

3.1.2 Mood Classification. We need to predict the mood of any
given song in order to encode the mood information for generating
images for that song later in the pipeline. We extract MFCC features
for each music segment from the MSD. These features are fed into
an RNN to predict the broad mood category of a song (Table 1).

https://en.wikipedia.org/wiki/DeepDream
http://the.echonest.com/
http://www.last.fm/
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We use a gated recurrent network (GRU) [Chung et al. 2014] as it
is computationally less expensive than Long Short Term Memory
(LSTM) networks and performs better than a standard RNN [Cho
et al. 2014; Chung et al. 2014]. At each time step t , the GRU unit
takes a row of the MFCC feature segment xt and a hidden state ht
as input. The internal transition operations of the GRU are de�ned
as ht = GRU (xt ,ht−1) The �nal hidden state (hT ) is fed to a fully
connected layer followed by a softmax layer. The output of the
softmax layer is a distribution over our mood classes. To learn
the parameters of the network, we minimize the categorical cross
entropy loss using Adam Optimization [Kingma and Ba 2014]. After
the classi�er is trained using the mood dataset, we can input a new
song and get its mood as output.

Emotion recognition from music is a di�cult task because emo-
tions are subjective and a universal expression for emotion is not
feasible because descriptors for the same emotion can vary between
individuals. De�ning computational models of emotions is an active
area of research. MFCC, spectral shape, harmonic change or chro-
magram are common features used for mood classi�cation. Most
features are, however, better at predicting arousal than valence,
which is more challenging to predict [Kim et al. 2010].

Table 1: Mood classes according to the quadrants of the Rus-
sell and Thayer’s arousal-valence emotion plane (Fig. 2).

Mood Category Mood Tags

Angry
aggression, aggressive
angst, anxiety, anxious

anger, angry, choleric, fury

Happy

upbeat, gleeful, enthusiastic
cheerful, festive, jolly

happy, happiness, happy music

Sad
depressed, blue, dark, gloom

sad, sadness, unhappy
grief, heartbreak, sorrow

Calm meditative, contemplative, quiet
comfort, serene, peaceful

calm, soothe, mild

3.2 Song Lyrics
3.2.1 Lyrics Dataset. Using the subset of songs that have been

mapped to mood classes, we use the MSD to extract track informa-
tion like song name, artist name, trackID etc. This data is used to
perform an automated song search on Flash Lyrics4 where we look
for an exact match of artist and song name. Non-english song lyrics
are �ltered out. After this search we get a total of ∼75, 000 songs
that are mapped to a mood category and have full song lyrics.

3.2.2 Noun Phrase Extraction. We need to extract noun-phrases
from song lyrics to use with moods for building our image dataset.
Additionally, we use the extracted noun-phrases to select matching
3D models to be included in the VE generated from that song. Dur-
ing pre-processing, we remove stop words (e.g., the, is, at, which,
and on), other infrequent words, and tokenize the sentences. A
4https://www.�ashlyrics.com/lyrics

tokenizer splits text into a sequence of tokens, which roughly corre-
spond to “words". The Stanford POS tagger [Manning et al. 2014] is
employed to read the lyrics and assign parts of speech tags to each
token such as noun, verb, and adjective. We perform Noun-Phrase
or NP-Chunking on the tagged results of the POS. For example
the sequence, “the yellow dog" is tokenized and tagged by the POS
as “the (DT for determiner), yellow (JJ for adjective), and dog (NN
for noun)." The �nal list of words after de-duplication forms our
candidate descriptive labels. We use a threshold t (where t refers
to the number of songs in which a particular word or phrase oc-
curred in the entire lyrics dataset and was empirically established
as t = 10) to remove inherent noise in the dataset and noise gener-
ated from the chunking technique. The �nal list of noun-phrases
is used, along with mood data and the image dataset, to train our
MC-PixelCNN generative model.

