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Figure 1: Overview FaraPy System Architecture: (a) Camera data is processed in real-time by the proposed (b) LW-FAU network. 
(c) Left- and right-side facial muscle activation predictions are processed in (d) JavaScript, where (2) the paralyzed side of the 
face is identifed as the one with overall lower activations. (3) Ratios per AU are calculated to provide (4) feedback on the 
symmetry of activation. (5) The muscle education and mirror therapy flter is activated on the identifed paralyzed side, and 
(5) facial expressions are scored for symmetry. (e) Activations and the facial flter are visualized in AR. 

ABSTRACT 
Facial paralysis is the most common facial nerve disorder. It causes 
functional and aesthetic defcits that often lead to emotional distress 
and afect psychosocial well-being. One form of treatment is mirror 
therapy, which has shown potential but has several mirror-related 
drawbacks that limit its efectiveness. We propose FaraPy, the frst 
mobile augmented reality mirror therapy system for facial paralysis 
that provides real-time feedback and tracks user progress over time. 
We developed an efcient convolutional neural network to detect 
muscle activations and intensities as users perform facial exercises 
in front of a mobile device camera. Our model outperforms the state-
of-the-art model on benchmark data for detecting facial action unit 
intensity. Our user study (n=20) shows high user satisfaction and 
greater preference for our interactive system over traditional mirror 
therapy. 
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1 INTRODUCTION 
Daily life functions such as eating, speaking, and expressing emo-
tions are supported by the facial nerve (CN VII) [35, 66]. Facial 
paralysis (FP) results from damage or injury to the facial nerve 
[56, 64, 74]. FP causes functional and aesthetic defcits for those 
afected, characterized by reduced ability to chew food, changes 
in clarity of speech and facial symmetry [34, 59]. These individu-
als exhibit signifcant emotional distress with negative impact on 
quality of life and psychosocial wellbeing [15, 27, 29, 38, 74]. 

Physical therapy in the form of facial exercises is a common 
treatment for FP [64, 73]. Tailored facial exercises have been shown 
to improve muscle and nerve function and facial symmetry [2], 
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shorten recovery time, and prevent long-term paralysis [67]. While 
the therapeutic efect of facial exercises alone is of moderate qual-
ity [2, 67], several studies show that combining facial exercises 
with mirror therapy (MT) leads to a signifcant positive impact 
on FP treatment [8, 16, 32]. It may also help prevent FP sequelae, 
such as synkinesis [50] which causes involuntary associated facial 
movements, for example, eye muscle contraction leads to squinting 
during smiling [50]. 

MT is traditionally conducted by simply watching the mirror 
while performing facial exercises or creating the visual illusion of 
a non-paralyzed face [50]. For the latter, a mirror is placed in the 
individual’s mid-sagittal plane such that the paretic side of the face 
is covered and the non-paretic side is refected in the mirror [32]. 
Unfortunately, previous MT approaches for facial exercising have 
several limitations including: (a) reduced user motivation, (b) lack 
of meaningful feedback and muscle education, (d) mirror exposure 
anxiety, and (e) inability to track progress over time. 

To address these limitations, we propose FaraPy, a mobile aug-
mented reality (AR) system with a novel deep learning model in 
the back end. Our proposed Light Weight Facial Activation Unit 
(LW-FAU) model detects facial muscle activations and intensities 
based on input from the user’s camera. The AR interface provides 
real-time feedback to the user on the detected facial muscle acti-
vations. FaraPy allows individuals to receive feedback on exercise 
performance at home, enabling them to continue their recovery 
outside of therapy sessions, which is an important contributor to 
successful recovery [20]. 

Our primary design goal was to make the system run on any 
smartphone or tablet and be accessible anywhere, anytime. In pur-
suing this goal, we faced two signifcant challenges. First, there is 
a lack of FP benchmark datasets and models labeled and trained 
with our values of interest. To address this we labeled benchmark 
data and also created our own user dataset of individuals with FP. 
Second, we needed an efcient model that would run in real-time 
on devices with limited computational capacity. Using the student-
teacher learning approach, we integrated the knowledge from a 
large and complex but accurate model [21] for building an efcient 
and lightweight model (LW-FAU). Our key contributions are as 
follows: 

• The frst AR-based real-time physical therapy feedback sys-
tem for individuals with FP. 

• A novel lightweight deep learning model that runs on smart-
phones in real-time and outperforms state-of-the-art models. 

• Prediction of unilateral facial action unit intensities (AUI) 
independently for each side of the face, as opposed to tradi-
tional bilateral predictions of benchmark models. 

• A new FP dataset with unilateral action unit intensity labels. 
• An end-to-end pipeline with a fully working system that can 
work on mobile and other devices with front facing cameras. 

Our user study (n=20 users) results indicate that participants 
were very satisfed with FaraPy and would prefer to use our feed-
back system over traditional mirror therapy. A technical evaluation 
of our LW-FAU model on two real-world data sets (benchmark data: 
DISFA, Denver Intensity of Spontaneous Facial Action Database 
[45], and individuals with FP dataset: FIFA, Facial palsy Intensity of 

Facial Action Database), shows our model outperforms the state-of-
the-art model for activation unit intensity detection on benchmark 
data by Fan et al. [21], hereon referred to as FAU-Net. 

While we acknowledge that face-to-face interaction with a ther-
apist is essential in physical therapy [24], we believe that virtual 
applications like ours can fll gaps (accessibility, afordability, self-
monitoring, etc.) in the current treatment process by supplementing 
human expertise [10, 25, 47] only available during in-person ther-
apy session. 

2 RELATED WORK 
The work presented in this paper builds primarily on tracking and 
visualizing facial activation for physical therapy. 

