
Web Services:
Formal Modeling and Analysis

Jianwen Su
University of California, Santa Barbara

2012/7/23NJU Summer School of Software Engineering 2

Given
a web service/composition/choreography/workflow/…
a goal ϕ

do all executions satisfy the goal?

Choices for and ϕ

The Verification Problem

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 3

Outline
Motivations
Transitions systems
BPEL services and compositions
Choreographies (of BPEL services)
Artifact-centric workflow
Concluding remarks

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 4

Software Systems in the Real World
Wide range of applications:

Web stores, e-tailors, …
Accounting, financial systems, …
Automated flight control, …
Patient profiles, cases, care records, …
Governments: local, federal, courts, prisons, …
…

Challenges:
Interoperation & integration

2012/7/23NJU Summer School of Software Engineering 5

Software Systems in the Real World
Wide range of applications:

Web stores, e-tailors, …
Accounting, financial systems, …
Automated flight control, …
Patient profiles, cases, care records, …
Governments: local, federal, courts, prisons, …
…

Challenges:
Interoperation & integration
Design and analysis
Improvements (evolution)

2012/7/23NJU Summer School of Software Engineering 6

Web Services: Standardization
The Web: Flexible human-software interaction
Web services: Flexible software-software interaction

SAAS: Software As A Service
A working definition: software services accessible via
standardized protocols
SOA: a potential basis for software system design,
interoperation, integration, …

Lots of interest in trade press, academic community,
standards bodies, . . .
Applications in e-commerce, telecom, science, cloud,
government, education, . . .

2012/7/23NJU Summer School of Software Engineering 7

Fundamental Elements (WS Apps)
Process: a collection of actions to be taken in a
meaningful manner (sequential, parallel, conditional, …)

Communication or messages: different software
systems need to cooperate, collaborate

Data: guide the actions to be taken and processes to
follow

Actors (human, external environment): their reasoning
for making decisions may not be captured in the logic
specification/running systems

2012/7/23NJU Summer School of Software Engineering 8

Research Challenges (Biz Workflows)
Models: process, data, messages, actors

Analysis and verification

Integration/interoperation

Improvements
(biz intelligence, operation optimization, …)

Management of workflows and executions

2012/7/23NJU Summer School of Software Engineering 9

Goals
Focus on analysis & verification problem

Depending on models

A sampler of verification problems, approaches and
results

2012/7/23NJU Summer School of Software Engineering 10

Outline
Motivations
Transitions systems
BPEL services and compositions
Choreographies (of BPEL services)
Artifact-centric workflow
Concluding remarks

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 11

Transition Systems
A finite transition system (Kripke structure) is a tuple
T = (S, I, R, L) where

a finite set of states S
a set of initial states I ⊆ S
a transition relation R ⊆ S × S
a labeling function L : S → 2P

P : a set of atomic propositions

2012/7/23NJU Summer School of Software Engineering 12

Example
P = {q1, q2, q3}

s0
FFF

s1
TFF

s3
TTF

s4
FTT

s2
FTF

s5
TTT

s6
TTF

s7
FFT

L(s3) = {q1, q2}

2012/7/23NJU Summer School of Software Engineering 13

Runs (Execution Paths)
Given a finite transition system T = (S, I, R, L)
A run is an infinite sequence of states

Z = s0s1s2 ⋅ ⋅ ⋅
where for each i ≥ 0, (si, si+1) ∈ R

s0s1s2s3s5s1s2 …

s0
FFF

s1
TFF

s3
TTF

s4
FTT

s2
FTF

s5
TTT

s6
TTF

s7
FFT

2012/7/23NJU Summer School of Software Engineering 14

Linear Temporal Logic (LTL)
A set P of atomic propositions: q1, q2, q3, …
Logical connectives: ∧, ∨, ¬
Temporal operators:

X ϕ : ϕ is true in the next state
G ϕ : ϕ is true in every state
ψ U ϕ : ψ is true in every state before the state ϕ is
true
F ϕ : ϕ is true in some future state

X: next G: always U: until F: eventually

Example: G (money → F food)

2012/7/23NJU Summer School of Software Engineering 15

Semantics of Temporal Operators
Truth value of a formula is defined on runs
Propositional connectives have the usual meaning
Temporal operators:
X: next G: always U: until F: eventually