3.3 Images
3.3.1 Image Dataset. We chose to build our own image dataset

as pre-existing datasets for visual mood analysis like the IAPS
[Machajdik and Hanbury 2010; Zhao et al. 2014] only encode mood
and we wanted the images to encode both mood and content from
lyrics. Combining the extracted phrases with broad mood classes
(for example, ‘happy-blue-sky’ or ‘sad-ocean’), we collect 25 images
per mood-phrase pair using Google Image Search to build our
dataset. Using the top 5000 words or phrases, we retrieve images
for two mood tags (happy, sad). Search terms that do not provide a
minimum of 100 results per mood-phrase pair are removed. Thus,
a dataset containing ∼250, 000 images is created where the images
represent song lyrics and mood combinations. Manual curation is
performed randomly on the collected images to verify the overall
quality of the collected images before using the data to train the MC-
PixelCNN. The dataset includes photos of nature, people, objects,
animals, indoor scenes with occasional clip art. The dataset is built
once to train the MC-PixelCNN model. Once the model is trained,
our system can take mood-phrase text pairs extracted from any song
as input and generate new images that encode that mood-phrase
information.

Moods are often associated with colors, lighting, and places.
There is a positive relation between certain colors and moods. For
example, red is more often associated with exciting-stimulating,
black with powerful-strong-masterful or blue with tender-soothing
[Wexner 1954]. Similarly, there exist systematic in�uences on mood
from lighting encountered in everyday interior conditions [Mc-
Cloughan et al. 1999]. However, studies of the impact of full-spectrum
lighting on mood have given controversial results [Küller et al.
2006]. Our system attempts to create an association between mood
and a virtual place through the generation of textures from music
mood and content data.

3.3.2 Image Generation. The PixelCNN model [van den Oord
et al. 2016] focuses on description or tags for conditional image
generation. Our MC-PixelCNN architecture is a new and modi�ed
version that models the conditional distribution of natural images
given two latent vector representations of text labels from song
lyrics data and mood extracted from song audio. In the original
PixelCNN implementation [Oord et al. 2016], every pixel depends on
all the pixels above and to the left of it. Hence, the joint distribution
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Figure 3: Example images generated by our MC-PixelCNN
for mood-phrases like happy-ocean or sad-kitten.

of pixels over an image x is modeled as a product of conditional
distributions. Formally, it can be de�ned as follows.

p(x) =
n2∏
i=1

p(xi |x1, ...,xi−1) (1)

where xi refers to a pixel in the image. In order to ensure the
dependency condition (in Equation 1) is satis�ed, we used masked
convolution �lters. A stack of such �lters is applied over an input
image I ∈ IRN×N×3. Recent work by Oord et al. shows that a
softmax distribution tends to perform well even though the data is
inherently continuous [Oord et al. 2016]. Therefore, for each pixel
256-way prediction is performed for the three color channels (R,
G, B) successively, i.e., conditioned on the previous color channel
and predicted sequentially. The output of the MC-PixelCNN is
Iout ∈ IRN×N×3×256. The same GRU is used as in the PixelCNN
decoders [van den Oord et al. 2016].

z = tanh(Wf ,k ∗ x) � σ (Wд,k ∗ x), (2)

where ∗ denotes a convolution operation, � denotes element-
wise multiplication, k is the layer index, f and д denote �lter and
gate respectively, andW is a convolution �lter.

The conditional distributionp(x |h) of images is modeled by repre-
senting the text phrases from song lyrics (P ) and the mood extracted
from song audio (M) as latent vectors hP and hM , respectively:

p(x) =
n2∏
i=1

p(xi |x1, ...,xi−1,hP ,hM ) (3)

. Formally, the implementation computes the following:

y = tanh(Wk,f ∗ x +UT
k,f hP +V

T
k,f hM )

�σ (Wk,д ∗ x +UT
k,дhP +V

T
k,дhM )

where k is the layer number, hM is a one-hot encoding that speci-
�es a mood class and hP is a phrase representation computed by
summing the GloVe word-vector representation [Levy et al. 2015].
This representation incorporates co-occurrence statistics of words
that frequently appear together in a text document.