2.1 Mirror Therapy for Facial Paralysis 
Central FP results from damage to the central segment of the fa-
cial nerve [69] while peripheral FP results from injury or damage 
to extratemporal segments of the facial nerve [56, 64, 74]. Bell’s 
Palsy, the idiopathic form of peripheral FP accounts for 60-75% of its 
cases. MT is an efective adjunctive treatment for FP [8, 16, 32]. Ap-
proaches range from real to virtual and advanced computer vision 
based mirror setups. One real mirror-based setup is Mirror Book 
Therapy [54], in which those with FP use a dual-folding mirror so 
that they see their full, unafected face while performing a series 
of facial expression exercises [9]. In a simple virtual setup, a tablet 
PC was used for MT in FP patients after a stroke, resulting in sig-
nifcantly greater improvement in facial movement [32]. Recently, 
using computer vision technology, a novel face mirroring system 
(FMS) was engineered to create a healthy facial illusion, resulting 
in a better user experience and perception of facial embodiment 
[17]. However, mirror-based setups limit treatment efcacy [17]. 
Covering the afected side prevents mirror exposure anxiety [8] 
but people lose the opportunity to receive biofeedback on the par-
alyzed facial muscles. During MT, users tend to lean towards the 
afected side and are not often not aligned with the mirror axis 
[33, 46]. Thus, users do not see a well formed reconstruction of 
their non-paralyzed face and symmetrical face in the mirror but 
instead see deformed refections along the mirror book axis. 

None of these approaches provide muscle education or auto-
matically detect the afected side of the face or provide extended 
quantitative and qualitative feedback. FaraPy combines these three 
elements, missing in previous approaches to MT, into a single sys-
tem that can provide users with real-time feedback and muscle 
education while performing facial exercises at home. 

2.2 Augmented Reality in Healthcare 
AR adds virtual objects and information into the real world in ways 
that make the virtual elements appear part of the physical envi-
ronment [7]. One widespread use of AR is entertainment in social 
media applications like Snapchat and others [5, 55, 63]. Snapchat 
ofers facial and world lenses viewed through the front or the rear 
camera of a mobile device. These lenses are virtual efects and trans-
formations to a user’s face or 3D object and text additions to the 
physical environment, often shared as photos or videos [63]. 

1028



FaraPy: An Augmented Reality Feedback System for Facial Paralysis using Action Unit Intensity Estimation UIST ’21, October 10–14, 2021, Virtual Event, USA 

Beyond entertainment, there is an increasing demand for AR 
solutions in the medical feld focused on surgery, therapy, rehabili-
tation, and training [19, 44]. In these areas, AR provides several ben-
efts including “visualization, directing attention, intrinsic benefts 
of motivation, physical interaction activating kinesthetic schemes, 
patient safety, skill retention, simulation confdence related to trans-
ferability, mobile learning and using oneself as a learning object" 
[36, 49, 52, 61]. There is a growing body of evidence evaluating the 
use of AR for upper and lower limb stroke rehab [25]. Alamri et al. 
[6] proposed an AR framework for rehabilitation after stroke with 
a webcam and fdicial markers making it cumbersome to setup and 
use. Other work has investigated grasp-and-release tasks [40] and 
hand opening tasks [41] for post-stroke rehab. GenVirtual [13] is 
a musical AR game designed to improve muscle coordination in 
fnger and toes though individuals with low muscle movements are 
unable to play. Luo et al. [65] presented a virtual training environ-
ment for post-stroke rehab of hand-opening though the wearable 
equipment used for therapy was difcult to put on without help. 

Compared to the above platforms, our system does not require 
the individual to wear any equipment or markers. FaraPy works 
on mobile devices that people most likely already own making it 
easy to use without the need for extra help. The camera based facial 
muscle detection supports a variety of facial exercises commonly 
prescribed for individuals with an FP condition while providing 
feedback in real-time on how much and how well a muscle is being 
activated. To our knowledge, ours is the frst AR system explicitly 
tailored for FP rehabilitation. 

2.3 Facial Action Unit Intensity Estimation 
Facial expressions are generated by contractions of facial muscles, 
which results in temporary changes to eye lids, eye brows, nose, 
lips, and skin texture [22]. The facial action coding system (FACS), 
developed by Ekman and Friesen [23] uses 44 AUs to describe facial 
actions with regard to their location and intensity (AUI) which is 
coded with fve levels of magnitude [22]. Facial expressions may be 
modeled by single AUs or combinations to refect emotions, social 
interaction, and physiological signals. Over the last 30 years, there 
has been extensive research on facial expression analysis using 
FACS [22, 31, 43, 53, 76]. 

Deep neural networks have recently been used for AU detection 
[12, 26, 30]. However, estimating diferent levels of AUIs remains a 
far more challenging task. Most existing approaches use supervised 
techniques for AU intensity estimation such as [48, 51, 72] while 
other methods exploit spatial relationships among the intensities 
of multiple AUs through probabilistic graphical models [57, 70]. 
Prior works have also used weakly supervised convolutional neural 
networks [78], hybrid Bayesian Networks to capture global depen-
dencies among AUs [72] or presented a general framework for AU 
intensity estimation [79]. A recent heatmap regression framework 
preserves semantic information of AU intensities (AUIs) as well as 
their locations [21]. The authors demonstrated the efectiveness of 
their framework on two benchmark datasets BP4D [77] and DISFA 
[45], outperforming state-of-the-art models. 

While these approaches produce accurate results, they are highly 
complex and cannot run in real-time on a device with limited com-
putational power, such as a smartphone. Moreover, none of these 

systems consider each side of the face independently, which means 
that AUIs are decoded and estimated at a bilateral level. In contrast, 
FaraPy presents a light weight architecture that enables real-time 
processing on a mobile device while providing unilateral AUI esti-
mation capable of detecting asymmetric facial muscle activation. 

3 SYSTEM DESIGN 
FaraPy is a real-time interactive visual feedback system that sup-
ports at-home physical therapy to help individuals with FP drive 
their own recovery outside of in-person therapy [20]. Our user 
experience design goals focus on building an easy to use, infor-
mative, efcient, and novel interface. Figure 1 shows our system 
pipeline. Input facial video from the mobile device camera is pro-
cessed by our LW-FAU model to generate real-time feedback which 
is visualized for the user in AR. The computed feedback is shown 
as an augmentation to the user’s face and as a data visualization of 
activated facial muscles (Figure 2). 

