
Conversation Specification: A New Approach to
Design and Analysis of E-Service Composition

Tevfik Bultan Xiang Fu
University of California

Santa Barbara, CA 93106
USA

{bultan,fuxiang}@cs.ucsb.edu

Richard Hull
Bell Labs, Lucent
600 Mountain Ave.

Murray Hill, NJ 07974, USA

hull@research.bell-labs.com

Jianwen Su
University of California

Santa Barbara, CA 93106
USA

su@cs.ucsb.edu

ABSTRACT
This paper introduces a framework for modeling and specifying the
global behavior of e-service compositions. Under this framework,
peers (individual e-services) communicate through asynchronous
messages and each peer maintains a queue for incoming messages.
A global “watcher” keeps track of messages as they occur. We pro-
pose and study a central notion of a “conversation”, which is a se-
quence of (classes of) messages observed by the watcher. We con-
sider the case where the peers are represented by Mealy machines
(finite state machines with input and output). The sets of conver-
sations exhibit unexpected behaviors. For example, there exists a
composite e-service based on Mealy peers whose set of conversa-
tions is not context free (and not regular). (The set of conversations
is always context sensitive.) One cause for this is the queuing of
messages; we introduce an operator “prepone” that simulates queue
delays from a global perspective and show that the set of conversa-
tions of each Mealy e-service is closed under prepone. We illustrate
that the global prepone fails to completely capture the queue de-
lay effects and refine prepone to a “local” version on conversations
seen by individual peers. On the other hand, Mealy implementa-
tions of a composite e-service will always generate conversations
whose “projections” are consistent with individual e-services. We
use projection-join to reflect such situations. However, there are
still Mealy peers whose set of conversations is not the local prepone
and projection-join closure of any regular language. Therefore, we
propose conversation specifications as a formalism to define the
conversations allowed by an e-service composition. We give two
technical results concerning the interplay between the local behav-
iors of Mealy peers and the global behaviors of their compositions.
One result shows that for each regular language L, its local prepone
and projection-join closure corresponds to the set of conversations
by some Mealy peers effectively constructed from L. The second
result gives a condition on the shape of a composition which guar-
antees that the set of conversations that can be realized is the local
prepone and projection-join closure of a regular language.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Interface definition languages

General Terms
Languages, Verification, Design

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Keywords
E-service Composition, Conversation Specification, Communicat-
ing Finite State Automata

1. INTRODUCTION
The use of e-services (i.e., self-contained Web accessible pro-

grams and devices) will revolutionize the way that many e-com-
merce, consumer software, and telecommunications applications
are provided. Emerging standards (e.g., SOAP, UDDI, WSDL,
WSFL, BPEL4WS) and industrial technology (e.g., IBM’s Web
services Toolkit, Sun’s Open Net Environment and JiniTM Net-
work technology, Microsoft’s .Net and Novell’s One Net initia-
tives, HP’s e-speak) in e-services has focused on providing prag-
matic, working systems so that e-services can effectively interact
with each other. Variants of the web services paradigm also arise in
the “converged” network, i.e., the evolving integration of the tele-
phony network and the Internet through standards such as SIP, Par-
lay/OSA, and 3GPP. Research papers in the field (e.g., [9, 13, 15,
16, 26, 17, 4, 3, 18]) are providing complimentary technologies,
for modeling at a more fundamental level both e-services them-
selves, and frameworks for combining them. The programming
language community is addressing the web services phenomenon
with new languages [7, 19] and specialized type systems [20]. Re-
cent work on e-services in the semantic web community (e.g., [24,
8, 25, 14]) is beginning to combine tools for annotating e-services
and for planning, so that e-services can be combined automatically
to achieve a specified functionality.

This work is based on three fundamental observations:

1. There has been essentially no formal work to understand the
relationship between the global properties of a composite
e-service and the local properties of the atomic e-services
that comprise the composition. Furthermore, our preliminary
results reported in this paper indicate that there are unex-
pected interactions between the local and global behavior of
composite e-services. For example, as detailed below if the
atomic e-services are described using finite state automata
the resulting global behavior cannot always be described in
terms of regular languages, although sufficient conditions
can be identified to guarantee this state of affairs.

2. Design of composite e-services should incorporate both global
and local properties of composite e-services. The traditional
bottom-up approach to designing these services can lead to
undesirable global behaviors. Our initial technical results
suggest that an alternative, top-down approach to composite
e-service design can provide conceptually cleaner services

403

that will be easier to verify and maintain. A formal under-
standing of the interaction of local and global behaviors of
composite e-services will provide an important foundation
for the creation of such design and analysis tools.

3. A primary goal of the e-services paradigm is to support the
dynamic discovery, selection, and composition of (atomic
or composite) e-services. Further, a key motivator for this
paradigm is the promise of supporting a high degree of cus-
tomization (and personalization) in the provision of services,
e.g., through the use of intricate user profile and preferences
data, and the use of policy engines in the atomic e-services.
Thus, design and analysis tools for composite e-services should
be applicable to both dynamic composition of e-services that
incorporate policy management for customization.

This paper introduces a framework for modeling and specifying
the global behavior of e-service compositions. Under this frame-
work, peers (individual e-services) communicate through asynchro-
nous messages and each peer has a queue for incoming messages.
A global “watcher” keeps track of messages as they occur. We
propose and study a central notion of a “conversation”, which is
a sequence of messages observed by the watcher. By understand-
ing properties of these conversations, this study can provide a new
approach for the design and analysis of “well-formed” e-service
compositions.

