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Abstract. We study the verification problem for e-service (and workflow) speci-
fications, aiming at efficient techniques for guiding the construction of composite
e-services to guarantee desired properties (e.g., deadlock avoidance, bounds on
resource usage, response times). Based on previously proposed e-service frame-
works such as AZTEC and e-FLow, decision flow language Vortex, and our early
work on verifying Vortex specifications using model checking and infinite state
verification tools, we introduce a very simple e-service model for our investi-
gation of verification issues. We first show how three different model checking
techniques are applied to verification of specifications in simple e-service model,
where the number of processes is limited to a predetermined number. We then in-
troduce pid quantified constraints, a new symbolic representation that can encode
infinite system states, to verify systems with unbounded and dynamic process in-
stantiations. We think that it is a versatile technique and more suitable for verifi-
cation of e-service specifications. If this is combined with other techniques such
as abstraction and widening, it is possible to solve a large category of interesting
verification problems for e-services.

1 Introduction

A profound change caused by the Internet and Web is on the manner many e-commerce,
consumer software, and telecommunications applications are provided. Emerging stan-
dards (e.g., SOAP, UDDI, WSDL, WFDL) and industrial technology (e.g., IBM's Web
services Toolkit, Sun's Open Net Environment and JiniTM Network technology, Mi-
crosoft's .Net and Novell's One Net initiatives, HP's e-speak) in e-services has focused
on providing pragmatic, working systems so that e-services can effectively interact with
each other. Recent research [5, 6, 11, 12, 42, 13, 2, 1, 15] focus on complimentary tech-
nologies, for modeling at a more fundamental level both e-services themselves, and
frameworks for combining them. An important research issue is to develop efficient
techniques for guiding the construction of composite e-services to guarantee desired
properties (e.g., deadlock avoidance, bounds on resource usage, response times), and
more generally for verifying such properties of composite e-services.

Failure in e-services will have potentially a huge impact. Moreover, as service logic
gets more and more complex, the design process becomes complicated and error prone.



For example, a Vortex decision flow specification [31] in practical use may consist of
hundreds of variables and thousands lines of code. A simple e-service can consist of
many concurrently running processes, such as inventory management, electronic pay-
ment, online promotion, and automated customer assistance. Design errors can arise
from interleaved access over shared data, synchronization between concurrent running
business processes, dynamic change of specifications, and very likely the misunder-
standing and misinterpretation by programmers on business logic specifications. Hence
an interesting issue here is to develop appropriate tools to aid the design of e-service
specifications. The aim of this paper is to investigate and develop general verification
techniques for quality design of e-services.

Different from the research efforts[24,33] to model and analyze performance of
workflow systems, our main goal is to verify the correctness of logic inside a workflow
specification, e.g. consistency of data, avoidance of unsafe system states, and satisfac-
tion of certain business constraints. The verification problem of workflow specification
was studied in several contexts. In [35], model checking was applied to verification
of Mentor workflow specifications. More specifically, their focus is on properties over
graph structures (rather than execution results). A similar approach was taken using
Petri-net based structures in [43, 44]. In [17] Davulcu and et al. used concurrent trans-
actional logic to model workflow systems, and verifying safety properties under certain
conditions was proved to be NP complete. Another technique for translating business
processes in the process interchange format (PIF) to CCS was developed in [41] which
can then be verified by appropriate tools. Clearly, a direct verification that considers not
only the structures but also the executions is more accurate and desirable. This is one
primary concern of the present paper.

In our earlier work [22, 23] on verifying Vortex specifications, we studied two dif-
ferent approaches: (1) approximate a specification with a finite state model (machine),
and use model checking tools to verify the properties; (2) model a specification with
infinite states and use infinite state verification tools such as the Action Verifier [46, 7].
As we show in [22, 23], new techniques are needed in order to make the verification
process practical.

A main difference between e-service models [13, 12, 21] and Vortex is that new
processes are dynamically created in response to events that may not be predictable. A
focus of this paper is to study verification techniques for such dynamic instantiation of
processes. For this purpose, we use a simple e-service model to examine the verification
problem and develop techniques under several restricted cases. Note that dynamic in-
stantiation of processes can not be handled by existing verification techniques. Indeed,
most model checkers only support verification of programs with bounded number of
processes.

We propose to use pid quantified constraints to symbolically represent possibly
infinite number of system states and to reason about processes ids using existential
quantifiers. We developed the corresponding algorithm to compute PRE (precondition)



operator, which is essential to fixpoint computation in model checking. We illustrate
this technique using examples. Similar to those Presburger constraint[36] based infinite
state model checking approach[8], this technique suffers from the divergence of fixpoint
computations. We expect that if combined with abstraction [26, 40, 4] and widening
technique[16], this approach can be much more powerful.

The remainder of the paper is organized as follows. In Section 2 we propose the
simple e-service model for verification. In Section 3, we introduce different verification
techniques to verify systems with bounded number of processes, and give a short review
of temporal logics. We use a Vortex application MIHU as a case study, and compare the
performance of BDD based finite state model checking and constraint based infinite
state approach. In Section 4 we describe our pid quantified constraints to verify systems
with dynamic and unbounded process instantiation. Finally we discuss open problems
and future research directions in Section 5.