To help readers replicate FaraPy, we now provide the necessary 
design and technical details. The system has two main components: 
(1) a back-end LW-FAU deep learning model, and (2) a front-end 
AR interface. 

Figure 2: FaraPy AR Interface: Muscle Activations and Sym-
metry Feedback for (a) Rest Pose and (b) Asymmetrical right-
sided Teeth Clenching. The ffth AU in our system is not ac-
tivated with these facial expressions and is therefore not vis-
ible in the color bars. 

3.1 Light Weight Facial Activation Unit model 
(LW-FAU) 

The feedback provided in AR is based on estimated real-time facial 
muscle activations. Most AUs in FACS are defned at the bilateral 
level, i.e., muscles with visible activations on both sides of the face 
are considered a single AU. For example, Lip Corner Puller (AU12) 
is a smile with the same muscle activated on both sides of the face 
(Figure 3a). Together with Cheek Raiser (AU6) it represents the 
facial expression corresponding to Happiness. 

To our knowledge, there is currently no model that predicts 
unilateral labels nor dataset with unilateral AUI labels. Our model 
is the frst to explicitly provide one-sided AUIs as fnal values in real-
time on a mobile device. The model design presented two unique 
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Table 1: LW-FAU Architecture. 

Type #Block Layer/Stride Input Size Output 

Conv2d/s1 64x64x3 3 
1x BatchNorm2d 64x64x3 -
Shared 1 ReLU 64x64x3 -

Downsample 64x64x3 -

10x 
Branch 

2 
SeparableConvBN/s1 
ReLU 
Downsample 

32x32x3 
32x32x3 
32x32x3 

16 
-
-

3 
SeparableConvB/s1 
ReLU 
Downsample 

16x16x16 
16x16x16 
16x16x16 

32 
-
-

4 
SeparableConvBN/s1 
ReLU 
Downsample 

8x8x32 
8x8x32 
8x8x32 

32 
-
-

5 
SeparableConvBN/s1 
ReLU 
Downsample 

4x4x32 
4x4x32 
4x4 x32 

64 
-
-

AdaptiveAvgPool2d 1x1x64 -
6 Conv2d/s1 

Flatten 
Linear 

1x1x64 
1x1x64 
1x64 

64 
-
-

(a) (b) 

Figure 3: (a) Facial expression examples represented as AU 
combinations [37]. (b) Student-teacher learning setup where 
our LW-FAU (student model) learns from FAU-Net [21] 
(teacher model) using the DISFA training dataset [4]. 

challenges. The frst was to detect AUs and AUIs independently for 
muscles on each side of the face. This is critical for individuals with 
FP as we need to track muscles on the paralyzed side of the face 
separately from the same muscles on the non-paralyzed or healthy 
side of the individual’s face. The second challenge was for the model 
to run in real-time on a mobile device. To address these challenges 
we developed a new Light Weight Facial Activation Unit model (LW-
FAU) that can estimate facial muscle movement intensities at the 
unilateral level. In contrast with FAU-Net by Fan et al. [21], our work 
difers in three main aspects: (1) the method of deriving the value 
(FAU-Net: from a heat map; LW-FAU: fnal predictions of a neural 
network), (2) the architecture of the model (FAU-Net: Complex 
learning framework using Semantic Correspondence Learning with 
Dynamic Graph Convolution; LW-FAU: A single Convolutional 
Neural Network with Depth-wise Separable Convolutions), (3) the 
model size and efciency of prediction (ONNX fle size FAU-Net: 
132,720 KB; LW-FAU: 381 KB). 

In particular, the LW-FAU model is built using the concepts of 
depthwise separable convolution, multi-task learning, and knowl-
edge distillation. 

3.1.1 Depthwise Separable Convolution. Depthwise separable con-
volution was frst introduced by Sifre et al. [62] and subsequently 
used in MobileNets [28], a class of computationally efcient models 
used for mobile and embedded vision applications. The MobileNet 
lightweight architecture consists of depthwise separable flters, a 
form of factorized convolution resulting in reduced computation 
time and model size. A kernel is split into two separate convolu-
tions (a) a depthwise convolution, and (b) a point-wise convolution 
[28]. The depthwise convolution applies separate kernels to each 
channel giving an output image with the same number of channels 
as the input image. It is highly efcient with far fewer computations 
compared to standard convolution [28]. The point-wise convolu-
tion applies a 1x1 kernel, essentially a kernel that iterates through 
every single point in the image to create outputs with as many 
channels as desired [28]. For faster computation with fewer param-
eters, we incorporate depth-wise separable convolution with batch 
normalization from the MobileNet V1 [28] architecture in LW-FAU. 

3.1.2 Multi-Task-Learning. While MobileNets enable efcient com-
putation for vision tasks, the base architecture only provides for 
solving one task at a time. However, our goal is to simultaneously 
predict the AUI of multiple facial muscles, where each unilateral 
AUI estimation represents a unique task. Multi-task learning (MTL) 
is a machine learning training paradigm defned as learning or 
solving multiple tasks simultaneously through a common model by 
exploiting similarities and diferences between the tasks [14]. Tra-
ditionally, many multi-task architectures in computer vision follow 
the principle of a global feature extractor consisting of convolu-
tional layers shared by all tasks, referred to as the “shared trunk.” 
We extend this standard shared model by adding a separate branch 
for each task in the output layer of the network (i.e., n branches 
for n tasks) [14]. Since shared trunks are particularly efective for 
face recognition tasks [14], we incorporate this approach into our 
model by adding shared layers for high-level learning and splitting 
into multiple branches for low-level learning, with each branch 
specializing in a unilateral AU (Table 1). 