Within this general framework, this paper focuses on classes of
messages, e.g., in an e-commerce application, the message classes
might include, “invoice”, “receipt”, “acknowledgment”, etc. We
study the case where the peers are represented by Mealy machines
(finite state machines with input and output). The sets of conver-
sations exhibit unexpected behaviors. For example, there exists a
composite e-service based on Mealy peers whose set of conversa-
tions is not regular nor context free. The set of conversations is
shown to be context sensitive. One cause for this is the queuing of
messages; we first introduce an operator “prepone” in an attempt to
simulate queue delays. Although the set of conversations of each
composite e-service with Mealy peers is closed under prepone, we
illustrate that prepone does not completely capture the queue de-
lay effects. We refine the prepone operator to a “local” version
which applies to conversations by individual peers. Another as-
pect of the composite e-service is that decisions are only made
by individual e-services possibly with communications with each
other. This means that each e-service sees only a “local” view of
the global conversation. Consequently, Mealy implementations in
the composite e-service will also include conversations that whose
“projections” to individual e-services are consistent with the local
e-services. We use projection-join closure to capture such situa-
tions. This is reminiscent of the decomposition and join in the
relational databases. However, there are still Mealy peers whose
set of conversations is not prepone and projection-join closure of
any regular language. Therefore we propose conversation specifi-
cations as a formalism to define the conversations allowed by an
e-service composition.

In this paper we present two technical results concerning the in-
terplay between the local behaviors of Mealy peers and the global
behaviors of their compositions. One result shows that for each
regular language L its local prepone and projection-join closure
corresponds to the set of conversations by some Mealy peers effec-
tively constructed from L. The second result gives a condition on
the shape of a composition which guarantees that the set of conver-
sations that can be realized is the local prepone and projection-join
closure of a regular language.

The paper is organized as follows. Section 2 presents a formal

Do until halt
nondeterministic choice:

read an input;
send an output to some

other peer;
halt;

end choice

input queue . .
 .

To
 o

th
er

 e
-s

er
vi

ce
s

Figure 1: A model of e-service

framework for studying composite e-services. Sections 3, 4, and
5 present some preliminary results that focus on an abstract view
of the formal framework based on the classes of messages passed
between e-services and finite state automata; results here illustrate
the unexpected nature of the interplay between local and global in
composite e-services. Section 6 concludes the paper.

2. A MODEL FOR E-SERVICES
In this section we describe a paradigm for modeling e-services

and discuss various modeling issues within the paradigm. Our goal
is to set up the ground work for studying composition of e-services.
For this purpose, we start with a very general abstract model for e-
services in this section, and gradually bring in some refinements
that are relevant to our investigation in the later sections.

While abstract and focused primarily on global behavior, our
paradigm is based on the fundamental constructs of the web ser-
vices as promoted by, e.g., BPEL4WS [11], the SOAP standard,
IBM’s Web services Toolkit, Microsoft’s .Net, and other industrial
products and proposals. It also follows the model adopted by much
of the research on web service composition [8, 25], work on web
service programming languages [7, 19], and the AZTEC proto-
type [17]. Importantly, our model also reflects fundamental con-
structs emerging for the next generation telecommunications net-
work. The telecommunications network has traditionally involved
a small number of monolithic, multi-function switches, but is now
migrating to an Internet style that is “disaggregated” with a high
number of distributed, specialized softswitches and feature servers.
Indeed, the Session Initiation Protocol (SIP) [27] provides a highly
flexible mechanism for coordination of low-level telecomm ser-
vices that is reminiscent of, but less expressive than, SOAP. Also,
the reference architecture for an IP Multimedia Core Network Sub-
system (IMS) that is being proposed by the 3GPP [1] and 3GPP2
[2] standards bodies (for 3G wireless data and voice) is quite com-
patible with the core elements of the web services paradigm.

A fundamental observation is that an e-service (1) provides ser-
vices through “service sessions” and (2) reacts to “events” during a
session, although the implementation of an e-service may be very
complex. Fig. 1 illustrates an abstraction of an e-service (called
here a peer) as a program that processes the input events from an
input queue and determines the response if any (in the form of out-
going events) and termination. For the present we make no as-
sumptions about the computational power of a peer, nor how much
storage it has.

Events form the enabling mechanism in composing e-services.
In this paper, we focus on an important kind of event—“messages”
between the individual e-services. Messages are organized into a
finite collection of “message classes” (each message is in exactly
one class). Message classes can be used to simplify and organize
the specification of actions. A message class consists of a name
and a finite set of attributes. A message of a class m consists of
an identifier of an e-service enactment (session), an identifier for
the message itself, the sender, the receiver, and a function mapping
each attribute of m to a value (of appropriate type).

404

store

ware-
house2

bank

ware-
house1

o
rder1

ok

receipt1 order2

receipt2

bi
ll 2

pa
ym

en
t 2

bill 1
pay

men
t 1

authorize

Figure 2: A composite e-service

EXAMPLE 2.1. Consider a very simple example of e-services
involving four servers: a retail store that plans to replenish its in-
ventory, its bank, and two warehouses that supply goods. Fig. 2
shows the four servers and message classes between them. In a
(simplified) typical scenario, the store requests an authorization
from the bank; after receiving the approval from the bank, the store
can send one or more orders to the warehouses. When a warehouse
receives an order, it responds by billing the bank for the amount on
the order, and sends the store a receipt. The bank, in turn, makes
a payment after receiving a bill. The message class authorize may
include attributes “date”, “requested amount”, “account number”,
etc. and an authorize message may look like:

〈123, p12, store, bank, “11-1-2002”, “$2,500”, 43-56483, ...〉.