2 A simple E-Service model

Many E-Service and workflow systems such as AZTEC, e-flow, and Vortex[13, 12, 31]
employ a relatively simple specification language and avoid the usage of pitfalling lan-
guage constructs such as pointers. In addition, the computing power of underlying mod-
els are limited (e.g. Vortex restricts the dependency graph to be acyclic). This is due
to the fact that the design goal of such systems is to facilitate understanding of non-
programmers especially business analysts and managers. On the other hand, in some
extent, this situation simplifies the application of model checking to the verification of
e-services, because most model checkers at the present can only analyze finite state
system and do not handle systems with dynamic memory allocation and process instan-
tiation behaviors.

To facilitate our investigation of verification problems, we introduce a simplified
model of e-services. This simplified model has computing power and features of most
prevalent workflow systems, while at the same time it is simple enough to allow the
application of formal verification. In this simple e-service model, we allow dynamic in-
stantiation of processes, data types with infinite domains, shared global variables among
concurrent processes, and flexible interprocess synchronization. Variations of this sim-
ple model will be studied in the rest of this paper, and several specialized model check-
ing techniques are presented to take advantage of restrictions posted on these variations.

We now formally define the simple e-service model. A simple e-service schema
consists of a fixed number of module schemas, which can communicate with each other
by access over global variables. A global variable can be of boolean, enumerate or
integer type, where the domain of integer type is infinite. During the execution of an e-
service schema, each module schema can be instantiated dynamically multiple and pos-
sibly unbounded times. We call these instantiations of module schema module instances
or simply processes. Each e-service schema will have a unique main module schema,



whose instantiation serves as the entry point at the beginning of execution. During exe-
cution, all processes run in parallel, either asynchronously or synchronously. Note that
although modules can be composed synchronously, in our intermediate representations
to feed into model checkers, they are always transformed to the asynchronously com-
posed form.

Each module schema can have a fixed number of local variables. Again a local
variable can be a boolean, enumerate or integer variable. As we will mention later, if
each local variables of every process has a finite domain, counting abstraction can be
applied to reason about unbounded number of processes. The computation logic of a
module is defined by a list of transition rules. Each transition rule is expressed in the
form of an if-action statement: if condition then action. The meaning of
the rule is that if condition is satisfied then execute the action; otherwise the action is
automatically blocked. At some moment, there might be more than one transition rules
enabled, the semantics is to randomly pick up one to execute.

We limit the condition in a transition rule to be boolean expression or linear integer
constraints over global variables and local variables. An action can either be a conjunc-
tion of assignments over variables, or a command to instantiate a new process. Global
variables can be accessed by all processes, and local variables can only be accessed by
its owner. Note that local variables cannot be accessed by other processes even of the
same module schema. This restriction on variable scope is natural.

In Fig. 1 we show a little example to illustrate the syntax of simple E-service model.
The example consists of two module schemas main and A. Transition rule t2 inside
module main instantiate a new process of type A, and initialize its local variable pc

to be 0. Transition rule t1 inside module schema A increments global variable a by 1,
and advances its local variable pc to 1. t2 and copies of t1 that are owned by multiple
instances of A run in parallel. It is obvious that we can always instantiate more than two
processes of A, and satisfy the CTL property EF (a = 2)(eventually a will reach 2).

Global: Integer a=0;
Module A ( Integer pcInit )
Integer pc=pcInit;
Transition Rules:

t1: if pc=0 then pc'=1 ^ a'=a+1;
EndModule
Property: EF (a=2)

Module main ()
Transition Rules:

t2: new A (0);
EndModule

Fig. 1. Example of dynamic process instantiation



3 Verify systems with bounded number of processes

In this section, we discuss the verification techniques for workflow systems with bounded
processes. First we give a brief review of model checking technology and temporal
logics. Then we provide three different approaches to verify systems with different
features. We apply finite state symbolic model checking to one restricted workflow
model, the Vortex workflow[31], where integer domain is finite and dependency graphs
is acyclic. These features allow us to develop optimization techniques such as initial
constraints projection and variable pruning. It is proved that both finite and infinite ap-
proach can converge in finite steps when verifying such systems without loops. Then
we relax the restriction on the domain of integer variables, and apply integer constraint
based infinite state approach. We show experimental results on a Vortex application
MIHU, and compare the performance of the two methods. Finally we discuss the solu-
tion to remedy one drawback of the infinite approach. We show that hybrid predicate
abstraction technique can not only effectively shrink model size but help fixpoint com-
putation to converge in finite steps as well.

3.1 Model checking

In a landmark paper[37] in 1977, Pneuli argued that temporal logic can be very use-
ful to specify correctness of programs, especially the nonterminating reactive systems
with concurrent components. With the aid of powerful operators to express concept
such as “eventually” and “always”, temporal logic wins over Hoare Logic to specify
time-vary behaviors. From late 70's thrived many flavors of temporal logics. Debate
over which one is preferable is hot, especially for LTL(Linear Temporal Logic)[38] and
CTL(Computation Tree Logic)[14]. More detail discussions can be found in [20]. In
this paper all specification of properties will be written in CTL and its extensions.