3.4 Textures
3.4.1 Deep Texture Generation. This step is not necessary as the

MC-PixelCNN output images can be directly used as textures in the
VR scene. We take a playful approach to the visual aesthetic of the

Figure 4: Textures created by our DeepDream based CNN.
The input images were generated by the MC-PixelCNN us-
ing themood and nouns as shown, extracted from two songs.
The input ’angry’ song was Drop The World by Lil Wayne
and the ’calm’ song was Constellations by Jack Johnson.

generated scenes by processing the output images from the MC-
PixelCNN through a DeepDream based CNN. DeepDream creates
surreal textures (Fig. 4) that we apply to objects in our generated
VR scenes. We believe these textures provide a more nuanced and
perhaps playful interpretation of the literal representation of mood
and content in the images generated by the MC-PixelCNN (Fig. 3),
even more so after manipulating tiling values in Unity (Fig 7) .

For creating surreal textures, we use a pre-trained Inception
model and let the network make decisions about selecting which
features amplify. Each input image is run through DeepDream 24
times, zooming into the image at each iteration to enhance the
features that are detected by the layers of the CNN. A single input
image results in 24 output textures (Fig. 6). Since higher layers
extract more sophisticated features, complex structures and objects
emerge when we pull out textures from the layers just before the
classi�cation layer.

3.5 VRWorld Generation
This is the �nal step in the pipeline. Using the noun-phrases ex-
tracted from song lyrics, we select objects from a tagged 3D model
dataset to add to the scene. Additional information about which
objects to add to the scene and whether the scene is indoors or
outdoors comes from the results of User Study I (Section 4.1). In
the study we asked participants to describe places and things they
associated with happy and sad moods. Once we know which ob-
jects will be part of the scene, we texture them with the output of
DeepDream. The type of lighting to use in the scene is based on
feedback from participants in User Study I.

3.5.1 World Design. Each generated VR world (Fig. 5 is com-
posed of four types of elements: (i) location or setting, (ii) scene
objects, (iii) atmospheric elements, and (iv) interactive elements.
We chose to use low poly 3D models as they were freely available
and allowed for faster and easier building of a tagged 3D model
dataset.

3.5.2 Location or Se�ing. These are the base elements the VR
world is built upon. In our examples, each world has at least two
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Figure 5: Left) ‘Happy’ VR world generated from The Bird
and theWorm by Owl City. The image shows a kaleidoscope
of colors and patterns in this bright outdoor scene. Right)
‘Sad’ world generated from Blue Prelude by Nina Simone.
The image shows the textured surreal lookingmountains in
this night scene.

such elements, the sky and the ground terrain. For indoor spaces
these would include the �oor, walls and ceiling. These elements
are large and visible to the user from anywhere in the scene and
in�uence the feel of the virtual space. We use a Perlin noise [Perlin
2002] based terrain generator that allows us to alter the terrain
size, cell size and noise scale to create a variety of terrains from
�at lands to rolling hills to steep mountains. To simplify object
placement in our generated scenes we set the noise value to zero
for a �at terrain. We realized a little late that we could have used
music to generate our terrain which would have added another
layer of mood-based connectivity between our input and output.
Current time constraints do not allow for adding this to the system
presented in this paper but we plan to include it in our next iteration.

3.5.3 Scene Objects. In User Study I we asked participants to
list descriptors of places and things they associated with happy
and sad moods. Objects from the compiled results, together with
objects corresponding to noun-phrases extracted from song lyrics,
are picked from a tagged 3D model dataset to add to the VR scene.
Similar to [Sra et al. 2016] we use a genetic algorithm (GA) [Whitley
1994] with elitism to model the optimization function for the place-
ment of objects in the scene using a set of created rules that de�ne
spatial relationships between them. The rules take into account
orientation relative to the center of the VR world, which is the place
where the user begins the VR experience when they put on the
HTC Vive. While our existing 3D model dataset is not exhaustive,
we believe the variety of scenes we can generate will only increase
as the size of this dataset increases.