Peer 1

Peer 2

Peer n

W
at

ch
er

……

Figure 3: E-service composition

Unsurprisingly, the behavior of each server in Example 2.1 cor-
responds to the abstract model (Fig. 1). The composed e-service
can also be represented using this abstract model. Fig. 3 shows an
abstract architecture for an e-service composition, where the out-
put of an e-service goes to the input queue of another e-service.
The watcher is the concatenation of all the messages exchanged
among the peers. One can think of the watcher as a person listen-
ing to the network and recording, one by one, each message that
has been sent over the network. One of the central insights in this
paper is that postulating the (conceptual) existence of the watcher
permits two complimentary perspectives on composite e-services
design and analysis, namely, top-down vs. bottom-up. In particular,
specifying the desired global behavior as observed by the watcher is
fundamentally different from specifying the behaviors of the peers
which generate that watcher behavior.

Roughly, a peer implementation can be viewed as a “program”
that decides, based on the received messages and the messages al-
ready sent, if a new message should be sent, and/or if the session
should terminate. AZTEC [17] classifies e-services into two types:
(1) Discrete e-services that do not allow interactions during the ser-
vice, and (2) Interactive e-services that allow arbitrarily many in-
teractions during the service, such as VCR type of controls during
a session. A discrete e-service can be viewed as a service whose
output depends only on the original input, while in an interactive

e-service inputs can be unpredictable and the e-service reacts to
input as they occur. AZTEC [17] emphasizes the importance of
interactive e-services in the context of telecommunications appli-
cations, but they are also relevant in the context of e-commerce. A
single occurrence of ordering a book can be modeled using discrete
e-services. But in many cases a vendor wants to track the entire re-
lationship with a customer, and perhaps modify customer treatment
accordingly (e.g., frequent flier programs). In this case, some of the
e-services used are fundamentally long-running and interactive.

We now start to lay the foundation for a formal study of global
behavior of composite e-services. The first step is to formalize the
notion of a “schema” for a composite e-service.

DEFINITION. An e-composition schema (ec-schema) is a triple
(M, P, C), where M is a finite set of message classes, P a finite
set of (abstract) peers (e-services), and C is a finite set of one-way
communication channels, 1 i.e., C is a finite set of triples (ps, pr, σ)
such that ps, pr ∈ P , ps 6= pr, σ ⊆ M , and for each pair of
channels (ps, pr, σ) and (p′

s, p
′
r, σ

′) in C, if ps = p′
s and pr = p′

r,
then σ = σ′; otherwise, σ ∩ σ′ = ∅.

Let S = (M, P, C) be an ec-schema. In a channel (ps, pr, σ) ∈
C, ps is the sender and pr the receiver of the channel, and only
messages in classes in σ are allowed to be sent on the channel. We
fix the following notations in the remainder of the paper. For each
peer p ∈ P , Σin

p , Σout
p denote the sets of (classes whose) messages

may be put in the input queue of p and in the output by p, resp. i.e.,
Σin

p = ∪{σ | (ps, p, σ) ∈ C} and Σout
p = ∪{σ | (p, pr, σ) ∈ C}.

Finally, let Σ =
⋃

p∈P
Σin

p =
⋃

p∈P
Σout

p ⊆ M .

DEFINITION. Let S = (M, P, C) be an ec-schema and p ∈ P .
A (peer) implementation of p is a computable function which maps
a sequence of incoming and outgoing messages (a word over Σ) to
Σ∪{halt, no-op}. An ec-implementation of S is a mapping I such
that for each p ∈ P , I(p) is an implementation of p.

The e-service implementation described above is very general.
In the following sections, we introduce a specific type of imple-
mentations based on Mealy machines and study the global behavior
of a composition and the local behaviors of individual e-services.

3. MEALY IMPLEMENTATIONS
A primary concern in composing multiple e-services is to spec-

ify global behavior of the composition by limiting the way the e-
services are to interact with each other, e.g., the coordination of
messages. In order to understand the global behavior, we focus on
the families of sequences of messages among the peers.

In the technical discussions, we consider a special family of im-
plementations called “Mealy implementations” (or “Mealy peers”)
based on Mealy machines [22]. There are two primary reasons.
First, Mealy machines are a variant of finite state machines and
seem suitable for modeling e-services. Second, Mealy implemen-
tations make it possible to analyze some aspects of the global be-
havior. As we shall see, our preliminary results suggest a “top-
down” approach to e-service compositions and raise many interest-
ing questions.

Let ε denote the empty string. If Γ is an alphabet, we define
Γ̂ = Γ ∪ {ε} (the extended alphabet with the empty string).

1We use the term channel to identify the sender and the receiver of
a message, not how it is exchanged. In our model, messages are ex-
changed through a common medium that is shared by all peers and
the watcher records the messages exchanged through this common
medium.

405

?a !k

!o 1

!o
2

?r
2?r 1

!o
2

!o 1

?r 1
?r

2

Store

!a ?k

!p 1

!p
2

?b
2?b 1

!p
2

!p 1

?b 1?b
2

Bank

?o1

Warehouse1

!r 1

!b
1

?p
1

?p
1

!r 1

!r 1

!b
1

�

Figure 4: A Mealy implementation for the Warehouse example

DEFINITION. Let S = (M, P, C) be an ec-schema and p ∈ P .
A Mealy implementation of p is a (nondeterministic) Mealy ma-
chine (T, s, Σin

p , Σout
p , F, δ) where T is a finite set of states, s ∈ T

the starting state, F ⊆ T a set of final states, Σin
p and Σout

p are de-

rived from S as before, and δ : T × Σ̂in
p → 2T×Σ̂

out

p is a transition
function such that it either consumes a nonempty input or produces
a nonempty output but not both (empty moves are allowed). An ec-
implementation is Mealy if its peer implementations are all Mealy.

A Mealy implementation of a peer reacts to messages according
to their classes while ignoring the contents. Although Mealy imple-
mentations are finite state machines, they can model e-services in
many applications nicely. This is illustrated by Example 2.1, where
the message classes effectively dictate the actions to be taken by
each server and consequently the responses.