F q1 ≡ true U q1 G q1 ≡ ¬F¬q1

q1

q1 U q2

X q1

G q1 q1q1 q1 q1 q1 q1

F q1

⋅ ⋅ ⋅

q1 q1 q2q1q1

q1 q1

q1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

2012/7/23NJU Summer School of Software Engineering 16

LTL Semantics
A state is a set of propositions
A run Z=s0s1s2⋅⋅⋅ satisfies an LTL formula:

Z⎟= q if s0⎟= q or q ∈ L(s0)
Z⎟= ¬ϕ if Z⎟≠ ϕ
Z⎟= ϕ∧ψ if Z⎟= ϕ and Z⎟= ψ
Z⎟= ϕ∨ψ if Z⎟= ϕ or Z⎟= ψ
Z⎟= X ϕ if s1s2⋅⋅⋅⎟= ϕ
Z⎟= G ϕ if for each i, sisi+1⋅⋅⋅⎟= ϕ
Z⎟= F ϕ if for some i, sisi+1⋅⋅⋅⎟= ϕ
Z⎟= ψ U ϕ if for some i, sisi+1⋅⋅⋅⎟= ϕ and

for each j < i, sjsj+1⋅⋅⋅⎟= ψ

2012/7/23NJU Summer School of Software Engineering 17

Transition Systems and LTL
A transition system T satisfies an LTL formula ϕ if
every run of T satisfies ϕ

F q3

G(¬q3 → X q3)

s0
FFF

s1
TFF

s3
TTF

s4
FTT

s2
FTF

s5
TTT

s6
TTF

s7
FFT

2012/7/23NJU Summer School of Software Engineering 18

Verifying LTL Properties
Problem: given a transition system T, an LTL formula ϕ,
determine if ϕ is satisfied by T (i.e. every run of T)
A decision algorithm:
1.Construct a Büchi automaton B¬ϕ equivalent to ¬ϕ
2.Explore (depth-first search) simultaneously T and

B¬ϕ,
if a repeat is found involving a final state of B¬ϕ,
halt and output “no” (with the found path)

Otherwise, output “Yes” (T satisfies ϕ)

2012/7/23NJU Summer School of Software Engineering 19

Büchi Automata
P is a (finite) set of propositions
A Büchi automaton is a tuple B = (Q, I, δ, F) where

Q is a finite set of states
I ⊆ Q is a (nonempty) set of initial states
F ⊆ Q is a set of final states
δ ⊆ Q × 2P × Q is a transition relation

Essentially nondeterministic finite state automata but
accepting infinite words:

A word in (2P)ω is accepted if final states are entered
infinitely often

The language of B, L(B), is the set of words accepted

2012/7/23NJU Summer School of Software Engineering 20

An Example

q0 q1

{q1}, {q2}
{q2}

{q2}

2012/7/23NJU Summer School of Software Engineering 21

LTL to Büchi Automata
A Büchi automaton B is equivalent to an LTL formula ϕ:
an infinite sequence Z satisfies ϕ iff Z ∈ L(B)

For each LTL formula ϕ, one can construct a Büchi
automaton Bϕ equivalent to ϕ

Number of states in Bϕ is 2O(|ϕ|)

Emptiness of a Büchi automaton can be determined in
O(n) where n is the number of states

[Merz MOVEP 2001]

2012/7/23NJU Summer School of Software Engineering 22

Model Checking
T : a transition system, ϕ : an LTL formula
1.Construct a Büchi automaton B¬ϕ equivalent to ¬ϕ
2.Explore (depth-first search) simultaneously T and B¬ϕ,

if a repeat is found involving a final state of B¬ϕ,
halt and output “no” (the trace is the counter
example)

Otherwise, output “Yes” (T satisfies ϕ)

Complexity: O(2O(|ϕ|)|T|) time, PSPACE
[Merz MOVEP 2001]

2012/7/23NJU Summer School of Software Engineering 23

Outline
Motivations
Transitions systems
BPEL services and compositions
Choreographies (of BPEL services)
Artifact-centric workflow
Concluding remarks

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 24

Business Process Execution Language
Allow specification of compositions of Web services

business processes as coordinated interactions of
Web services

Allow abstract and executable processes
Influences from

Traditional flow models
Structured programming
Successor of WSFL and XLANG

Assumes WSDL ports

OASIS standard

2012/7/23NJU Summer School of Software Engineering 25

Illustrating a BPEL Service

〈invoke ⋅⋅⋅ 〉

〈receive ⋅⋅⋅ 〉

〈assign〉 ⋅⋅⋅

〈reply ⋅⋅⋅ 〉

2012/7/23NJU Summer School of Software Engineering 26

BPEL to Transition Systems
Translate each atomic activity to a transition system
with single entry, single exit