3.5.4 Atmospheric Elements. At the time of writing this paper,
these elements were added manually to the generated scene. This
includes elements like lighting, particle e�ects, fog etc. For our
generated worlds, the type of lighting to add to a scene was based
on data from User Study I where predominantly the ‘happy’ scene
was described with words like ‘sunny’, ‘bright’, and ‘daylight’ and
the ‘sad’ scene was described with words like ‘dark’ and ‘night’.

3.5.5 Interactive Elements. The generated worlds have the po-
tential to provide a novel spatial and immersive musical experience
by including the song audio in the scene. While some animation is
added automatically e.g., moving textures on objects, others like
objects pulsing to the beat of music are added manually. We believe

Figure 6: Textures created by feeding images generated by
the MC-PixelCNN into a DeepDream based CNN. In this ex-
ample an image of a cotton ball against a bright blue skywas
generated using mood ‘happy’ and phrase ‘cotton’ from the
song The Bird and the Worm by Owl City which is the song
used to generate the ‘happy’ VR world (Fig. 5a).

visual indicators of music playing in the scene can add dimension-
ality to the musical VR experience.

3.5.6 Texture Mapping. Light and color are inextricably linked
as perception of color depends on the type of light and the inter-
actions between the color and light. Light also impacts non-visual
psychological processes like mood and cognitive performance [Knez
2001]. In our generated worlds, the colors and patterns come from
the textures applied to objects in the scene. For the two example
scenes presented in this paper, 42 images were generated for the
‘happy’ song and 21 images for the ‘sad’ song by the MC-PixelCNN.
These generated images were fed into a DeepDream based CNN to
output 24 psychedelic textures per input image (Fig. 6).

In Unity, a material was created by randomly selecting one tex-
ture from the set of 24 textures and automatically applied to an
object. When creating a new material, we altered the X and Y tiling
values to create variety. When the tiling is set to 1:1 (Fig. 7), the

Figure 7: To create visual variety in the scene, texture tiling
is altered bymodifying the X and Y values. Left: X and Y val-
ues are both set to 1 to create a repeating tiled texture. Inset
shows the original texture before tiling. Right: X is 0.1 and
Y is 1 to create a horizontally scaled texture which preserves
the colors but not the details.
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original texture is visible as a checkered pattern. Modifying X and
Y values results in horizontal or vertical stripes (Fig. 7).

4 EVALUATION
We conducted two user studies. The �rst study (55 participants)
evaluated the quality of the images generated by our MC-PixelCNN
to validate whether the images successfully encoded mood + phrase
data. We used the same study to collect data from users about
their associations between places, objects, lighting and moods. The
second study (12 participants) was done to validate the generated
VR scenes and to understand if they successfully conveyed the
mood of the songs used to create them.

4.1 User Study I
An email with a url to the online study website was sent to our
department’s internal mailing list which includes students, sta�,
and faculty. Fifty-�ve participants responded and completed the
online study over two days. No demographic data was collected. The
study consisted of two parts: an evaluation of 20 images generated
by the MC-PixelCNN and a question asking participants to describe
or list places or things they associate with a particular mood.