EXAMPLE 3.1. Fig. 4 shows a family of Mealy peer implemen-
tations for the warehouse example of Example 2.1. (The imple-
mentation for Warehouse2 is analogous to the implementation for
Warehouse1.) In these diagrams, we use “!a” (“?a”) to denote
sending (receiving) a message from class a. It can be verified that
the ec-language generated by this Mealy implementation

ak SH((o1 SH(r1, b1p1))
∗
, (o2 SH(r2, b2p2))

∗),

where SH is the shuffle operator. Thus, this implementation corre-
sponds to the case where the timing of sending receipt1 from Ware-
house1 to Store is independent of the timing of the correspond-
ing messages bill1 and payment1 between Bank and Warehouse1.
By using a different implementation for Warehouse1 a specific se-
quencing could be enforced, e.g., o1b1p1r1.

We now define the notion to capture the computation of ec-imple-
mentations.

Let S = (M, P, C) be an ec-schema where P = {p1, ..., pn}.
Suppose that I is a Mealy ec-implementation for S. An ec-configu-
ration of I is a (2n + 1)-tuple of the form

(Q1, t1, ..., Qn, tn, w)

where for each 1 6 j 6 n, Qj ∈ (Σin
pj

)∗, tj ∈ Tj (i.e., states of
I(pj)), and w ∈ Σ∗.

For ec-configurations γ = (Q1, t1, ..., Qn, tn, w) and γ′ =
(Q′

1, t
′
1, ..., Q

′
n, t′n, w′), we say that γ → γ′ if one of the following

three conditions holds:

• (Peer pj executes an ε-move) there exists 1 6 j 6 n such
that

1. (t′j , ε) ∈ δj(tj , ε),

2. Q′
j = Qj ,

3. for each k 6= j, Q′
k = Qk and t′k = tk, and

4. w′ = w.

• (Peer pj consumes an input) there exists 1 6 j 6 n and
α ∈ Σin

pj
such that

1. (t′j , ε) ∈ δj(tj , α),

2. Qj = αQ′
j ,

3. Qk = Q′
k for each k 6= j,

4. t′k = tk for each k 6= j, and

5. w′ = w.

• (Peer pj sends an output to peer pk and writes to the watcher)
there exists 1 6 j, k 6 n and β ∈ Σout

pj
∩ Σin

pk
such that

1. (t′j , β) ∈ δj(tj , ε),

2. Q′
k = Qkβ,

3. Q′
l = Ql for each l 6= k,

4. t′l = tl for each l 6= j, and

5. w′ = wβ.

we denote by ∗→ the reflexive and transitive closure of →.

DEFINITION. Let S = (M, P, C) be an ec-schema where P =
{p1, ..., pn} and I a Mealy ec-implementation of S. A word w

over Σ is a (halting) conversation for I if

(ε, s1, ..., ε, sn, ε) ∗→ (ε, t1, ..., ε, tn, w)

where for each 1 6 j 6 n, sj is the starting state and tj a (final)
state in the Mealy machine I(pj). We call the above sequence of
ec-configurations an ec-run of w. The ec-language of I , C(I), is
the set of all halting conversations for I .

While Mealy peers resemble I/O automata [23] and interface au-
tomata [6, 5], the communication model is different. In our compo-
sition model, Mealy peers communicate asynchronously. Specifi-
cally, a queue is used for each peer to buffer messages that were
received but not processed so far. In approaches such as CSP [21],
and I/O and interface automata, the communicating processes ex-
ecute a send and a corresponding receive action synchronously.
This makes Mealy implementations significantly different from the
communication model used in approaches such as CSP, I/O and
interface automata. Our model of Mealy peers is similar to Com-
municating Finite State Machines defined in [12]. However, in our
model messages are exchanged through a common medium and
then stored in the queues of the peers, whereas in [12] each pair
of communicating machines use isolated communication channels.
Our goal is to investigate the global behavior of the protocol by in-
vestigating the possible configurations of the watcher which models
the behavior of this common medium. Finally, [10] studies “quasi-
realtime” automata with queues. These are single automata with
one or more queues, where an automaton can write a bounded num-
ber of letters on the queue(s) for each input letter read. In [10] the
input and queue alphabets maybe different; in our framework the
alphabets are identical.

406

4. CONVERSATIONS BY MEALY PEERS
This section presents examples illustrating unexpected behavior

of Mealy implementations of ec-schemas. These motivate the iden-
tification of two key closure properties of Mealy ec-languages, and
lead to some characterizations of Mealy ec-languages.

EXAMPLE 4.1. Figure 5 shows a Mealy implementation Iab

with two peers. Peer p1 sends requests a while p2 responds with
a b message for each a message. Since a messages can be tem-
porarily stored in the queue of p2, the ec-language C(Iab) con-
sists of words with the same number of a’s as b’s and each b has
a corresponding a that occurs somewhere beforehand. Note that
C(Iab) ∩ (a∗b∗) = {anbn | n > 0}. Therefore C(Iab) is not
regular (but it is context free).

p1 p2

c1=(p1,p2 ,{a})
?b!a

p1

!b
p2

?a

c2=(p2,p1 ,{b})

Figure 5: A Mealy implementation for Example 4.1

Interestingly, if a Mealy ec-implementation I is restricted to the
synchronous communication mode (i.e., a send and the correspond-
ing receive are done at the same time and queues are basically
empty), it is easy to observe that C(I) is always regular.

Using an idea similar to that in Example 4.1, one can easily con-
struct a Mealy ec-implementation whose ec-language is not regular
nor context free but context sensitive. However,

THEOREM 4.2. Let I be an arbitrary Mealy ec-implementation
of any ec-schema.