In CTL formulas temporal operators such as X(in next state), F (eventually) and
G(globally) must be immediately preceded by a path quantifier A(for all paths) or
E(exists a path). For example, mutual exclusion property for a two-processes sys-
tem can be expressed as AG:(pc1=cs ^ pc2=cs), and progress property can be ex-
pressed in formula AG((pc1=wait ) AF (pc1=cs) ^ (pc2=wait ) AF (pc2=cs)).
When processes are instantiated dynamically, we can enhance CTL with quantifiers.
For example, the mutual exclusion property and progress property can be expressed in a
quantified form as AG(8p16=p2:(pc[p1]=cs^pc[p2]=cs)), and AG(8p(pc[p]=wait)

AF (proc[p]:pc=cs)).
Classified by the representation of system states, there are two types of model check-

ing, explicit state model checking and symbolic model checking. Explicit state model
checking[29,30, 28] has a close relationship with B�uchi automata[45], a finite state
machine that accepts infinite words. All verification problems in explicit model check-
ing can be transformed to satisfiability test of B�uchi automata. In practice we are more
inclined to use symbolic model checking[10], as system states are represented more



compactly, much bigger systems can be verified. In symbolic model checking, Binary
decision diagram(BDD)[39] is a most frequently used symbolic representation to ver-
ify finite state systems, and Presburger formulas[36] is popular in verifying infinite state
systems.

Now we give a short introduction on how CTL properties are verified. Suppose
that we already have a workflow specification formally modeled. The transition system
T = (S; I; R) consists of a state space S, a set of initial states I � S, and a transition
relation R � S�S. Given a set of states p, its pre-condition PRE(p;R) are all the states
that can reach a state in p with a single transition in R (i.e., the set of predecessors of all
the states in p), i.e. PRE(p;R) = fs : 9s0s:t:s0 2 p^(s; s0) 2 Rg. POST(p;R) is defined
similarly as POST(p;R) = fs : 9s0s:t:s0 2 p^ (s0; s) 2 Rg. Based upon PRE(p;R) we
are able to verify CTL properties for a transition system T = (S; I; R). For example, let
EF (p;R) represents the set of all possible states from which there exists an execution
path such that eventually p is satisfied. Then EF (p;R) is computed by least-fixpoint
EF (p;R) = �x:(p _ PRE(x;R)). Transition system T satisfies CTL property EFp if
and only if initial states I � EF (p;R). More details about CTL verification can be
found in [34].

3.2 BDD-based finite approach

In practice many workflow systems can be mapped to a restricted variation of our sim-
ple E-service model. For example, Vortex[31] workflow can be regarded as a restricted
simple E-service model such that domains of integer variables are finite and depen-
dency graph is acyclic. By taking advantage of these restrictions, we are able to apply
BDD-based finite model checking and develop certain optimization techniques. We now
demonstrate these optimizations and present experimental results based on our earlier
work[22] to model check Vortex workflow[31] with symbolic model checker SMV[34].

Given a simple E-service schema and all its transition rules, if a variable A is used
to compute some variable B, either in the enabling condition part or action part of a
transition rule, we say that variable B is dependent on variableA. Following this defini-
tion, we can derive a dependency graph for each E-service schema. A simple E-service
schema with acyclic dependency graph will have many good properties, for example the
declarative semantics, i.e. given a fixed input any legal execution sequence will eventu-
ally generate the same output. Based on this observation, if the desired property is about
values of leaf nodes in the dependency graph, it suffices to check one legal execution
path. This idea is similar to partial order reduction[25]. As we only generate an equiva-
lent part of transition system, verification cost is lowered. Moreover, a better structured
BDD transition relation can be generated, and the overall BDD transition size is linear
on program size. More discussions can be found in [22].

By taking advantage of acyclic dependency, we are able to develop two more opti-
mizations named variable pruning and initial constraints projection. The idea of vari-
able pruning is based on the observation that in a simple E-service schema with acyclic



dependency graph each variable has a “lifespan”. Outside of its lifespan, a variable be-
comes no use for execution, and we can assign it a “don't care” value. The assignment,
is in fact to eliminate that variable in the BDD representation. Thus during each step
of fixpoint computation, the BDD representation encodes only the “active” variables.
Hence we can successfully reduce the state space of the problem to the state space
over the set of active variables, which is only a small portion of the set of all variables.
Similar to variable pruning, source variables(in dependency graph those variables have
outgoing edges only) can be “lazily assigned” until they are first referenced. To keep
the equivalence to original model, initial constraints are projected to those lazy assign-
ments. This helps to alleviate BDD operations on sorted arrays, more details can be
found in [22].
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We took a Vortex application MIHU[22] as a case study. MIHU consists of around
forty integer variables and hundreds of source lines. We are able to prove all correct
properties, and managed to identify violation of two proposed properties on MIHU,
which was caused by missing bounds on some of attributes. The graphs shown in Fig-
ure 2 show the time used and memory consumed for both backward and forward image
computation by SMV. The bottom one shows the size of the BDD that encodes the
transition relation.