〈receive …
operation = "approve"
variable = "request" /〉

?approve_Out
request :=

approve_Out

〈invoke
operation="approve",
invar="request",
outvar="aprvInfo" 〉

〈catch faultname="loanfault"〉
〈 ... handler1 ... /〉

〈/catch〉
〈/invoke〉 handler1

?approve_Out

approve_In := request;
!approve_In

aprvInfo :=
approve_Out

[Fu-Bultan-S. WWW ’04]

loanfault

Treat actions as propositions

2012/7/23NJU Summer School of Software Engineering 27

BPEL to Transition Systems

〈sequence〉
〈… activity1 …/〉
〈… activity2 …/〉

〈/sequence〉

〈flow〉
〈activity1 …〉

〈source linkname = “link1”…/〉
〈/activity1〉
〈activity2 …〉

〈target linkname = “link1”/〉
〈/activity2〉

〈/flow〉

Control flow constructs: assemble pieces of transition
systems

activity1 activity2

activity2activity1

X

disallow the orders
prohibited by the link

[Fu-Bultan-S. WWW ’04]

2012/7/23NJU Summer School of Software Engineering 28

S: a BPEL service, P: a set of propositions,
ϕ: an LTL formula
Determine if every execution of S satisfies ϕ
Algorithm:
1. Construct a transition system TS,P

2. Determine if TS,P satisfies ϕ

Complexity: O(2O(|ϕ|)|S|) time

Good news but
Control states (flow) only, no variables/data
Single service, no composition

Verifying BPEL Services

2012/7/23NJU Summer School of Software Engineering 29

Adding Data
BPEL allows variables to hold XML documents

Bad news (folklore):
BPEL is Turing (computationally) complete

Immediate consequence:
It is undecidable if a given BPEL service satisfies a
given LTL formula

One possible restriction: limit variables to
finite domains: the number of possible values is finite

2012/7/23NJU Summer School of Software Engineering 30

Finite Domain Variables
Represent variable contents explicitly through states

Transition states increased by nm times:
n : (max) domain size, m : number of variables
Complexity of verification: O(2O(|ϕ|)|S|nm) time
ϕ : LTL formula, S : BPEL service

?quantity
?quantity = 1

. . .
?quantity = 2

?quantity = 15[Fu-Bultan-S. ISSTA ’04]

2012/7/23NJU Summer School of Software Engineering 31

Composition of BPEL Services
Peer to peer

Mediated or
hub-and-spoke

report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

Investor Research Dept. Stock Broker

Mediator

2012/7/23NJU Summer School of Software Engineering 32

store

Synchronous Messaging Model
Two specific actions:

Send a message (!)
Receive a message (?)

!authorize

bank

?authorize

!ok

?ok …

<invoke>:
request-response

…
<invoke>:

request

<receive>:
response

synchronization

2012/7/23NJU Summer School of Software Engineering 33

Product with Synchronous Messaging
Two services

Their synchronous product as a transition system:

a1, a2

!r1 !r2

?a1?a2

!e

1

2 r1, r2
e

?r2

!a1!a2

?e

?r1

4

3 2

1

requester server

11

24

e

12 13

r1 r2

a1 a2

2012/7/23NJU Summer School of Software Engineering 34

Product with Synchronous Messaging
In general, the composition of k BPEL services with
synchronous messaging can be modeled as a transition
system with rk states where

r is the (max) number of states in a single service

Complexity of verification: O(2O(|ϕ|)(|S|nm)k) time
ϕ : LTL formula
|S| : size of a BPEL service
n : domain size
m : number of variables in a BPEL service
k : number of BPEL services

2012/7/23NJU Summer School of Software Engineering 35

Two specific actions:
Send a message (!)
Receive a message (?)