(a) C(I) is context sensitive.

(b) There exists a finite state, quasi-realtime automaton M with
3 queues that accepts C(I).

(c) If the computations of conversations are restricted to only
allow queues with length bounded by a fixed constant, then
the restricted ec-language Cbounded(I) is regular.

Theorem 4.2 highlights differences between the synchronous
communication models in I/O and interface automata and the asyn-
chronous model described here. The main part of the proof for (a)
is to observe that C(I) can be recognized by a linear bounded au-
tomaton. Part (b) follows from a result of [10], stating that each
quasi-realtime automaton with n queues can be simulated by one
with 3 queues. Part (c) can be proved by a relatively straightforward
argument based on the closure of regular languages under intersec-
tion.

We now return to the phenomenon exposed by Example 4.1. A
close examination indicates that the primary reason for this behav-
ior is that the message queue of a peer serves as a “buffer” for the
input: while conversations monitor the arrival of messages at the
queues the messages may not be read right away. To understand
this effect, we introduce the operator PREPONE on the alphabet Σ
of an ec-schema as follows.

Let w = w′m1m2w
′′ be a word in Σ∗, where m1 is in the

set of messages on the channel from p1 to p′
1 and m2 in the set

of messages on the channel from p2 to p′
2. If either (1) {p1, p

′
1}

and {p2, p
′
2} are disjoint, or (2) p1 = p′

2 and p′
1 6= p2, then

PREPONE(w) includes the word w′m2m1w
′′. Intuitively, the oper-

ator PREPONE allows two messages in a conversation to be swapped

if the senders and receivers are completely disjoint, or a later mes-
sage to a peer can arrive in the queue earlier than an outgoing mes-
sage from the peer since the outgoing message cannot depend on a
later arrived message.

It is important to note that PREPONE applies to the global se-
quence of messages observed by the watcher. We will exhibit later
in the section that PREPONE is not strong enough to characterize
the behaviors of Mealy ec-implementations.

If L is a language over Σ, we define PREPONE(L) to be the
smallest language that contains L and is closed under PREPONE.
The following interesting property holds for PREPONE.

LEMMA 4.3. For each Mealy ec-implementation I of an ec-
schema, PREPONE(C(I)) ⊆ C(I) (closure under PREPONE).

Since the set of context-sensitive languages does not have the
PREPONE closure property, the following holds.

COROLLARY 4.4. There is a context-sensitive language L such
that L 6= C(I) for any Mealy ec-implementation I .

The second property of ec-languages concerns with combining
“local views” of conversations into global conversations, this is
reminiscent of the join operator in the relational database model.

EXAMPLE 4.5. Consider an ec-schema that has four peers p1,
p2, p3, p4 and three channels (p1, p2, {a}), (p3, p4, {b}), and (p4,

p3, {c}). Is there any Mealy ec-implementation that generates the
regular language {a, bc}? Note that the peer groups {p1, p2} and
{p3, p4} are in fact independent; there is no communication possi-
ble between them. It can be shown that any Mealy ec-implementa-
tion that generates {a, bc} also generates each of ε, abc, bac, and
bca.

The above example suggests that if two global behaviors have
exactly the same local views, they are indistinguishable. We for-
malize this concept below.

The definition of ∗→ given for Mealy ec-implementations has the
effect of generating words. We now define a kind of converse for
individual Mealy peer implementations, which has the effect of
consuming words. Let f be a Mealy implementation (T, s,Σin

p ,

Σout
p , F, δ) for a peer p. Let Σp = Σin

p ∪ Σout
p . A local (l-

)configuration of f is is a triple (t, u, v) ∈ T × (Σin
p)∗ ×Σ∗

p. In an
l-configuration (t, u, v), t is the current state of the peer p, u is the
sequence of messages in the input queue of p, v is a sequence of
“future messages” including the incoming messages not yet in the
queue of p and the messages to be sent out by p (i.e., v represents
the remaining portion of a conversation projected to the messages
visible to pi).

We define (t, u, v) →f (t′, u′, v′) for a pair of l-configurations
(t, u, v) and (t′, u′, v′) if one of the following holds for some a ∈
Σin

p and some b ∈ Σout
p :

• (Consuming a message from the queue) u = au′, v = v′,
and (t′, ε) ∈ δ(t, a),

• (Sending a message) u = u′, v = bv′, and (t′, b) ∈ δ(t, ε),

• (ε-move) u = u′, v = v′, and (t′, ε) ∈ δ(t, ε), or

• (Enqueuing a message) t = t′, u′ = ua, v = av′.

We denote by ∗→f the reflexive and transitive closure of →f .
Let w ∈ Σ∗

p. A local (l-)run of w is a (finite) sequence of l-
configurations c0 = (s, ε, w), c1, ..., ck (k > 0) such that ci →f

ci+1 for 0 6 i < k. A word w in the language Σ∗
p is a (halting)

execution of f if (s, ε, w) ∗→f (q, ε, ε) for some (final) state q.
For word w ∈ Σ∗ and peer p, let πp(w) denote the restriction of

w to the set Σp (= Σin
p ∪ Σout

p).

407

LEMMA 4.6. Let I be a Mealy ec-implementation of an ec-
schema S. Let w ∈ Σ∗. If for each peer p, πp(w) is a (halting)
execution of p, then w is a (halting) conversation for I . The con-
verse is also true.

PROOF. (Sketch) Let w = α1 · · ·αm be a word over Σ. We
outline a proof for the direction “if projection of w to each peer
is a (halting) execution, then w is a (halting) conversation”. The
converse is trivial.