There are some interesting results reflected in the SMV data. First, it can be ob-
served that the time consumed increases exponentially with the integer width due to the
exponential cost associated with image computation. However memory consumption
does not increase as sharply demonstrating that BDDs generate a compact encoding
of the state space. Second, the transition relation size increases almost linearly with
the integer width, which reflects the fact that the BDD encoding of linear integer con-
straints should have a linear size over the integer width. This is reflected in the graph
at the bottom of Figure 2. Third, we observed that to set an appropriate integer width
for verification of a property is important for finite state verification. For most of the
properties the BDD encoding is not sound if we restrict the integer domains too much.
For example for some properties if we restrict the integer width to 4 bits the results that
SMV gives are incorrect (i.e., SMV reports true for false properties or false for true
properties). This is due to the fact that the constants used in the Vortex schema/property
exceed the range of variables and lead to an incorrect modeling. The problem of deter-
mining what is the smallest integer width that guarantees the soundness of finite-state
verification is an interesting direction for future research.

3.3 Integer constraints based infinite approach

As mentioned in the previous subsection, BDD based finite state approach does not
scale well with the integer width. This is due to the fact that BDD symbolic repre-
sentations are specialized for encoding boolean variables and become inefficient when
used to represent integer constraints, which should be represented by more efficient
Presburger arithmetic formulas. Infinite-state representations based on linear arithmetic
constraints have been used in verification of real-time systems, and infinite-state sys-
tems [3, 9, 27] which are not possible to verify using explicit representations. Action
Language Verifier [7], based upon Composite Symbolic Library[46] that manipulated
both BDD and Presburger package, is such an infinite-state symbolic model checker
developed for automated verification of CTL properties of Action Language specifica-
tions. Action Language specifications are modular, each module is defined as a compo-
sition of its actions and submodules. The similarity of syntax allowed us to take Action
verifier as a rapid prototyping tool to investigate the infinite model checking approach.

Action verifier use composite formulas to represent transition system T = (S; I; R).
A composite formula is obtained by combining boolean and integer formulas with logi-
cal connectives. Boolean formulas are represented in the form of ROBDD [34], and in-



teger formulas In Composite Symbolic Library are stored in a disjunctive normal form
representation provided by Presburger Arithmetic manipulator Omega Library[32]. In
this representation, a Presburger formula is represented as the union of a finite list of
polyhedra, .

Let pBi and rBi be boolean logic formulas, and pIi and rIi denote Presburger arith-
metic formulas. Given a set of states p =

Wnp
i=1 p

B
i ^ pIi and a transition relation

R =
WnR
i=1 r

B
i ^ rIi , The PRE operator, which is essential for fixpoint computation,

can be computed by the following equation, as a result of distribution law of existential
quantification.

PRE(p;R) =

nR_
i=1

np_
j=1

PRE(pBj ; r
B
i ) ^ PRE(pIj ; r

I
i )

Note that PRE(pBj ; r
B
i ) can be computed by existentially eliminating boolean variable

using a BDD manipulator [34] and PRE(pIj ; r
I
i ) can be computed by calling Presburger

arithmetic manipulator[9]. Same observation holds for POST function. Based upon PRE

operator we can continue to use traditional CTL model checking algorithms.
The translation from Vortex Decision Flows to Action Language is straightforward,

and we present the experimental results on MIHU in Figure 3. Comparing with the
finite approach, we do not have to worry about the integer width when using the Action
Language Verifier, the verification results are provably sound. Other than property 3
Action Language Verifier was able to prove or disprove all the properties. For property 3
the Action Language Verifier did not converge, which demonstrates the high complexity
associated with infinite-state model checking. The fifth column in the table shows the
smallest integer width when the Action Language Verifier starts to outperform SMV.
Hence, even for a finite problem instance, it is better to use an infinite-state model
checker rather than a finite-state model checker after these integer widths. The results
also show that the Action Language Verifier uses more memory than SMV. Part of the
reason could be that the Action Language Verifier uses DNF to store integer constraints
which may not be as compact as the BDD representation. As constraint-based tools
such as Action Language Verifier are not as mature as SMV which has been studied for
more than a decade, we think there is still room for improvement in the performance of
constraint-based infinite state model checkers such as Action Language Verifier.

3.4 Hybrid predicate abstraction

There are two basic difficulties in application of Action Language Verifier (or any other
infinite-state model checker) to verification of workflows: 1) The large number of vari-
ables in a workflow specification can cause the infinite-state symbolic representations
such as polyhedra to become prohibitively expensive to manipulate. 2) Since variable
domains are not bounded the fixpoint computations may not converge within finite
steps. The simple example on the left side of Fig. 4 shows that sometimes even a simple
loop can make Action Language Verifier diverge.