FIFO queues are used to buffer unconsumed messages
One queue per service for incoming messages

store

Asynchronous Messaging

!authorize

bank

?authorize

!ok

?ok …

〈invoke〉:
request-response

…
〈invoke〉:
request

〈receive〉:
response

[Bultan-Fu-Hull-S. WWW ’03]

2012/7/23NJU Summer School of Software Engineering 36

Verification is Undecidable
Finite state automata with FIFO queues are Turing
complete [Brand-Zafiropulo JACM’83]

Immediate consequence:
Verification problem is undecidable

One possible restriction: bound queue size

2012/7/23NJU Summer School of Software Engineering 37

Bounded Queues & Finite State Automata
Observation: a bounded length queue has a finite
number of states

Asynchronous + bounded queue can be simulated
Note: Only focus on message types not content

!a

a

b a

?a

…

…

!b

…

…

?b

synchronize

?a

…

…

b

!a
…

…

2012/7/23NJU Summer School of Software Engineering 38

BPEL with Asynchronous Messaging
Number of states for queues: el, where
e : number of message types, l : queue length bound
With message contents: elnl, where n is domain size

Complexity of verification: O(2O(|ϕ|)(|S|nmelnl)k) time
ϕ : LTL formula
|S| : size of a BPEL service
n : domain size
m : number of variables in a BPEL service
k : number of BPEL services

2012/7/23NJU Summer School of Software Engineering 39

Summary of Verifying BPEL Services
Focus on decidability boundary of LTL properties of
BPEL + compositions (synchronous, bounded queue
asynchronous messaging)
Verification algorithms: map to exiting verifiers

Model checker: SPIN [Fu-Bultan-S. 2003-4] [Nakajima 2004],
[Pistore-Traverso-et al 2005]

Process algebras: LTSA [Foster-Uchitel-Magee-Kramer 2003],
CWB [vanBreugel-Koshkina 2004] [Salaun-Bordeaux-Schaef 2004],
LOTOS [Ferara 2004][Salaun-Ferara-Chirichiello 2004]

ASM: [Farahbod-Classer-Vajihollahj 2004][Deutsch-Sui-Vianu 2004]
[Fahland-Reisig 2005]

…

2012/7/23NJU Summer School of Software Engineering 40

Outline
Motivations
Transitions systems
BPEL services and compositions
Choreographies (of BPEL services)
Artifact-centric workflow
Concluding remarks

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 41

Composition: Common Topologies
Peer-to-peer

Mediated, or
“hub and spoke”

report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

Investor Research Dept. Stock Broker

Mediator

2012/7/23NJU Summer School of Software Engineering 42

Orchestration vs Choreography

SOAP

OWL-S ServiceProfile

XML
Messaging

(Individual)
Service

Description

WSCL

WSDL

Composition BPEL

Choreography WS-CDL

OWL-S ServiceModel

2012/7/23NJU Summer School of Software Engineering 43

WS Choreography Definition Language
Specification of choreography
Model complex business protocol (e.g. order
management) to enable interoperability
Generate computational logic of individual collaborating
participants
Key concepts

Collaborating participants: role, relationship,
participants
Information driven collaboration: channel, activities,
workunit, choreography

Standardization through W3C (Version 1.0: December
2004)

2012/7/23NJU Summer School of Software Engineering 44

Composition: BPEL and WS-CDL

BPEL WS-CDL

Focus on
local actions Focus on

global behaviors
report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

Investor Research Dept. Stock Broker

Mediator

2012/7/23NJU Summer School of Software Engineering 45

Composition: BPEL and WS-CDL

BPEL WS-CDL

Focus on
local actions

Focus on
global behaviors

orchestration Choreography

report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

Investor Research Dept. Stock Broker

Mediator

For “hub and spoke”, the difference is small
For “peer-to-peer”, the concept of choreography is
interesting and not well understood

2012/7/23NJU Summer School of Software Engineering 46

Verification and analysis of choreography
Focus on the conversation model

Automated Design: Top-down vs Bottom-up

specification of
global behaviors

specification of
individual services

Top-down

Bottom-up
e.g., WS-CDLe.g., BPEL

orchestration Choreography

report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

2012/7/23NJU Summer School of Software Engineering 47

Verification of choreography of a WS (BPEL) composition

Services: finite transition systems on messaging actions
Unbounded FIFO queues for messages
Choreography: message sequences (send only)

How to model?
LTL on choreography

Verification of WS Choreography

[Fu-Bultan-S. WWW’04, ISSTA’04]

report

Investor

Research Dept.