3.1.3 Knowledge Distillation. Neural models have shown success 
in a large variety of tasks. However, these models can have millions 
of parameters making them too large to be deployed on mobile de-
vices. Knowledge Distillation (KD) is the idea of model compression 
by teaching a smaller network using a bigger trained network. It 
is often characterized by a Student-Teacher-Learning (STL) frame-
work [71]. STL is an efective technique to transfer knowledge 
from a complex model (teacher) to a lightweight, efcient model 
(student). Since our goal is to perform the challenging task of AUI 
detection in real-time on a mobile device, we required a lightweight 
but powerful model. We use FAU-Net as the teacher for our learn-
ing our efcient LW-FAU model. Specifcally, we used the “model 
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compression and knowledge transfer” approach [71]. The student 
model learns from its teacher’s predictions, which serve as the 
gold labels. Thus for us the predictions of the pre-trained FAU-Net 
served as the gold standard. During the learning process (Figure 3b), 

Parameter Value Description 

Batch_Size 64 # Training samples per iteration 
Epochs 100 # Training epochs 
LR 1e-2 Learning Rate 
LR_Dec_Step 7 # Epochs before LR decrease 
LR_Dec_Gamma 0.1 Decaying coefcient 
W eiдht_Dec 1e-4 Weight dec. coef., overft/complex 
Cons_W eiдht 0.1 Coef. for consist. part of loss fct. 
Num_W orkers 4 # Parallel image loading 

the mean absolute error (MAE) between the predictions of LW-FAU 
and FAU-Net was calculated to evaluate LW-FAU’s performance. 

Model Target Values: While FACS assumes symmetric faces and 
decodes AUs at the bilateral level, we are specifcally interested 
in detecting AUI divergence between the afected and unafected 
sides of the face in individuals with FP. The FAU-Net model creates 
heatmaps as an intermediate step to visualize AU activations on 
the left and right sides of the face [21]. They calculate fnal bilateral 
AUIs AU IF inal by averaging the unilateral activations, as follows: 

AU ILH eatmap + AU IRH eatmap 
AU IF inal = (1)

2 
While unilateral AUI heat maps are an intermediate step in their 

approach, they serve as our target values AU I06L , AU I06R , AU I 10L , 
AU I 10R , AU I12L , AU I12R , AU I14L , AU I14R , AU I17L , and AU I17R , 
which we use in the next step to label the benchmark and our new 
dataset of individuals with FP. 

3.2 LW-FAU Architecture 
The base LW-FAU architecture (Table 1) is composed of six stacked 
building blocks, each with (1) a depthwise separable convolution, 
followed by (2) a batchnorm, (3) a ReLu nonlinearity, and (4) a 
downsampling layer. The downsampling layers were introduced by 
Zhang et al. [79] to deconvolve the network with classical signal 
processing techniques that help make the network shift-invariant, 
leading to increased accuracy and better generalization. The frst 
layer is a standard convolution, and the last fully connected layer 
comes without the ReLu activation layer. A fnal average pooling 
reduces the spatial resolution to one. Downsampling is addressed 
in the frst layer and within each building block after the separable 
convolution. 

For MTL, the base architecture was split into a sequence of one 
shared (frst building block) and 10 × 5 unshared layers (fve re-
maining building blocks). We designed for high-level features to be 
shared by all tasks and low-level features to be learned by special-
ized tasks. We determined the network’s splitting point through 
experimental testing. Five diferent versions of the multi-task model 
were created by splitting the model after each of the six building 
blocks. The model was validated after 50 epochs of training, with 
the best results obtained with a total loss of L_total = 136.88 and a 
learning rate of LR = 1, 000e − 07 for a split after the frst building 
block. Building on the fndings of [28], we applied a weight decay 
(W eiдht_Dec = 1e − 4) to the depthwise flters to prevent overft-
ting and to penalize complexity, albeit with small magnitude since 
the convolutions contain few parameters. 

Table 2 shows all hyper-parameters used in training. 

3.3 Training 
Our model is trained in PyTorch using the STL approach, with 
the FAU-Net serving as a teacher. Figure 3b depicts the training 
process, where the MAE between our model’s predictions and FAU’s 
intermediate heatmap values is calculated and propagated back 

Table 2: Hyper-parameters for LW-FAU Model Training. 

through LW-FAU. Precisely, the multi-task model’s loss is computed 
by accumulating the individual MAE losses lossn for each of the 
ten branches of the model. 

Thus, for lossn = MAE(Xpred , Xtrue ), the loss function LT otal 
can be defned as follows: Õ10  

LT otal = lossn (2) 
n=1 

3.3.1 Datasets. For training and validation, we used the bench-
mark facial expression dataset DISFA (Denver Intensity of Spon-
taneous Facial Action Database), a non-posed facial expression 
database with videos from 27 adults [4]). We labeled DISFA with 
the unilateral target values described in section 3.1.3, using the 
intermediate predictions of the FAU-Net model on the data to allow 
direct comparison between FAU and LW-FAU performance. In ad-
dition to labeling DISFA, for testing, we created a new dataset FIFA 
with video data from FP individuals, which was also labeled with 
FAU-Net using the same procedure described above used to label 
DISFA. FIFA is a posed facial expression dataset for researchers 
interested in developing computer algorithms for automatic detec-
tion of AUs and their intensities in individuals with FP. This dataset 
contains 5-minute videos of the 20 study participants (16 women 
and 4 men from diferent ethnicities) sequentially performing the 
fve facial exercises in our user study. Videos were captured us-
ing Zoom’s local capture option during the remote user study and 
cropped to 256x256 resolution. To our knowledge, ours is the frst 
image FP dataset labeled with unilateral AUIs. 

We would like to emphasize our high priority to protect user 
privacy, especially given the sensitive nature of the FP condition 
and the need for including videos with full facial information in 
the released dataset. That said, we are committed to enable future 
researchers to develop new technologies that can advance manage-
ment and care for individuals with FP and related conditions. We 
commit to releasing the dataset for research purposes in a controlled 
manner, with access available after submission of an agreement 
form (similar to the form required to download the DISFA dataset). 
We will make our trained model and code publicly available on 
Github. 