Property Time Memory Winning Bits against Winning Bits against
(Seconds) (Mb) SMV(Backward) SMV(Forward)

p1: 303s 17.8 9 12
p2: 271s 17.8 9 11
p3: diverged
p4: 271s 17.8 9 11
p5: 158347s 688.3 19 19
p6: 131070s 633.3 17 19

Fig. 3. Verification Results for Action Language Verifier

Global:
Integer y ;
Initial: y=1;

Module main()
Transition Rules:

t1: y'=y+1;
EndModule
Property: AG(y6=�1)

Global:
Bool b1,b2 ; // b1: y=�1, b2: y>0

Initial: b1 ^ b2;
Module main()
Transition Rules:

t1: if b1_b2 then b1'=false;
else b1'=?;

if b2 then b2'=true;
elseif b1 then b2'=false;
else b2'=?;

EndModule
Property: AG(b1)

Fig. 4. Example that fixpoint computation can not converge

When Action tries to verify propertyAG(y 6=�1), it has to first computeEF (y=�1),
and then check whether the set EF (y=�1) \ fy=1g is an empty set. Since EFp is
computed by least-fixpoint �x:(p _ PRE(x)), and PREn(y=�1) is fy = �1�ng, Ac-
tion can not converge in a finite number of steps.

By using predicate abstraction[40] we can alleviate the problem. The idea is to ex-
tract a boolean “abstract” model, and verify properties on this smaller and finite model.
Given a list of integer predicates B1; :::; Bn and an integer program C, by predicate ab-
straction we can derive an abstract systemAwhose system state is a n-tuple (b1; :::; bn).
In the abstract transition relation, each transition rule is derived from a corresponding
transition rule in concrete system, and each abstract transition rule is a conjunction of
assignments over abstract boolean variables. As an example, we give the abstract ver-
sion of the little loop example on the right side of Fig. 4, the abstract program can be
successfully verified and thus prove the correctness of the concrete program.



The cost of abstraction is pretty expensive. Suppose that the number of predicates
to be abstracted is k, the complexity to compute a single abstract transition rule is
O(k � 3k). For rule based E-Service systems and Workflow systems such as Vortex,
there are a lot of switch case statements, thus one integer variable may be involved in
many predicates. To abstract such integer variables out proves not successful. We re-
sort to an hybrid approach – just abstract out those variables that are hard to handle
by infinite-state verifier, and leave others untouched. We verified a WebShop work-
flow specification using three approaches: the pure infinite-state fixpoint computation,
the pure predicate abstraction and the hybrid approach. The experimental results are
displayed in Table. 1. As shown in the table, hybrid approach can achieve a better per-
formance in practice. Currently to identify the set of variables to be abstracted out still
needs human guidance, to automatically identify them remains as one of our future
research directions. More details can be found at [23].

DataSet Transition Relation Verification Number of Vars Number of
Construct Time Time Abstracted Out Predicates

pure infinite-state fixpoint 0.46s > 1 hour 0 0
hybrid1 67s 206s 2 5
hybrid2 144s 53s 3 6

pure abstraction > 1 hour - 26 57

Table 1. Experimental Results

4 Verify systems with unbounded number of processes

We discuss techniques used to tackle unbounded and dynamic instantiation of processes
in this section. It is well known that model checkers can not handle systems with a large
number of processes very effectively, unless some other abstraction techniques are ap-
plied. We present an existing technique called counting abstraction to handle system
with finite yet unbounded processes. We show that this technique has limitations, and
then we present a more flexible and versatile framework using “pid quantified con-
straints”.

4.1 Counting abstraction

As the number of processes grows, the cost of model checking can grow exponentially.
For example, one can easily verify whether one solution of producer consumer problem
with two processes satisfies mutual exclusion property, yet it is almost impossible to do



so for 100 processes without any further optimization techniques. By applying count-
ing abstraction [18], we are able to prove such problems with unbounded number of
processes.

The main idea of counting abstraction is to define a counter for each local state of
a module schema, so that the number of processes in this local state can be recorded.
By doing so, one can easily verify mutual exclusion problem by checking whether the
counter of that critical state will ever exceed 1. For example, in Fig. 1, if we change the
data type of local variable pc to enumerate type, we can apply the counting abstraction.
Suppose the enumerate type for pc contains two elements loc0 and loc1, as pc is the only
local variable of module schema A, there are only two local states for any instance of
A, naturally we label them as loc0 and loc1. Then to define the abstract system, we will
declare two integer variables for local state loc0 and loc1 respectively, and in transitions
we will add operations on these counters to record the status change of processes. For
example, in t1 we will increment counter for loc1 and decrement counter for loc0 by 1.

Counting abstraction has been successfully applied in verifying parameterized cache
coherence protocol[18], and Client-Server communication protocols[19]. However there
are limitations to apply this technique. Since one has to define a counter for each pos-
sible local state of each “process schema”, for counting abstraction to work, we need
local states of processes to be finite. In another word, processes can not have data types
of infinite domain, such as integers. Another drawback is that since local states are to-
tally abstracted away, only some particular properties can be expressed in the abstract
system. We can not reason about progress properties like “if process 1's state is wait,
then eventually its state can reach critical section”, because we only know about the
number of processes in some state, but have no information about any specific process.
We propose a more versatile framework in the next subsection, which allows processes
with infinite local states.