Stock Broker
accept, reject, bill

request, terminate

register, ack, cancel

2012/7/23NJU Summer School of Software Engineering 48

An Example: Stock Analysis Service (SAS)
Three peers: Investor, Stock Broker, and Research Dept

Inv initiates the stock analysis service by sending a
register message to SB
SB may accept or reject the registration
If the registration is accepted, SB sends an analysis
request to the RD
RD sends the results of the analysis directly to the Inv
as a report
After receiving a report Inv can either send an ack to SB
or cancel the service
Then, SB either sends the bill for the services to Inv, or
continues the service with another analysis request

2012/7/23NJU Summer School of Software Engineering 49

SAS Composition
SAS is a web service composition

a finite set of peers: Inv, SB, RD, and
a finite set of message classes: register, ack, cancel,
accept, ...

report

Investor
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

register

accept

request
terminate

ack
cancel

reject
bill

2012/7/23NJU Summer School of Software Engineering 50

Asynchronous Messaging
We assume that the messages among the peers are
exchanged through reliable and asynchronous
messaging

FIFO and unbounded message queues

This model is similar to industry efforts such as
JMS (Java Message Service)
MSMQ (Microsoft Message Queuing Service)

reqStock Broker
(SB)

Research Dept.
(RD)req

2012/7/23NJU Summer School of Software Engineering 51

Mealy Service Model
Finite state control
Acts on a finite set of message classes
Transitions are based on receiving a message ?m or
sending a message !m

report

Investor
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

register,
ack,

cancel

accept,
reject,

bill
request,

terminate

!register

?reject

?accept

?report

!ack

!cancel
?bill

?bill

[Bultan-Fu-Hull-S. WWW’03]

2012/7/23NJU Summer School of Software Engineering 52

req

regack

?register

!reject

!accept
!request

?ack
?cancel!bill

!terminate

!bill

!register

?reject

?accept

?report

!ack

!cancel ?bill

?bill

Investor Stock Broker Firm

Research Dept.

accrep

Composite Mealy Service Execution

bill

ter?request

?terminate

!report
Execution halts if

All Mealy services are
in final states, and
All queues are empty

2012/7/23NJU Summer School of Software Engineering 53

Conversations and Conversation Protocols
Conversation: a message sequence
A conversation protocol specifies the set of desired
conversations

1

23

4

6

5

7

10

9

12 11

register

reject

terminate

accept

request

report ack

request

report

ack

cancel

bill cancel

bill

terminate

Investor
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

report

request,
terminate

register,
ack,

cancel

accept,
reject,

bill

8

2012/7/23NJU Summer School of Software Engineering 54

bill

Conversations of Composite Services
A virtual watcher records the messages as they are sent

Watcher

A conversation is a sequence of messages the watcher
sees in a successful run (or enactment)
Conversation language: the set of all possible
conversations
What properties do conversation languages have?

register

accept

req
uest

report

Investor
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

ack

repacc bilreg ackreq ter
ter

minate

2012/7/23NJU Summer School of Software Engineering 55

Conversation Languages Are Not Regular

?b!a

p1 p2

?a

!b

a

b

The set of conversations CL ∩ a∗b∗ = anbn

Conversation languages are not always regular
Some may not even be context free

Causes: asynchronous communication &
unbounded queue

Bounded queues or synchronous: CL always regular
CLs are always context sensitive

2012/7/23NJU Summer School of Software Engineering 56

Remarks
Communicating finite state machines with queues are
computationally Turing complete

Conversation languages ≠ tracing execution states

Why regular languages?
They would allow static analysis, e.g. model checking

Testing and debugging in SOA are harder

Queue v.s. no queue: design time decision!

2012/7/23NJU Summer School of Software Engineering 57

Two Key Questions

Is the composition of (BPEL) services “correct”?
Verify conversations

Automated design of services from the desired
conversation protocol?

report

Investor
(Inv)

Research Dept.
(RD)

Stock Broker
(SB)

register
ack,

cancel

accept,
reject,

bill request,
terminate

2012/7/23NJU Summer School of Software Engineering 58

Temporal Properties of Conversations
The notion of conversation enables reasoning about
temporal properties of the composite web services
Extend LTL extends naturally to conversations

LTL temporal operators
X (neXt), U (Until), G (Globally), F (Future)

Atomic properties
Predicates on message classes (or contents)

Example: G (accept → F bill)

Verification problem: Given an LTL property, does the
conversation language (i.e. every conversation) satisfy
the property?

2012/7/23NJU Summer School of Software Engineering 59

Given a composition of services, does its CL satisfy the
LTL properties?

Problem: the general case is undecidable
[Brand-Zafiropulo JACM’83]

Design Scenario 1: Bottom Up

!msg1

?msg2

Input
Queue

...Conversation ⎟= G(msg1 → F(msg3 ∨ msg5))
?