Without loss of generality, we assume that the ec-schema has
peers p1, ..., pn. Since for each peer pi, the projection πi(w) is a
local execution, there exists a corresponding l-run γi for πi(w). We
show that w is a (halting) conversation by constructing an ec-run
that simulates each γi. The construction has (m+1) phases. Phase
0 is the initialization phase where we simulate in the global ec-run
the initial ε-moves of each pi until it advances to an l-configuration
that is ready to do a send-message action or an enqueue-message
action. Then in each phase j, we simulate the transmission of mes-
sage αj , where only the sender and receiver of αj are involved. We
start with the sender of αj . We execute the send-αj action, and its
follow-up actions such as ε-moves and consume-message actions,
until we encounter an enqueue-message or send-message action on
a message αj′ where j′ > j. Then we turn to the receiver of αj ,
execute the enqueue-αj action and the follow-up actions until an
action related to a later message is reached.

We can prove the correctness of the above process by an induc-
tion on the number of phases. Specifically, it can be shown that (1)
after the completion of phase j, the l-run of each peer pi has been
simulated right before the last l-configuration which contains the
future messages αj+1 · · ·αm, and (2) the simulation can always
proceed. It follows that the last global ec-configuration is consis-
tent with the last l-configuration for every γi.

Now we define the join operator 1 which takes as input a se-
quence of languages L1, ..., Ln where each Li ⊆ Σ∗

pi
is a set of

words for peer pi, and n is the number of peers in the ec-schema.
It returns a language over Σ.

1i Li = {w | ∀i πpi
(w) ∈ Li}

Then Lemma 4.6 implies the following.

LEMMA 4.7. For each Mealy ec-implementation I of an ec-
schema with peers p1, ..., pn, 1i πpi

(C(I)) ⊆ C(I).

Given a language L over Σ, let closure(L) denote the minimal
superset of L that is closed under PREPONE and 1. From Lemmas
4.3 and 4.7, we can infer that for each Mealy ec-implementation I ,
the following holds:

L ⊆ C(I) ⇒ closure(L) ⊆ C(I)

Essentially, this states that any Mealy ec-implementation that gen-
erates the behavior set L must also generate its closure. One in-
teresting question is given L, is it always possible to synthesize a
Mealy ec-implementation I such that C(I) = closure(L)?

The answer unfortunately is negative. Consider the following
example.

EXAMPLE 4.8. Shown in Figure 6 is an ec-schema that consists
of three peers and three channels. The language L = {ab, bac},
and it is obvious that closure(L) = L.

Let I be an arbitrary Mealy ec-implementation satisfying the
condition closure(L) ⊆ C(I). Consider the local run on peer p2

for the conversation bac. The send of c must be after b, however
the consumption of a may be after the send of c. This implies that

(p1,p2,{a})

(p2,p1,{b})

(p2,p3,{c})
p1 p2

p3

a

b

b c

a

Figure 6: A Conversation Specification for Example 4.8

bac or bca or both must be accepted by I(p2). Similarly we can
infer that ab must be accepted by I(p1).

If bac is recognized by I(p2), consider the scenario that p1 takes
the local execution path ab and p2 takes the path bac. It is not hard
to see that abc is a conversation since p2 sends b while having a in
its input queue. Similarly for the case bca is accepted by I(p2), we
can also show that abc is a conversation. Now conversation abc is
not contained in closure(L), and hence closure(L) 6= C(I).

One reason that the closure(L) cannot be the set of conversa-
tions by some Mealy ec-implementation is that PREPONE applying
to (global) conversations is too weak. Consider the projection of
the conversation abc on p2 in Example 4.8. If it is not accepted by
I(p2), it must be the result of applying one or more “prepone” like
swaps on an accepted word. For example, swap the sequence of
output message b and input message a, we get abc from bac. Note
that this type of swap differs from PREPONE since the former is ap-
plied locally instead of globally. Secondly, we allow the receiver
of the first message and the sender of the second message to be the
same, which is forbidden in PREPONE. We call this type of swap a
local prepone defined below. For each peer pi, if

w = w
′
m1m2w

′′

is a word in Σ∗
i , where pi is the sender of m1 and the receiver of

m2, then word w′m2m1w
′′ is in LPi(w).

Using local prepone operators and 1, we define for each lan-
guage L over Σ the ec-closure of L as follows.

ecc(L) = 1i LP
∗
i (πpi

(L)),

where LP∗i represents the reflexive and transitive closure of LPi,
for each peer pi. It is easy to see that closure(L) ⊆ ecc(L). In
Section 5 we shall show that ecc(L) can always be synthesized for
each regular language L.

Now let us consider the inverse of the synthesis problem. Given
a Mealy ec-implementation I , can we find a regular language as its
core? The following example provides a negative answer.

EXAMPLE 4.9. Consider an ec-schema shown in Figure 7 con-
sisting of 3 Mealy peers, p1, p2, p3 and 3 channels. Intuitively, p1

sends, say i messages of class a, to p2, a message b to p3, and then
halt; p2 responds to each a message by send a c message to p3;
p3 expects b at the beginning and then consumes all c messages.
It is not hard to see that the only way for p3 to halt is for p2 to
keep all a messages in its queue till after p1 sends b to p3. Thus
L = {aibci | i > 0} is its ec-language. It can be shown that each
subset L′ of L satisfies the following property

L
′ = closure(L′) = ecc(L′)

Example 4.9 suggests the following.

PROPOSITION 4.10. There exists a Mealy ec-implementation I

such that C(I) 6= ecc(L) for each regular language L.