To evaluate the output of our MC-PixelCNN, participants were
shown 20 generated images, one by one, for each of the 4 mood
groups (sad, happy, calm, angry) in a random order along with the
mood + phrase pair used to generate that image. Participants were
asked to rate how well the images matched the displayed moods on
a 1-5 Likert scale where 1 meant ‘poor match’ and 5 meant ‘perfect
match’. Results (Fig. 8) show that our model successfully generated
good images for ‘happy’ and ‘sad’ moods but did not do well for
‘angry’ images and therefore we only generated example VR worlds
for happy and sad moods. Looking at the images generated for anger
+ noun-phrase, we learned that encoding anger in color was easier
than encoding anger in an object. We believe our results can be
improved by building a curated mood image dataset for training the
MC-PixelCNN model. Collecting data about mood associations from
a larger set of participants and for a broad variety of mood terms
would also help improve image generation results. Participants
were asked, “What are the elements that constitute a happy place
for you?" for both a happy and a sad place. They responded with
answers like ‘outdoors,’ ‘sunny day,’ ‘smile,’ ‘mountaintop,’ ‘trees,’
‘dark night,’ etc. These responses supplemented the noun-phrases
extracted from the lyrics to help select objects from a 3D model
dataset to place in the VR scenes. Responses were also used to
inform the design of lighting in each scene.

4.2 User Study II
To validate whether our system was able to create virtual worlds
that conveyed the mood of the songs used to create them, we con-
ducted a VR user study with 12 participants.

4.2.1 Method. Twelve volunteers (Ages 22 - 58, Mdn = 34, 8
Female) were recruited via email for the study conducted with an
HTC Vive in a 2.5x2.3m tracked space. The study setup included
2 songs, The Bird and the Worm by Owl City (happy) and Blue
Prelude by Nina Simone (sad) and two corresponding VR scenes.

Figure 8: Evaluation of images generated by the trained MC-
PixelCNN model. Results show good image generation for
happy and sad moods and poor image generation for angry
moods.

4.2.2 Procedure. The study procedure took 23 minutes on av-
erage, and included listening to a song, experiencing a generated
virtual world, �lling out questionnaires and providing open-ended
feedback. Before starting, participants were asked to sign a con-
sent form and they received instructions about the study. After the
initial orientation, participants were asked to listen to a happy or
sad song, following which they �lled out a questionnaire with one
question “Thinking about the song you just heard, please describe
how it made you feel." Participants were then asked to view the
world that was created from a song other than the one they just
heard. If they listened to the happy song, they viewed the world
generated from the sad song and vice versa to prevent any bias
from the listening experience a�ecting the VR experience and to be
able to compare the responses independently from the two stimuli.

Before starting the VR experience, we demonstrated how to
use the hand-held controller for navigation. Participants were told
that they could use a combination of walking and teleportation to
explore the virtual space. An experience was considered complete
when the participant had spent at least 7 minutes in the VE, which
is slightly longer than 2X the length of either song. The lowest time
spent in VR was 6 minutes by P12 while the longest times spent were
17 minutes by P5 and 14 minutes by P1. At the end of the exploration,
participants were asked to �ll out another questionnaire with one
question “Thinking about the VR space, please describe how it made
you feel." We used the Witmer and Singer presence questionnaire
(PQ) to evaluate the subjective experience in VR [Witmer and Singer
1998] and it was �lled out last. Since our goal was to create a pipeline
for generating VR worlds from music, we used presence to evaluate
if the generated worlds provided a satisfying VR experience.

5 DATA AND ANALYSIS
5.1 Presence Questionnaire
We grouped the questions in PQ into three classes for factor analy-
sis and took the average of 7-point rating scale responses across all
questions in a single category. The responses from each category
were converted to a 3-point scale: high [5-7], neutral [4], and low
[1-3] for analyzing the distribution of the participants across this
scale using a chi-square (χ2) test (Fig. 10). Values between 3-4 and
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4-5 were treated as low and neutral respectively. Factor analysis ex-
plains three loaded factors that collectively a�ect presence: Spatial
Presence, which is related to the sense of being in the VE, Involve-
ment, which describes the environment’s ability to stimulate the
senses and encompasses emotional responses to the VR experience,
and Realism, which is related to the consistency of information
in the VE with the real world [Witmer and Singer 1998]. The re-
ported overall rating of presence across all participants was 5.11/7,
SD = .81) derived from the average of ratings for the three fac-
tors. Average ratings were high for Spatial Presence (M = 5.87/7,
SD = .63) and Involvement (M = 5.22/7, SD = .51) and medium
for realism (M = 4.25/7, SD = .91). We can infer that though the
participants were engaged and present in the virtual world, they
perceived the visual representation and interactions as not realistic.
Since the objects in the VEs are textured with psychedelic images
output by DeepDream and movement in the VE is done using a
combination of walking and teleportation, this result is expected.