Peer A

?msg6
!msg5

!msg3

?msg4

Peer B

!msg6

?msg1

!msg2 ?msg3

!msg4

Peer C

?msg5

2012/7/23NJU Summer School of Software Engineering 60

Design Scenario 2: Top Down
Specify the global messaging behavior explicitly as a
conversation protocol
Determine if the conversations allowed by the protocol
satisfy LTL properties

Problem: the conversation protocol may not be
realizable

Conversation Protocol
A→B:
msg1

B→A:
msg2

B→C:
msg3

C→B:
msg4

B→C:
msg5

B→A:
msg6

CBA

⎟= G(msg1 → F(msg3 ∨ msg5))
?

2012/7/23NJU Summer School of Software Engineering 61

Approaches
(Bottom up) verification is undecidable

Approach 1: check if the conversations using
bounded queue satisfy LTL property

—partial verification
Approach 2: sufficient condition for bounded queue
CL = unbounded queue CL

—synchronizablility
(Top down) protocol may be unrealizable

Approach 3: sufficient condition for realizability

2012/7/23NJU Summer School of Software Engineering 62

Realizability Problem
Not all conversation protocols are realizable!

A→B: m1

C→D: m2

Conversation
protocol

!m1 ?m1 !m2 ?m2

Peer A Peer B Peer C Peer D

Conversation “m2 m1” will be generated by any legal peer
implementation which follows the protocol

Projection of the conversation protocol to the peers

2012/7/23NJU Summer School of Software Engineering 63

Another Non-Realizable Protocol

m3

m1

m2

A

B

C

m1m2 m3

A B

C

Generated conversation:

m1

m2

m3

m1A Bm2B A

m3A C

m2B Am1A B
?m1!m2

ε

!m2?m1

BA

!m1?m2

!m3

?m2!m1

ε

?m3

C

ε

ε ε

Conversation
protocol

2012/7/23NJU Summer School of Software Engineering 64

A Sufficient Condition for Realizability

Three parts for realizability (contentless messages)
Lossless join
Conversation protocol should be equal to the “join” of
its projections to each peer
Synchronous compatible
When the projections are composed synchronously,
there should not be a state where a peer is ready to
send a message while the corresponding receiver is
not ready to receive
Autonomous
Each peer should be able to make a deterministic
decision on whether to send or to receive or to
terminate

[Fu-Bultan-S. CIAA ’03]

2012/7/23NJU Summer School of Software Engineering 65

Bottom-Up Approach
Given a composition of web services, check if its
conversations satisfy some LTL properties

General problem is undecidable due to asynchronous
communication (with unbounded queues)

Naïve idea: limit the queue length
Problem 1: only partial verification, unless we are
lucky
Problem 2: state size explosion

2012/7/23NJU Summer School of Software Engineering 66

a1, a2

Example 1: Regular CL, Bounded Queues

requester server

!r2

?a1?a2

!e

!r1

r1, r2
e

?r2

!a1!a2

?e

?r1

Conversation language is regular: (r1a1 | r2a2)∗ e
During every halting run two queues are bounded

2012/7/23NJU Summer School of Software Engineering 67

a1, a2

Example 2: Not Regular, Unbounded

!r1 !r2

?a1?a2

!e

requester

r1, r2
e

server

?r2

!a1!a2

?e

?r1

Conversation language is not regular
Queues are not bounded

2012/7/23NJU Summer School of Software Engineering 68

Conversation language is regular: (r1 | r2 | ra)∗ e
Queues are not bounded

Example 3: Regular, Unbounded

requester server

!r1

!r2

!e

?a
!r

?r1

?r2

?e

!a
?r

a

r, r1, r2

e

2012/7/23NJU Summer School of Software Engineering 69

Three Examples

Verification of Examples 2 and 3 are difficult even if we
bound the queue length
How can we distinguish Examples 1 and 3 (with
regular conversation languages) from 2?

Synchronizability Analysis

queue length

of

 s
ta

te
s

 x
 1

03

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13

Example 1, regular, bounded

Example 2, not regular, unbounded

Example 3, regular, unbounded

2012/7/23NJU Summer School of Software Engineering 70

Synchronizability Analysis
A composite web service is synchronizable, if its
conversation language does not change

when asynchronous communication with unbounded
queues is replaced with synchronous communication
or bounded queues

A composite web service is synchronizable, if it satisfies
the synchronous compatible and autonomous
conditions [Fu-Bultan-S. WWW’04]

2012/7/23NJU Summer School of Software Engineering 71

Are These Conditions Too Restrictive?

yes675Cauction
yes776StarLoancollaxa.com

(Oracle)

yes1099Auction
yes666Loan
yes332shipping

BPEL
spec

yes15108AMAB
no858Haggle
yes655Buy
yes542Chat
no644MetaConv
yes444CvSetup

IBM
Conv.