408

!a
p1

!b

!c

?a

p2

?c

?b

p3

p1

p2

p3

c1

c2

c3

c1=(p1,p2,{a})

c2=(p1,p3,{b})

c3=(p2,p3,{c})

Figure 7: A Mealy implementation for Example 4.9

5. CONVERSATION SPECIFICATION
Proposition 4.10 suggests that adding asynchronous communi-

cation significantly increases the power of essentially finite state
machines (Mealy peers). This unsettling fact suggests that focus-
ing only on peers in e-service composition design is fundamentally
flawed. Attention has to be given on the “global behavior” of such
composed machineries early on. The conversation among the peers
models the global behavior that we would like to capture. Although
one can try to reason about the global behavior after specifying
(designing) individual peers through the composition, it may be
“cheaper” and more direct to provide a specification of the global
behavior.

DEFINITION. Let S = (M, P, C) be an ec-schema. A con-
versation specification for S is a specification S (e.g., by regular
expression, finite state automaton, intertask dependencies, etc.) of
a language over Σ. The language specified by S is denoted L(S).
Let S be a conversation specification. An ec-implementation I of
S conforms to S if C(I) is contained in the ec-closure of L(S), and
realizes S if C(I) = the ec-closure of L(S).

We are interested in the following question: For a conversation
specification S , can we construct a (Mealy) ec-implementation I

that realizes S? The main result of the section is to show that the
answer is positive.

THEOREM 5.1. For every regular language L, one can effec-
tively construct a Mealy ec-implementation I that realizes L.

We now discuss the proof of the above theorem. The proof con-
sists of the following main steps. First, we construct a finite state
automaton G that accepts L. From G, we construct, for each peer
pi, a Mealy implementation Gi. This construction is essentially a
projection: replace all edges in G that are irrelevant to channels
connected to pi by ε moves, change edges of messages sent to p

as input, and finally edges of messages sent by pi as output. To
prove that the composition of the implementation G generates ex-
actly ecc(L), we have to show that

C(I) = 1i LP
∗
i (πpi

(L)) (1)

By Lemma 4.6, a word w is contained in C(I) if and only if for
each peer pi, πpi

(w) is a halting execution. Combined with the
fact that L(Gi) = πpi

(L), we can infer that to prove Equation (1),
it suffices to show the following property (Lemma 5.2).

LEMMA 5.2. Let Mi be a Mealy implementation for peer pi. A
word w ∈ Σ∗

pi
is a halting execution if and only if w ∈ LP∗

i (L(Mi)).

PROOF. (Sketch) We prove by induction that w ∈ LP∗i (L(Mi))
is a sufficient condition for w being a local execution. In the induc-
tion proof it suffices to show the claim that if a word w is contained

in LP(w′) for some local execution w′, w is also a local execution.
The proof of the claim is straightforward, because we can always
construct an l-run for w by modifying the l-run of w′.

Next we show that w ∈ LP∗i (L(Mi)) is a necessary condition.
We show that for any halting execution w, we can always find w′ ∈
L(Mi) such that w ∈ LP∗(w′), by applying “reverse prepone”
procedure finitely many times. We briefly describe the procedure
below. Consider the l-run c0 →Mi

· · · →Mi
cn of the local exe-

cution w. Let (qa, u1, αu2) →Mi
(qa+1, u1, u2) be the first send-

message action such that input queue is not empty, i.e., |u1| > 0.
It is not hard to show that w can be written as w = w1u1αu2,
where w1 includes those eagerly processed messages before the ar-
rival of any message in u1. Now let w1 = w1αu1u2, we can show
that w ∈ LP

|u1|
i (w1) and w1 is also a halting execution. Repeat the

above procedure, until we cannot find a send-message action with a
non-empty queue, then we get a list w0, w1, ..., wk where w0 = w,
wk ∈ L(Mi), and for each 0 6 j < k, wj ∈ LP∗i (w

j+1). The last
word wk is the w′ we are looking for.

Lemma 5.2 implies the following corollary.

COROLLARY 5.3. Given a Mealy ec-implementation I for an
ec-schema S. The conversation set generated by I is the following:

C(I) = 1i LP
∗
i (L(I(pi)))

Corollary 5.3 does not mean that there must be a regular lan-
guage “core” for a Mealy ec-implementation. We can give a char-
acterization for a subclass which guarantees such a regular core.

DEFINITION. Let S = (M, P, C) be an ec-schema. Let G(S) =
(P, E) be the non-directed graph where

E = {{p, p
′} | (p, p

′) ∈ C}.

Schema S is tree-based if G(S) is a (non-directed) tree.

PROPOSITION 5.4. Let S be a tree-based ec-schema and I a
Mealy implementation for S. Then C(I) = ecc(L) for some regu-
lar language L.

PROOF. (Sketch) First we extend the notion of conversation to
indicate when messages are read from an input queue, in addition
to when messages are written onto the input queue. Let read(Σ) =
{αr | α ∈ Σ}. A read-augmented conversation of implementation
I is a word v over the alphabet Σ ∪ read(Σ) that corresponds to
a computation over I , where each occurrence of a letter αr corre-
sponds to a time when letter α was read from a peer’s input queue.
Given such a v, πΣ(v) denotes the projection of v onto the alphabet
Σ.

Now let S and I be as in the statement of the proposition. A
key lemma is to show that if v is a read-augmented conversation
of I corresponding to a halting computation, then there is a read-
augmented conversation v′ of I such that πΣ(v)∈PREPONE(πΣ(v′))
and v′ has the immediate read property, that is, for each occurrence
o of α ∈ Σ occurring in v′ there is an occurrence of αr immedi-
ately following o in v′. The key idea of the proof is that since S is
tree-based, entire blocks of a computation occurring in one “part”
of the tree (if partitioned by removing p) can be “delayed” or “ac-
celerated” so that a message is not put onto the queue of peer p until
p is ready to read that message.