4.2 Pid quantified constraints

We consider dynamic and unbounded process instantiation in this section. The main
approach is to utilize a new symbolic representation named pid quantified constraints to
represent infinite system states and reason about process ids. We first define system state
for simple e-service model, and then present the concept of pid quantified constraints.
We show how to construct a constant sized intermediate transition relation for systems
with dynamic process instantiation. Finally we use a simple example to illustrate the
algorithm to compute pre-condition operator PRE(p;R).

System state A system state schema is a tuple (G;P;L), and system state its val-
uation. In a system state schema (G;P;L), G is the set of all global variables, P
consists of the instantiation counters for each module schema, and L is the set of lo-
cal variables of all processes(include those inactive processes). L can be regarded as



a list of unbounded arrays. In L for the nth instantiation of a module schema A, we
use A:vari [n] to denote its local variable vari, and we call n the index. In the un-
bounded array, elements of those inactive processes are assigned uninitialized value ?,
i.e. i>A:Cnt) A:v [i]=?. For example, for the simple program listed in Fig. 1 its sys-
tem state schema is (a;A:Cnt;A:pc[]), and one possible state is (2; 2; [1; 1;?;?; : : :]).
In this state, process A has been instantiated twice.

Pid quantified constraints We now define the concept of pid quantified constraint,
which can be used to encode infinite many system states. Let axiom be a boolean vari-
able or linear integer constraint over global variables and local variables, and expres-

sion a boolean expression over axioms. One pid quantified constraint
A

9a : : :
L

9lexpr is
an expression existentially quantified by a list of unique existential quantifiers. In
a pid quantified constraint only bounded variables can be used to index local vari-
ables, and bounded variables are only used as index variables. For example, formula
A

9a1;a2a1<a2 ^ A:pc[a1]=0 and formula
A

9a1A:pc[a1]=A:pc[x] are not pid quantified

constraints. The meaning of unique existential quantifier
A

9a is a little different from
that of existential quantifiers in first order logic. We require that all variables in the set
a are only used to index local variables of Module A, and each index variable should
be mapped to a unique number no greater than A:Cnt, i.e. a state s satisfies a pid quan-

tified formula
A

9a1;:::an expr if and only if there exist a valuation v of a1; :::; an such
that the state s satisfies expr and 8ai 6=ajv(ai)6=v(aj) ^ v(ai)6A:Cnt. For example,

state (2; 2; [1; 1;?; : : :]) satisfies formula
A

9a1;a2A:pc[a1]=1^A:pc[a2], but it does not

satisfies formula
A

9a1;a2;a3A:pc[a1]=1 ^ A:pc[a2]=1 ^ A:pc[a3]=1.
In the following context, we usually use a pid quantified constraint f to refer to

the set of states that satisfy formula f . For example,
A

9i;jA:pc[i] 6 A:pc[j] represents
all possible states such that there are at least two processes of module schema A, and
the local variable pc of one process is less than or equal to the other. Note that in fact
A

9i;jA:pc[i]6A:pc[j] �
A

9i;jtrue, and it might be amazing that
A

9i;jA:pc[i]+A:pc[j]6=5 �
A

9i;jtrue. As far as we know, it is not clear the subset test of two pid quantified con-
straints is decidable, however there exist conservative algorithms (sufficient condition)
to do subset test. The idea of the conservative algorithm is to generate two Presburger
formulas from the pid quantified constraints, compare them, and use the result to tell
the comparison between the original pid quantified constraints. The process to generate
Presburger formulas needs to consider all permutations of index variables.

Satisfiability of a pid quantified constraint is decidable, as the problem can be trans-
formed into the satisfiability problem of Presburger formulas. An pid quantified con-

straint
A

9a : : :
L

9lexpr is satisfiable if and only if expr[A:v [a]=Ava ] is satisfiable. Here
we replace every appearance of array elements with a free integer variable in expr, as



shown by A:v [a]=Ava . For example,
A

9i;j(A:pc[i]<A:pc[j] ^ A:pc[j]<A:pc[i]) is not
satisfiable because Presburger formula Apci<Apcj ^ Apcj<Apci is not satisfiable.