Support
Project

yes15129SASISSTA’04
#trans.#states#msgNameSource Synchronizable?

SizeProblem Set

2012/7/23NJU Summer School of Software Engineering 72

Summary
Verification of choreography is intricate

Choreography of composition may not be regular
and does not fall into natural formal language classes
Must be concerned with the realizability problem

Realizability and verification on conversations with
Mealy machines [Fu-Bultan-S. 2003-6]

Realizability on process algebras, choreography
languages [many, 2005-]

2012/7/23NJU Summer School of Software Engineering 73

Outline
Motivations
Transitions systems
BPEL services and compositions
Choreographies (of BPEL services)
Artifact-centric workflow
Concluding remarks

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 74

Workflow (Business Process)
A bookseller example: Traditional control-centric model

ID
Customer

Shipping
Preference

Payment
information Confirmation ArchiveFill

Shopping
Cart

2012/7/23NJU Summer School of Software Engineering 75

Workflow (Business Process)
A bookseller example: Traditional control oriented model
Multiple steps needed for each activity

ID
Customer

Shipping
Preference

Payment
information Confirmation ArchiveFill

Shopping
Cart

Credit

PayPal

Check

Hard to reason, find useful views: missing data

In practice,
100s to
1000s of
nodes

Check
Inventory

In-stock
Handling

Back-order
Handling Existing

Customer
Login

New
Customer

Registration

Air

Warehouses/
Size

Ground

2012/7/23NJU Summer School of Software Engineering 76

Business Intelligence: Data View
Extract-Transform-Load

cust_db

catalog

inventory

Data
Warehouse Analysis

workflow activities

workflow is missing!
Transactions

Transactions

Transactions

2012/7/23NJU Summer School of Software Engineering 77

Business Artifacts !
A business artifact is a key conceptual business entity
that is used in guiding the operation of the business

fedex package delivery, patient visit, application form,
insurance claim, order, financial deal, registration, …
both “information carrier” and “road-maps”

Very natural to business managers and BP modelers
Includes two parts:

Information model:
data needed to move through workflow

Lifecycle:
possible ways to evolve

2012/7/23NJU Summer School of Software Engineering 78

Guest Check

Artifacts

Kitchen Order

Receipt

Cash Balance

Open
GCs

Archived
KOs

Closed
GCs

Archived
GCs

Pending
Receipts

Archived
Receipts

Cash
Balance

Pending
KOs

Paid
Receipts

Disagreed
Receipts

Ready
KOs

Add Item

Deliver

Prepare &
Test Quality

Create
Guest Check

Prepare
Receipt

Update
Cash Balance

Payment

Recalculate
Receipt

Example: Restaurant

2012/7/23NJU Summer School of Software Engineering 79

Prepare
Receipt

Guest Check

Artifacts

Kitchen Order

Receipt

Cash Balance

Open
GCs

Archived
KOs

Closed
GCs

Archived
GCs

Pending
Receipts

Archived
Receipts

Cash
Balance

Pending
KOs

Paid
Receipts

Disagreed
Receipts

Ready
KOs

Add Item

Deliver

Prepare &
Test Quality

Create
Guest Check

GC KO

Update
Cash Balance

Payment

Recalculate
Receipt

RC

CB

Example: Restaurant

2012/7/23NJU Summer School of Software Engineering 80

Emerging Artifact-Centric BPs

Informal model [Nigam-Caswell IBM Sys J 03]

Systems: BELA (IBM 2005), Siena (IBM 2007)
Formal models

State machines
[Bhattacharya-Gerede-S. SOCA 07] [Gerede-S. ICSOC 07]

Rules [Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

customer
info cart

. . .

Artifacts (Info models)

Specification of
artifact lifecycles+

2012/7/23NJU Summer School of Software Engineering 81

A Logical Artifact Model for BPs

A variation of [Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

[Hull-S. 09] (in preparation)

Artifacts
(info models)

+

Semantic services
(IOPEs)

+
if C enable
…

Condition-
action

2012/7/23NJU Summer School of Software Engineering 82

Given a workflow and a goal, do all executions of the
workflow satisfy the goal?