3.4 Augmented Reality Interface 
The interactive feedback system’s architecture consists of six com-
ponents, illustrated in Figure 1. The LW-FAU model runs in the 
back end of the AR application and uses the input facial video data 
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Figure 4: Components of the AR Muscle Education / MT Fil-
ter: (a) Face Mesh UV fle, Image from [11] (b) 3D model of 
the Face Mesh, Image from [11] (c) 2D Muscle Education Tex-
ture, Right-Sided, Image from [18] 

from the user’s mobile device camera to independently estimate 
AUIs for each side of the face. Specifcally, 10 unilateral AUI foat 
values of the following fve AUs (with corresponding facial muscles) 
are computed (Figure 3a): AU06 (“Cheek Raiser": Orbicularis oculi, 
pars orbitalis), AU10 (“Upper Lip Raiser": Levator Labii Superioris, 
Caput infraorbitalis), AU12 (“Lip Corner Puller": Zygomatic Major), 
AU14 (“Dimpler": Buccinator), and AU17 (“Chin Raiser": Mentalis) 
[23]. 

After retrieving the model’s predictions, we determine which 
side of the face is paralyzed. Since unilateral FP is characterized by 
weakness on one side, we identify the afected side based on overall 
lower muscle activations as shown in (3). Let AU be the set of all 
estimated AUIs and AULn ∪ AURm ∈ AU holds for all left (AUL) 
and right sided (AUR ) AUS. The afected side S is defned as: ( Í5 Í5Le f t , if n=1 AULn < m=1 AURm 

S = (3)
Riдht , otherwise. 

The goal of facial exercises is to produce visually discernible 
control of small facial muscles for creating a symmetrical facial 
expression [39]. Using the AUI outputs from our model, we calculate 
the ratio between the activations of the healthy and unhealthy sides 
of the face. This diference dRatio is visualized for the user in real-
time per muscle group (Figure 2). The ratio provides information 
about how evenly, and thus symmetrically, a particular facial muscle 
group was activated and can serve as an indicator of performance 
aimed at visual symmetry [39]. 

Let AUH be the set of all AUIs of the determined healthy face 
side and AUU be the set of all AUs of the unhealthy face side. 
Furthermore, AUh ∈ AUH and AUu ∈ AUU . The diference ratio 
dRatio is then defned as: 

AUhdRatio = (4)
AUu 

Since an AUI can take a positive value in range 0-5, refecting 
the strength of activation, the dRatio can never become negative, 
but it can take a small positive value between 0-1. We generate an 
overall symmetry Ratio score symmRatio for the entire face and 
defne it as: Í5 

n=1 AUhn 
symmRatio = Í5 (5) 

m=1 AUum 

AR feedback provides information on facial muscle movements 
and AUIs. The information is quantifed and visualized on the user’s 

Table 3: Scoring System: Categories and Intervals of dRatio. 

Category Lower Upper Color Score 

Symmetrical -0.1 0.2 Green 1 
Over -1.0 -0.1 Purple 0 
Under 0.2 1.0 Blue 0 

face in the form of a muscle flter and on the device screen as bars 
that dynamically depict the degree of activation as seen in Figure 2. 
We use a color coding system to indicate symmetry of facial muscle 
activations and provide feedback on how much (more or less) do 
the muscles on the paralyzed side need to be activated to match 
the movements of the corresponding muscles on the healthy side 
of the face (numerically displayed in the “diference" column, see 
Figure 2). 

For providing muscle education, we created a 3D AR facial mus-
cle flter as shown in Figure 4. This flter maps the 2D texture of 
a human facial muscle image onto a 3D face mesh [1]. The flter 
is displayed in real-time on the user’s face as a half mask, cover-
ing their paralyzed side to reduce anxiety while providing in-situ 
information on which muscles are currently being activated. 

Intrinsic motivation is a key factor in rehab therapy and is often 
used as a determinant of the outcome [42]. While the AR technology 
itself provides intrinsic motivation [49], we also integrated a gami-
fcation element [58] that would track each individual’s progress 
over time, something a mirror is unable to do. To that end we 
added a scoring system that rewards users for more symmetrical 
facial movements, indicated via color bars showing each muscle’s 
activation during exercise performance. 

The scoring system works as follows: 

• If a muscle is symmetrically activated (i.e., dRatio is within 
the range ] − 0.1, 0.2[, see Table 3), the muscle’s activation 
bar turns green, and the user receives a point. This increases 
the current “score" by one. 

• If a muscle is over activated (i.e., dRatio is in the range 
[−1.0, −0.1]), the muscle’s activation bar turns purple and 
the user does not receive a point. 

• If a muscle is under activated (i.e., dRatio is in the range 
[0.2, 1.0]), the muscle’s activation bar turns blue, and the 
user receives no point. 

Thresholds for determining whether muscles were symmetrical, 
over-, or under-activated were defned based on video data (4x6) 
of six healthy subjects (built in test videos in Lens Studio [63] of 3 
female, 3 male individuals of diferent ethnicities; facial expressions 
performed: (1) neutral, (2) open mouth, (3) raised eyebrows, and 
(4) smile). The ratios obtained from these healthy subjects were 
used to determine the range of acceptable inter-subject variation 
for “symmetric” muscle motion. Values outside this range were 
defned as “asymmetric” according. 

Points are collected and accumulated from the moment the 
user presses the start button. Users can track their current score 
SCurr ent under “Score" in the application header (Figure 2). The 
best, highest score to date SHiдh is stored under “Best" in the menu. 
This logic can be formulated as follows: 
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( 
SCurrent , if SCurrent > SHiдhSHiдh = (6)
SHiдh , otherwise. 

The system was implemented using Lens Studio 3.3 [3], a desk-
top tool for creating AR experiences for mobile devices. By building 
in Lens Studio, we were able to make our application accessible to 
study participants via SnapChat [63] by simply sharing a SnapCode 
[3] Our system stores neither the personal input data nor the pro-
cessed output for data protection and user privacy. Only the high 
score is stored which is visible to the user. We did not access any 
local data from the user’s mobile device. 

4 TECHNICAL EVALUATION 
The model was trained for a total of 100 epochs. 

The best results were obtained at epoch = 85 with a validation 
loss of L_valid = 177.688, a total loss of Lt otal = 211.564 and a 
learning rate LR = 1.000e − 14. 