5.2 Emotion Questions
In response to the emotion question, one participant wrote, “arousal
high, valence positive - de�nitely a happy place” (P4, Happy World)
and another wrote, “ feeling homesick to places i have never been
to ... simple life” (P7, Sad World). Since we asked users to describe
how they felt, a mapping of the text responses to emotions would
help quantify and compare the responses. Emolex5[Mohammad
2012] is a list of English words and their associations with eight
basic emotions (anger, fear, anticipation, trust, surprise, sadness,
joy, and disgust) and two sentiments (negative and positive). We
tokenize each user’s text response and use Emolex to associate
the response with a distribution over emotions. Since the songs
and VEs correspond to happy and sad moods in our user study,
we look at the user’s response and its association with “joy" and
“sadness". Based on this distribution we are able to classify if the
user’s response for a song and a scene is associated with happy or
sad moods. We �nd that 84% of the users felt “joy" listening to the
happy song and experiencing the VE generated from it. Though
84% of the users felt “sadness" listening to the sad song, only 33%
of them felt “sad" viewing the sad scene (Fig. 9). Users, instead,
described the scene as ‘alone’, ‘beautiful’, ‘relaxed’, ‘cold’ etc.

5.3 Discussion
All 12 participants reported that moods conveyed by the VR scenes
matched those of the songs in general but they were more closely
matched for the happy scene and less so for the sad scene. We think
the muted colors and abstract patterns conveyed the mood to a far
greater extent than the scene composition of camping alone in a
faraway place surrounded by mountains. To create better sad scenes,
we would need to collect a lot more data on people’s associations
with sadness and sad places and maybe even design newer ways to
visually encode that data into VR scenes. Surprisingly, participants
gave the VR experience a high presence score even though there
was only one sensory modality enabled and minimal interaction.
We expect presence to go higher after we enable song audio in
each scene and add interactivity to the experience, based on user
feedback. An interesting test would be to see if participants can
5Details at: http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm

Figure 9: 84% of the users felt “joy" listening to the happy
song and viewing the happy world. While 84% of the users
felt “sadness" listening to the sad song, only 33% of them felt
the same when viewing the sad scene.

identify the song from which the world they view is created. As
described in the data and analysis section, participants rated Spatial
Presence and Involvement factors high, while Realism was rated
low (Fig. 10. We discuss these factors with respect to our system.

Spatial Presence: Participants felt spatially present in our system.
We believe the main factors that contributed to the spatial presence
were the design and lighting (outdoors sunny day and outdoors dark
night). Participants described the scenes as “imaginative," “childlike,"
“a dream," and “fantasy" probably due to the surreal textures on
familiar objects like mountains and trees, and the scale of the spaces.

Involvement: A high rating for involvement suggests that par-
ticipants were likely engaged in exploring the VR worlds, despite
the lack of audio and pre-de�ned tasks. The were asked to explore
the worlds and we implemented full access to all parts of the world
via teleportation. Participants were free to climb the mountains or
get on top of trees or clouds. Two participants enjoyed the falling
sensation that came from standing on a cloud and waiting for it to
move from under them and repeated this many times. 8/12 went to
each peak in the scene and explored every aspect of the world.

Realism: Unrealistic movement mechanism (teleportation) and
inability to grasp objects and interact with them caused the realism
to be rated low during the study. We observed several participants
reaching out with their hand to touch and interact with objects
they were viewing in the HMD. All participants walked in the
tracked space to walk in the virtual world and only when they
reached the boundary did they engage the teleportation mechanic.
This leads us to believe that a walking based navigation system
like redirected walking [Razzaque et al. 2001] may have led to the
reported perceived realism.