From the above key lemma, we learn that each halting conver-
sation w ∈ C(I) is contained in PREPONE(w′) for some word w′,
where w′ satisfies the following condition: for each peer pi, the
projection πpi

(w′) is accepted by I(pi). Let L =1i L(I(pi)),
it is not hard to show that L is a regular language, and C(I) =

409

PREPONE(L). Let I ′ be the Mealy ec-implementation generated
from the projection of L to each peer. It is easy to infer that C(I ′) ⊆
C(I). Combined with the known fact that

PREPONE(L) ⊆ closure(L) ⊆ ecc(L) = C(I ′)

we can further infer that

C(I) = PREPONE(L) = closure(L) = ecc(L).

6. CONCLUSIONS
We study the relationship of global behavior of composite e-

service and local behaviors of the individual e-services in the posi-
tion. We show that global behavior may sometimes be rather un-
expected due to (1) queuing of messages, and (2) distributed de-
cisions made by local peers. Our results indicate that the effect of
combining individual e-services is not very well understood and de-
serves further investigations. The results also support a top-down
approach in developing composite e-services to control/avoid un-
expected behaviors.

Acknowledgment: Bultan was supported in part by NSF
grant CCR-9970976 and NSF Career award CCR-9984822; Fu was
partially supported by NSF grant IIS-0101134 and NSF Career
award CCR-9984822; Su was also supported in part by NSF grants
IIS-0101134 and IIS-9817432.

7. REFERENCES
[1] 3GPP. The 3rd generation partnership project.

www.3gpp.org.
[2] 3GPP2. The 3rd generation partnership project 2.

www.3gpp2.org.
[3] S. Abiteboul, V. Aguilera, S. Ailleret, B. Amann,

F. Arambarri, S. Cluet, G. Cobena, G. Corona, G. Ferran,
A. Galland, M. Hascoet, C-C. Kanne, B. Koechlin,
D. LeNiniven, A. Marian, L. Mignet, G. Moerkotte,
B. Nguyen, M. Preda, M-C. Rousset, M. Sebag, J-P. Sirot,
P. Veltri, D. Vodislav, F. Watezand, and T. Westmann. A
dynamic warehouse for XML data of the Web. IEEE Data
Engineering Bulletin, 2001.

[4] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In Proc.
ACM Symp. on Principles of Database Systems, 1998.

[5] L. D. Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering (FSE’01), pages 109–120, 2001.

[6] L. D. Alfaro and T. A. Henzinger. Interface theories for
component-based design. In Proceedings of the First
International Workshop on Embedded Software (EMSOFT
’01), Lecture Notes in Computer Science 2211.
Springer-Verlag, 2001.

[7] Philippe Althern. The scala home page.
http://lamp.epfl.ch/scala/.

[8] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin,
D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci,
T. Payne, and K. Sycara. DAML-S: Web service description
for the semantic web. In Proc. Intl. Semantic Web Conf.
(ISWC), July 2002.

[9] B. Benatallah, B. Medjahed, A. Bouguettaya,
A. Elmagarmid, and J. Beard. Self-coordinated and
self-traced composite services with dynamic provider

selection. Technical report, University of New South Wales,
March 2001. (Available at http://sky.fit.qut.edu.au/
dumas/selfserv.ps.gz).

[10] R. V. Book and S. A. Greibach. Quasi-realtime languages.
Mathematical Systems Theory, 4(2):97–111, 1970.

[11] Business process execution language for web services
(version 1.0).
http://www.ibm.com/developerworks/library/ws-bpel, 2002.

[12] D. Brand and P. Zafiropulo. On communicating finite-state
machines. Journal of the ACM, 30(2):323–342, 1983.

[13] R. Breite, P. Walden, and H. Vanharanta. C-commerce
virtuality - will it work in the Internet? In Proc. of
International Conf. on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet
(SSGRR 2000), 2000.
(http://www.ssgrr.it/en/ssgrr2000/proceedings.htm).

[14] C. Bussler, R. Hull, S. McIlraith, M. E. Orlowska, B. Pernici,
and J. Yang, editors. Proceedings of Workshop on Web
Services, E-Business, and the Semantic Web (WES).
Springer-Verlag Lecture Notes in Computer Science, number
2512, Toronto, 2002.

[15] F. Casati, S. Sayal, and M. Shan. Developing e-services for
composing e-services. In Proceedings of CAISE 2001,
Interlaken, Switzerland, June 2001.

[16] F. Casati and M.-C. Shan. Dynamic and adaptive
composition of e-services. Information Systems,
26(3):143–163, 2001.

[17] V. Christophides, R. Hull, G. Karvounarakis, A. Kumar,
G. Tong, and M. Xiong. Beyond discrete e-services:
Composing session-oriented services in telecommunications.
In Proc. of Workshop on Technologies for E-Services (TES),
Rome, Italy, September 2001.

[18] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes
in xml documents. In Proc. Int. Conf. on Data Engineering,
2002.

[19] D. Florescu, A. Grünhagen, and D. Kossmann. XL: An XML
programming language for web service specification and
composition. In Intl. World Wide Web Conf. (WWW2002),
2002.

[20] S. Gay and M. Hole. Types for correct communication in
client-server systems. Technical Report CSD-TR-00-07,
Department of Computer Science, Royal Holloway,
University of London, December 18 2000.

[21] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[22] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley,
1979.

[23] N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proc. 6th ACM Symp. Principles of
Distributed Computing, pages 137–151, 1987.

[24] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. In IEEE Intelligent Systems, March/April 2001.

[25] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Intl. World Wide
Web Conf. (WWW2002), 2002.

[26] Simple object access protocol (soap) 1.1. W3C Note 08, May
2000. (http://www.w3.org/TR/SOAP/).

[27] The SIP Forum. Session initiation protocol.
www.sipforum.org.

410