Transition relation In traditional model checking transition relation size grows in pro-
portion to the number of instantiations of each module schemas. This is because each
instantiation has his own copy of transition rules. For example, in traditional model
checking, if there are two instances of module schema A in Fig. 1, we will have two
copies of transition rule t1 asynchronously composed in the transition relation, and the
two copies have only a slight difference in accessing the local variable pc. Now with the
power of quantifiers, and given that local variables are stored using unbounded arrays,
we can make the representation of transition relations much more succinct, and more-
over its size is always constant no matter how many instances there are. For example,
our first order representation of t1 and t2 in Figure 1 are listed in the Equation 1 and
2. The semantics of t1 is “if there exist a process of module schema A whose local
variable pc is 0, then we advance its pc to 1 and increment the global variable a by 1,
and for all other variables we let them keep their original values”. In Equation 2, the
semantics is to increment counter of schema A by 1 and initialize the new local variable
with 0, and then let all other variables keep their original values.

t1:
A

9iA:pc[i]=0 ^A:pc[i]0=1 ^ a
0=a+1 ^ 8Aj 6=iA:pc[j]

0=A:pc[j] ^ A:Cnt
0=A:Cnt (1)

t2: A:Cnt
0=A:Cnt+1 ^ A:pc[A:Cnt

0]0=0 ^ a
0=a ^ 8Ai6=A:Cnt0 (A:pc[i]

0=A:pc[i]) (2)

Verification As discussed in previous sections, pre-condition operator PRE needs to
be defined before doing fixpoint computation to model check CTL properties. Without
loss of generation, we can assume that all transition actions can be divided into two
types, pure assignment action and process instantiation action. We now discuss how to
compute PRE for these two types of actions.

Type I. Let tuple (G;P;L) be the system schema, a type I transition rule �A of of
Module A can expressed in the following form.

�A :=
A

9i

�
T (IG; OG; ILi ; O

L
i ) ^ SAME(Ô)

�
(3)

where SAME(V ) :=
^
v2V

v0 = v

In Equation 3 index variable i identifies the process to take action, set IG; OG; ILi ; O
L
i

represents the global input, output, local input and output variables respectively, obvi-
ously ILi and OL

i contains local variables indexed by i only. Ô = L[G[P�OG�OL
i

represents the set of variables that should preserve their original values. For example,
for the transition rule t1 shown in Equation 1, IG=OG=fag, ILi = OL

i = fA:pc[i]g,
and Ô = fA:pc[j] j j 6= ig.



Suppose a pid quantified constraint
A

9a : : :
L

9lexpr(L
A
s ; L

B
s ; :::; L

L
s ; Gs) is used to

represent the current states set S. Here Gs is the set of global variables appeared in
expr, LA

s , : : :, LL
s are the sets of local variables of module A to L that appeared in

expr respectively. The next form of S is to simply substitute all variables appeared

in expr with their “primed” forms. For example, the next form of
A

9aiA:pc[ai]=1 is
A

9aiA:pc[ai]
0=1.

Then PRE(S,�A) can be computed in two steps. First we compute the conjunction
C = S 0 ^ �A, and then we do existential quantification on C to eliminate all “primed”
variables, i.e. letX be the set of “primed” variables appeared in C. PRE(S; �A) := 9X C.
The existential quantification process can be simply accomplished by Presburger solver
and BDD manipulator. Now the formula to compute C is listed as follows.

C :=
A

9fig[a:::
L

9lexpr
0 ^ T (IG; OG; ILi ; O

L
i ) ^ SAME1(V1) ^ SAME2(V2)

_
_
aj2a

A

9a:::
L

9lexpr
0 ^ T (IG; OG; ILaj ; O

L
aj
) ^ SAME1(V

0
1
) ^ SAME2(V

0
2
)

where V1 = LA
s [ ::: [ LL

s [Gs �OL
i [ OG

V2 = G [ L [P� LA
s [ ::: [ LL

s [Gs [OL
i [ OG

V 0
1
= LA

s [ ::: [ LL
s [Gs � OL

aj
[ OG

V 0
2
= G [ L [P� LA

s [ ::: [ LL
s [Gs [ OL

aj
[ OG (4)

As shown in Equation 4, C is a disjunction of jaj + 1 clauses. The first clause

(started with quantifiers
A

9fig[a) handles the case when none of index aj2a is mapped
to a number equal to i, and the other jaj clauses handle the cases when there is exactly
one aj2a equal to i. Note that due to the definition of “unique existential quantifier” we
only have to consider these jaj+ 1 cases. In the last jaj clauses, since aj is identical to
i in �A, we substitute all appearance of i in T with aj , and this operation is represented
by set ILaj and OL

aj
inside function T in the last jaj cases. Now the last problem is how

to deal with SAME. We split SAME(Ô) into two parts SAME1(V1) and SAME2(V2). It
is clear that Ô = V1 [ V2, and V1 is a finite set while V2 is an infinite one. The most
important fact is that in the formula of C each variable v2V2 appears in the subformula
of SAME2 only, with the form v0 = v. Thus after existential quantification of v0 in
the second step, v will not appear in the result. This guarantees the finite length of
PRE(S; �a), because subformula expr, T and SAME1 all have finite length.

Example 1. Let the current state S represented by formula a=1^
A

9a1A:pc[a1]=0, and
the transition �A be the t1 shown in Equation 1. Then the next state S 0 is a0=1 ^
A

9a1A:pc[a1]
0=0, and the conjunction C(S 0; �A), according to Equation 4, is computed

as follows. Note that in the second clause(started with quantifier
A

9a1 ) because A:pc[a1]0



is assigned 0 and 1 in expr0 and T at the same time, the second clause is not satisfiable,
and hence represents empty set.