4.1 Benchmark Data 
LW-FAU outperforms the current state-of-the-art FAU-Net [21] by 
achieving a lower mean MAE of MAEµ = 0.14 and a higher ICC 
ICCµ = 0.77. These results are only indirectly comparable with 
benchmark models because they provide two-sided AUIs. However, 
comparing with FAU-Net we found no signifcant diferences in 
AUI µ values for p < 0.05, across all AUs (Figure 5) and participants. 
Since our model was trained using FAU-Net as the teacher model, 
this result indicates that we can get comparable performance with 
a much smaller footprint making it is well suited for real-time use. 

4.2 User Data 
Testing our proposed model on our created FIFA dataset yielded a 
mean MAE of MAEµ = 0.41, which is within the range of FAU-Net 
performance on benchmark data with MAEµ = 0.58 for the BP4D 
and MAEµ = 0.20 for the DISFA datasets. While the mean ICC was 
moderate at ICCµ = 0.33, high ICC values were seen for certain 
participants (e.g., ICCF PS 002 = 0.68, ICCF PS003 = 0.60). 80% (160 
of 200) of the ICC measures were signifcant for p < 0.05, indicating 
that in almost all cases there was a positive correlation between the 
student and teacher predictions. Looking at µ AUI values across all 
patients, signifcant diferences were found between student and 
teacher predictions in 50% of cases. Measuring AUI µ across all AUs, 
there were signifcant diferences 20% of the time (Figure 6). We 
speculate on two possible reasons for this performance drop on user 
data, particularly for certain individuals. First, there may be limited 
generalization of the model from the training data (benchmark 
DISFA dataset of healthy faces) to real-world test data (FIFA dataset 
of individuals with FP). Second, the quality of the FIFA dataset might 
be causing the performance drop for some individuals. The dataset 
is built from Zoom recordings which have dependencies on local 
conditions of each study participant (webcam quality, lightning, 
motion, obstacles, positioning). 

4.2.1 Degree of Facial Paralysis. While the model showed difer-
ential performance on some user data, the degree of FP does not 
appear to be the reason. For p < 0.05, non-signifcant Pearson cor-
relations were found between model performance (MAE and ICC) 

Table 4: Pearson r: FP Degree & Model Performance, for p < 
0.05. 

Metric Pearson r p-value power CI95% 

MAE -0.315 0.177 0.278 [-0.66, 0.15] 
ICC 0.072 0.764 0.060 [-0.38, 0.50] 

and degree of FP (Table 4). However, the tests were of low statistical 
power with power < 0.80 and would need to be repeated with a 
larger sample size to increase the likelihood of fnding no efect 
between FP grade and model performance, if there is none. Degree 
of FP determination was inspired by the facial reanimation mea-
surement system [68]. This system measures angles and distances 
between landmarks in resting and smiling positions. We introduced 
a new assessment technique by taking the ratios between the 2-
sided measurements of the right and left commissure (RC, LC), right 
and left middle upper lip (RMUL, LMUL), and right and left middle 
lower lip (RMLL, LMLL) in the frontal view of the face, as shown 
in Figure 7. We then took the mean ratio RAvд , which corresponds 
to the continuous FP degree over all three ratios RC , RMU L , and 
RMLL , defned by: 

� � 
min(RC,LC) min(RMU L,LMU L) min(RM LL,LMLL)RAvд = Mean max (RC,LC) , max (RMU L,LMU L) , max (RM LL,LMLL) 

(7) 
Our technique quantifes how symmetric a smile activation is 

compared to the resting pose. A higher RAvд value represents 
higher facial muscle functionality. 

5 USER EVALUATION 
We performed a study with 20 remotely located participants to 
better understand the subjective user experience when interact-
ing with FaraPy (Figure 8). The study protocol was approved by 
anonymized. FaraPy was integrated with the Snapchat [63] applica-
tion for easy access and use. Participant interaction with FaraPy 
was video recorded (Zoom recording) and the data used to build an 
FP individuals dataset as well as evaluate our model on user data. 

5.1 Participants 
We recruited 20 adults with FP from FP support groups on Facebook 
(16 self-identifed as female; 4 as male; mean age = 45 years old, SD = 
11.18). We created a non-sponsored social media post that described 
the feedback system and provided our academic email address so 
that interested individuals could contact us on a voluntary and self-
determined basis. Personal information available to Facebook group 
members was not used for outreach or recruitment. Moderators 
reviewed and approved our post before it was shared with the 
communities. 

We excluded participants with complete or early-stage FP since 
we needed individuals who could perform the facial exercises with-
out risk of harm [67]. 65% of the participants reported Bell’s palsy 
as their FP condition, 25% were afected by Synkinesis, and 10% by 
the Ramsay Hunt syndrome. The largest group of participants (45%) 
had been afected by the FP disease for more than two years, 40% 
from 0.5 to 2 years, and 15% for less than 0.5 years. Half of the study 
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Figure 5: AUI µ over all AUs, on DISFA benchmark data: LW-FAU (pred) vs. FAU-Net (true). No signifcant diferences were 
found, for p < 0.05. 

Figure 6: AUI µ over all AUs on FIFA user data: LW-FAU (pred) vs. FAU-Net (true). Signifcant diferences are marked with *, 
for p < 0.05. 

participants accessed FaraPy from an iPhone mobile device, while 
the rest tested FaraPy from Android devices. Participants received 
a $20 gift card for 30 minutes of their time. 

5.2 Procedure 
The study took place over a Zoom videoconferencing call. Following 
consent, participants were informed about the technology that 
was being studied: a real-time MT system in AR. They were then 
guided through the download, installation and setup process of 
our AR interface on their smartphone device. They were instructed 
on color changes in the muscle activation indicator bars based 
on their facial expressions, with green being the target color and 
blue and purple indicating under and over activation of a muscle 
requiring correction (Figure 2 and Table 3). They were told a facial 
flter showing muscles would display on one half of their face 
with labels for each muscle as an aid to memory and learning. The 

Figure 7: FP Degree determination based on three two-
sided ratio measurements RC, LC; RMUL, LMUL; and RMLL, 
LMLL. (a) Left-sided paralysis and (b) right-sided paralysis 
example. 