We ran a short pilot study with �ve participants, after enabling
audio in each scene and adding simple interactive elements, to learn
whether the generated VEs could provide novel musical experiences.
Qualitative feedback was positive and almost invariant. Subjects
were excited and expressed a desire for real-time changes to the
scene beyond the pulsing objects and the animated textures. We
plan to incorporate these in our next version and to run a larger
study that explores this immersive form of experiencing music. Our
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Figure 10: The distribution of participants across questions from the presence questionnaire. Below each question are the chi-
square test (χ2(2,N=12)) results. For factor analysis, we group these questions into three classes of Spatial Presence, Involvement,
and Realism.

high level goal was to create a visual and spatial music experience
in VR. Since in the �rst user study, participants experienced the
generated worlds and the songs separately, we ran the pilot to see
if the generated VR worlds did indeed create an interesting musical
experience. Our hope was that this study could help provide us with
some ideas for future work in designing novel musical experiences.
The positive feedback suggests that newer ways to convert music
into 3D experiences may be worth exploring.

Figure 11: The distribution of participants across three
classes. Below each category are the chi-square test
(χ2(2,N=12)) results.

5.4 A�ective Virtual Spaces
While the emotions elicited by the happy song and scene correlated
well, the same was not true for the sad song and the sad scene.
We think this is because participants found the lonely dark world
beautiful, dreamy and relaxing and enjoyed the solitude instead of
feeling lonely and sad. Even though we designed our world with
objects and lighting that people associated with sad places, the
resulting outcome did not successfully encapsulate the sadness.
This could mean that more people agree on what constitutes happy
places but they di�er on sad places. This also makes automatically
generating sad places a more challenging task than happy places
and something we will explore further.

6 LIMITATIONS AND FUTUREWORK
We generated our image dataset from freely available online images
so the relationship between the image and the tagged mood may
not as accurate as a curated dataset. Since we use a CNN to generate
surreal textures, it is possible that the generated virtual worlds will
start having a similar look despite di�erent MC-PixelCNN gener-
ated images and texture tiling. This can be countered by adding
DeepStyle [Gatys et al. 2016] to the pipeline, using di�erent shaders,
or by using a combination of colors and patterns. With the preva-
lence of digital cameras, we have witnessed an explosion of digital
photos on the Internet. In contrast, the growth of free 3D models
with metadata has been relatively slow. While many techniques
have been proposed to enrich the set of available 3D models, their
availability is still quite limited. This restricts the types of VR worlds
we can generate as we have a very small database of 3D models
from which we extract a subset of models to use in each scene.
There is much room for improvement as well as opportunity for
further development in creating a�ective virtual spaces. An im-
mediate enhancement would be to encode audio data directly into
the scene by using it for terrain generation. Another easily imple-
mented modi�cation would be to allow multiple users to share the
same virtual world. A promising direction would be to employ more
sophisticated procedural map generation techniques for creating
the virtual world and automating the addition of atmospheric ele-
ments. An interesting challenge would be to estimate lighting data
from the generated images in order to automate the addition of
lights to the 3D scenes.

7 CONCLUSION
This work is a �rst step towards understanding how we may em-
bed emotive content automatically in a VE. In future iterations of
Auris, larger online studies could better inform the associations
people have between moods, places and objects which could help
model new ways of encoding that data into the Auris pipeline. A
curated image dataset of mood-based images would improve the
trained model and generate better mood related images. Having
prior knowledge about the context of the generated VE could also
able customized integration of directly referential associations into
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the pipeline to further enhance the mood conveyed, e.g. the color or
image of a spicy pepper could inform the design of a ‘�ery’ dragon
in a grim fantasy VR experience.
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