C :=
A

9i;a1(a
0=1^A:pc[a1]

0=0)^(A:pc[i]=0^A:pc[i]0=1^a0=a+1) ^

SAME1(V1) ^ SAME2(V2)

_
A

9a1

�
a

0=1 ^A:pc[a1]
0=0) ^ (A:pc[a1]=0 ^A:pc[a1]

0=1 ^ a
0=a+1) ^

SAME1(V
0
1) ^ SAME2(V

0
2)

where V1=fA:pc[a1]g; V2=fA:pc[x] j x6=a1 ^ x6=ig [ fA:Cntg

V
0
1=�; V

0
2=fA:pc[x] j x6=a1g [ fA:Cntg

:= (a+1=a
0=1) ^

A

9i;a1(A:pc[a1]
0=0 ^ A:pc[i]=0 ^A:pc[i]0=1 ^A:pc[a1]

0=A:pc[a1])

Thus, after existential quantification, we get

PRE(S; �A) := a = 0 ^ (
A

9i;a1A:pc[i] = 0 ^A:pc[a1] = 0)

Type II We adopt a similar methodology to handle the “process instantiation ac-
tions”. This time we analyze the relationship between index variables and the instance
counter, as shown in the following example.

Example 2. Suppose S is represented by formula a=1 ^
A

9a1A:pc[a1]=0, and the tran-
sition �2A is t2 shown in Equation 2. Then conjunction C=S 0^�2A is computed as
follows.

C := (a0=1 ^A:pc[A:Cnt
0]0=0) ^ (A:Cnt

0=A:Cnt+1 ^A:pc[A:Cnt
0]=0) ^

SAME1(V1) ^ SAME2(V2)

_ (a0=1 ^
A

9i(A:pc[i]
0=0) ^ (A:Cnt

0=A:Cnt+1 ^ A:pc[A:Cnt
0]0=0) ^

SAME1(V
0
1) ^ SAME2(V

0
2 )

where V1=fag; V2=fA:pc[x] j x6=A:Cnt
0g

V
0
1=fa;A:pc[i]g; V

0
2=fA:pc[x] j x6=A:Cnt

0 ^ x6=ig

:= a
0=a=1 ^A:Cnt

0=A:Cnt+ 1 ^ A:pc[A:Cnt
0]=0

As shown in the calculation steps above, we have two disjuncted clauses in C. The
first clause handles the case when index variable i is instantiated as A:Cnt0 (we replace
all appearance of i in S 0 and take off the quantifier on i). The second one handles the
case when i and A:Cnt0 are mapped to two different numbers. It is easy to see that the
second clause is a subset of the first clause, and we can eliminate it in the simplified
form. Finally, we do existential elimination, and get the result PRE(S; �2A) � a = 1.

Using pid quantified constraints, we can verify the property EF (a = 2) for the
example listed in Fig. 1. As the propertyEFp is evaluated by fixpoint�x:p_PRE(x; �).



We listed each step of the fixpoint computation in Fig. 5. We use an early detection
algorithm to check whether the set of initial states is a subset of these intermediate
results, so verification converges in five steps.

EF0 a=2

EF1 a= 2 _ a=1 ^
A

9iA:pc[i]=0

EF2 a=2 _ a=1 _ a=0 ^
A

9i;jA:pc[i]=0 ^A:pc[j]=0

EF3 a=2 _ a=1 _ a=0 ^
A

9iA:pc[i]=0 _ a=�1^
A

9i;j;kA:pc[i]=0^A:pc[j]=0^A:pc[k]=0

EF4 a=2 _ a=1 _ a=0 _ a=�1 ^
A

9i;jA:pc[i]=0 ^ A:pc[j]=0_

a=�2 ^
A

9i;j;k;lA:pc[i]=0 ^A:pc[j]=0 ^ A:pc[k]=0 ^A:pc[l]=0

Fig. 5. Evaluation Steps

5 Open problems

Similar to the infinite state approach we discussed before, our verification based on pid
quantified constraints suffered from the problem that fixpoint computation might not
converge in finite steps. For example, the EF computation for the program in Figure
1 will not converge if we do not use early detection algorithm. One promising remedy
we think is to use predicate abstraction to derive a finite abstraction and avoid infinite
fixpoint computation. As the semantics of transition relations have been enriched by pid
quantifiers, we have to redefine the abstraction algorithm, and this will be one of our
future research direction.

Another interesting topic is what type of properties can be verified using pid quan-
tified approach. When initial states are represented by pid quantified constraints, safety
property AG(8p1;p2f(p1; p2)) can be verified, because EF (9p1;p2f(p1; p2)) can be
computed and encoded by pid quantified constraints, and the satisfiability of its in-
tersection with initial states is decidable. However, when temporal operators and pid
quantifiers are mixed, things becomes complex. For example, can the progress property
AG(8pidpc[pid]= wait ) AF (pc[pid]= Enter)) be verified?

We believe that research effort is still needed on subset test algorithms in practice,
as such operations are vital to model check liveness properties. It is also interesting to
investigate the simplification of pid quantified constraints.
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