Figure 8: Virtual study setup: (1) Researcher instructs partic-
ipants and records Zoom session. (2) Participants perform 
facial exercises with FaraPy using their mobile device cam-
era to retrieve feedback. Their laptop webcam records their 
facial expressions as they perform the facial exercises. 

muscles shown on the face were also visualized in the color bars 
to help the participants consciously attempt to activate specifc 
facial muscles to turn the bar green, indicating correct exercise 
performance. Following these instructions, participants were asked 
to perform fve facial exercises 1) smiling, 2) opening and closing 
the jaw, 3) saying A-O-I, 4) clenching teeth, 5) making a big yawn. 
Each exercise was repeated fve times resulting in a total of 25 
facial exercises per participant. These exercises were taken from 
an online physical therapy video resource [75]. Each facial exercise 
took approximately 1 minute for a total of 5 minutes of exercise 
per participant. 

After completing the exercises, participants were asked about 
their overall impression and if FaraPy improved their MT experi-
ence in a semi-structured interview. They also flled out a post-study 
UX questionnaire by Schrepp et al. [60] that included a series of 
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questions about their perception of the application’s (1) Attractive-
ness (“Overall impression of the product. Do you like it or dislike 
our system? Is it attractive, enjoyable, or pleasing?"), (2) Perspicuity 
(“Is it easy to get familiar with the system? Is it easy to learn? Is 
the system easy to understand and clear?"), (3) Efciency (“Can 
you solve your tasks without unnecessary efort? Is the interaction 
efcient and fast? Does the system react fast to your input?"), (4) 
Dependability (“Do you feel in control of the interaction? Can you 
predict the system behavior? Do you feel safe when working with 
the system?"), (5) Stimulation (“Is it exciting, motivating or fun to 
use the system?"), and (6) Novelty (“Is the system innovative and 
creative? Does it capture your attention?"). Participants indicated 
their level of agreement on a Likert scale where from 1 (strongly 
disagree) to 7 (strongly agree). The questionnaire also included six 
open-ended questions asking about their experience and feedback. 

From the UX questionnaire and the semi-structured interviews, 
we inferred that none of the participants had previously engaged in 
mirror therapy, but that home exercises in front of a conventional 
mirror were popular. This suggests that FaraPy is not only a real-
time interactive evolution of mirror therapy (central-transverse 
positioning of the mirror to refect the healthy body half onto the 
unhealthy half), but also of exercising in front of a mirror in general 
(frontal positioning of the mirror). 

5.3 Results and Discussion 
Overall, we found that participants were very satisfed with the AR 
feedback system, with a µ rating of 6.4 (SD = 0.8) out of 7 across 
all items in the questionnaire. From the written responses to the 
open-ended questions and the semi-structured interview data, we 
inferred that most participants preferred FaraPy to a mirror for 
performing facial exercises (85%) and would like to continue using 
FaraPy (95%). 

Figure 9 shows participants’ ratings for FaraPy, measured across 
the six UX categories in the questionnaire. In particular, participants 
rated efciency, dependability, stimulation, and novelty high with 
a mean score of µ >= 6.5 and low standard deviation SD <= 0.8. 
Within this group, stimulation was rated the highest. 70% of partic-
ipants rated stimulation (µ = 6.9, SD = 0.3) with the highest score 
of 7 across all four items operationalizing the constructs: valuable, 
exciting, interesting, and motivating. No participant assessed any 
of these four items with less than a 6. 

Figure 9: Quantitative results on six diferent UX categories. 
Highest µ ratings were measured for stimulation (6.9) and 
novelty (6.8). 

In contrast, attractiveness and perspicuity received a wider range 
of evaluation scores with a mean µ >= 5.9 and SD <= 1.4. While 
most participants rated attractiveness (µ =6.1,SD = 1.4) high (70% 
assessed attractiveness higher than 6.3), two (10%) participants gave 
less than neutral ratings, with the lowest possible score of 1 on the 
items good, attractive, and friendly. Quotes from these individuals 
in response to the open-ended question (“Please rate whether (and 
why) you like using our system and would like to use it in the 
future.”) in the Attractiveness section are: “Yes” (FPS010) and “I 
would defnitely use this product” (FPS012). These positive qualita-
tive responses contradict the quantitative ratings these participants 
provided. Both these participants rated the other fve categories 
positively with µ = 6.7 , SD = 0.8. This could indicate a misunder-
standing of the item rating system because of the included control 
items in the original questionnaire to maintain participant attention 
and engagement (e.g., positive descriptors were not always on the 
right side of the Likert scale [60]). 

In its current state, our system seems to satisfy the needs of 
the participants as evident in the questionnaire results and feed-
back. Regarding the real-time feedback provided by FaraPy, FPS001 
said, “I like how the muscles were identifed/separated to focus 
on each movement individually.” FSP016 similarly remarked, “I’ve 
never received direct feed back before.” Participants were excited 
about the scoring system with FPS006 saying, ‘The scoring and 
gamifcation aspects make it more interesting to me and at this 
point.” FPS020 found FaraPy motivating, which leads us to believe 
there is potential in digital therapies to engage individuals in the 
process of their recovery, outside of therapy sessions. They said, 
“MORE MOTIVATION I LIKE THE COLORS AND THE GAME,” and 
“Motivating I felt like I was in a video game.” Participants appreci-
ated being able to perform exercises at home. FPS008 said, “I think 
it’s really great to see the feedback at home.” FPS011 was excited 
about FaraPy running on their phone saying, “Because I can use the 
phone and be with it everywhere, it’s a good innovation.” FPS013 
was glad for access to Farapy and said, “Since there is no medical 
professional physically monitoring the exercises, it’s the only way 
for patients with facial paralysis to follow their own process and 
notice how their face moves.” 

5.4 Design Considerations 
Study participants ofered suggestions and feedback which could 
be included in future versions of the system, though some sugges-
tions may require therapist input before being integrated. FPS008 
expressed a desire to slow-down the feedback saying, “It’s great 
that it’s in real-time, but that makes it almost too difcult to record 
the feedback since the exercises are continuous.” FPS007 indicated 
need for instructions and help built into the system, not only for 
using the application but also for the exercises. They said, “frst 
time without supervision would be a bit difcult, but it’s easy to 
get the hang of. I need clarity on the feedback and how to exercise 
certain muscles more.” FPS013 remarked upon the disconnect be-
tween the feedback showing on screen vs on the face. They said, “If 
the colors of the muscles changed instead of the bars at the bottom, 
that would be helpful, and there would be less information to fgure 
out which muscle is being exercised too much/too little.” Study 
participants also expressed a desire for eye-tracking that would 
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Table 5: Pearson r: User Satisfaction & Model Performance, 
for p < 0.05. 

Metric Pearson r p-value power CI95% 

MAE 0.164 0.489 0.107 [-0.3, 0.57] 
ICC 0.360 0.119 0.355 [-0.1, 0.69] 

allow them to perform synkinesis-related exercises, if needed. We 
believe this information will be valuable to researchers interested 
in applying AI and AR technologies to future mirror therapy for 
FP with synkinesis. 

5.4.1 Model Performance and User Satisfaction. User satisfaction 
does not appear to be correlated to model performance. When 
measuring model performance (in MAE and ICC), no signifcant 
Pearson correlation was found for p < 0.05 with the variable user 
satisfaction, operationalized as mean UX questionnaire score per 
participant (Table 5). This means that slight losses in accuracy might 
be acceptable in favor of efciency in a mobile application, as they 
do not seem to adversely afect user satisfaction. It is possible that 
participants were unable to perceive or evaluate the model’s perfor-
mance or if they could, it did not impact their level of satisfaction 
with the application. Additionally, the sample size of 20 may not 
have been sufcient to draw frm conclusions. The tests were of low 
statistical power with power < 0.80 and would need to be repeated 
with larger sample sizes. Beyond satisfaction, the impact of any 
estimation inaccuracies on long term recovery needs to be explored 
in further studies. 

6 LIMITATIONS AND FUTURE WORK 
The results of the technical and user evaluations revealed several 
research questions that motivate future work on machine learning 
based patient care systems. In the following section we discuss 
limitations and research opportunities beyond those fndings: 

6.1 Lack of FP Benchmark Models and Data 
Sets 

There are no benchmark models or datasets for one-sided AUI val-
ues. Manual labeling of datasets is time and cost intensive and in 
this particular case, requires expertise in detecting and labeling 
facial muscle activations for paralyzed faces. Therefore, we used 
the current state-of-the-art FAU-Net model for labeling our FIFA 
user dataset and the DISFA benchmark dataset. However, the FAU-
Net model has never been explicitly trained on individuals with 
FP. Before applying the FAU-Net model to the entire user dataset, 
we probed its feasibility by applying it to FP data samples from 
individuals with FP condition retrieved through a Google image 
search and obtained reasonable intensity predictions. This could be 
explained by FAU-Net’s design, which considers one-sided AUIs 
as an intermediate step in the heat map output. Thus, the model 
may capture this deviation from known standard inputs of symmet-
ric faces better than benchmark approaches. Thus, we measured 
how well our LW-FAU model can reproduce FAU-Net’s predictions, 
rather than how close the LW-FAU predictions are to the datasets’ 
true labels. 

Future work could explicitly address the lack of accessible 
datasets on individuals with FP. There is also a need to build a 
comprehensive system that describes facial muscle activations at 
a more granular level, e.g., by considering both halves of the face 
independently. Furthermore, more work is needed in building ef-
fcient and powerful ML models that can be applied to real-world 
scenarios and mobile devices. We hope more researchers feel en-
couraged to focus on problem areas that deeply afect people, even 
if it is only a niche user group. After all, these individuals could 
beneft the most from research advances in machine learning and 
immersive technologies. 

6.2 Lack of Local User Data 
We did not have access to participant device data. Due to COVID-
19, we were forced to conduct our study with remote participants. 
Therefore, we could not test our system on a single device under 
controlled but randomized conditions in our laboratory. We recon-
structed how the model might have performed by capturing videos 
in Zoom of participants interacting with our system and feeding 
this data as input to our LW-FAU model. Follow-up studies are 
needed to test the model’s performance on a single device for better 
comparison and standardization. 

6.3 User Study Sample Size 
Although our sample size of samplesize = 20 was equal to or higher 
than that in benchmark FP user studies [8, 32, 33], the small num-
ber does impose limitations on interpreting the statistical results 
and generalizability. Future studies could be conducted to validate 
identifed trends with higher statistical power. 

6.4 AU Selection 
FP with synkinesis requires focus on facial exercises related to eye 
movements. This type of FP and related exercises are not fully sup-
ported by our current system which lacks explicit eye-tracking. For 
our model LW-FAU, we prioritized AUs related to the facial mouth 
parts and those were the main focus of FP exercises performed 
during the user study. Future versions of our prototype would be en-
hanced by incorporating eye-tracking to support synkinesis-related 
exercises. 

7 CONCLUSION 
In this work we presented FaraPy, the frst mobile augmented re-
ality mirror therapy system that provides real-time feedback on 
facial exercises for individuals with facial paralysis. FaraPy enables 
individuals with FP to continue therapy at home by providing feed-
back on their facial expression symmetry, a target goal of facial 
exercise therapy. To support real-time feedback, we developed a 
lightweight facial activation unit intensity detection model. Unlike 
all existing models that detect bilateral facial muscle activation, our 
model detects muscle activations independently for each side of 
the face, a necessity for facial paralysis patients. 

Our evaluation showed that our lightweight model outperforms 
the state-of-the-art model on benchmark data for estimating unilat-
eral action unit intensities and achieves comparable performance 
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on user data. Results from our user study of 20 participants with fa-
cial palsy showed high levels of satisfaction and greater preference 
for AR over traditional mirror therapy based biofeedback. 
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