[Bhattacharya-Gerede-S. SOCA 07] [Gerede-S. ICSOC 07]
[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]
[Deutsch-Hull-Patrizi-Vianu ICDT 09]
[Vianu ICDT 09]

Verification Problem

Artifacts
(Info models)

+

Semantic services
(IOPEs)

+
if C enable
…

Condition-
action

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 83

Given a goal and a set of services, construct a set of
rules so that every execution satisfies the goal

[Fritz-Hull-S. ICDT 09]

(restricted to single artifact, first-order goals)

+ + ϕ
Goal
(FO)

?

Synthesis Problem

if C enable
…

Artifact
(Info model)

Semantic services
(IOPEs)

Condition-
action

2012/7/23NJU Summer School of Software Engineering 84

Workflow Schema
A workflow schema is a triple

W = (Γ, S, R)
Γ : a set of artifacts classes (artifact schema)
S : a set of (semantic) services
R : a set of condition-action rules

2012/7/23NJU Summer School of Software Engineering 85

A First-Order Logic + Structure
Assuming some first order logic L with a fixed structure

U is the universe

Existence of an infinite set of artifact IDs

Existence of an infinite set of attributes

2012/7/23NJU Summer School of Software Engineering 86

Artifact Classes
An artifact class consists of

a finite set of attributes, of type U or artifacts IDs
a finite set of states, initial and final states
(transitions not defined)

An artifact is a pair:
a mapping from attributes to U ∪ IDs ∪ {⊥}
a state

GuestCheck Artifact
GCID date time Name KOID table# TOTAL Payment ptime

Waiting for
table Seated Ordered CompletedDelivered

2012/7/23NJU Summer School of Software Engineering 87

Artifacts in a Workflow
During runtime, each artifact class in Γ may have a
finite set of artifacts

The union I of sets of artifacts must be closed under
“cross-referencing”

2012/7/23NJU Summer School of Software Engineering 88

(Semantic) Services
A service has a precondition and effects, conditions on

Attribute values
Defined-ness of attribute values
Equality of artifact IDs
An attribute holds the ID of a newly created artifact

SERVICE SeatingGuests
WRITE: {x: GuestCheck}
READ: {x: GuestCheck, y: Table}
PRE-CONDITION: ¬Defined(x.table#) ∧

¬Defined(y.GCID)
EFFECTS:

- Defined(x.table#) ∧ Seated(x)
- ¬Defined(x.table#) ∧ Waiting4table(x)

2012/7/23NJU Summer School of Software Engineering 89

Another Example

σ
0 ≤ A ≤ 2 0 ≤ A < 1 ∧ 0 ≤ B

∨
1 ≤ A ≤ 2 ∧ 1 ≤ B

A B

2012/7/23NJU Summer School of Software Engineering 90

(Semantic) Services
A (semantic) service is a tuple (σ, R, W, π, ρ), where

σ is a task name
R, W are finite sets of (resp., read, write) artifacts
π, ρ are quantifier-free formulas (pre- and post-
condition, resp.) over attributes of artifacts in R, R ∪
W, resp.

allow Defined(A) for an attribute A

I′ is the result of executing σ on I, I → I′, if
(I, I′)⎟= π ∧ ρ, and
frame conditions are satisfied

σ

2012/7/23NJU Summer School of Software Engineering 91

Condition-Action Rules
Rules that define business logic

Invoke a service
Change artifact states
states are used to organize the processing

if Waiting4Table(x) enable SeaingGuest(x)

if Defined(x.GCID) ∧ Defined(x.GCID.table#)
change state to Taken(x) ∧ Seated(x.GCID)

2012/7/23NJU Summer School of Software Engineering 92

A condition-action rule is an expression of form
“if ϕ enable σ” or “if ϕ change state to φ” or where

ϕ is a (quantifier-free) formula
σ is a semantic service
φ is a state changing formula

I′ is the result of executing a rule r : if ϕ … on I, I → I′,
if

I⎟= ϕ, and
I → I′ or I, I′ only differ on states as specified

Condition-Action Rules

r

σ

2012/7/23NJU Summer School of Software Engineering 93

Workflow Schema
A workflow schema is a triple W = (Γ, S, R)

Γ : artifact schema
S : a finite set of semantic services
R : a finite set of condition-action rules

Denote → the closure of ∪ →
r ∈ R

∗ r

2012/7/23NJU Summer School of Software Engineering 94

Given a workflow and a goal, do all executions of the
workflow satisfy the goal?

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]
[Deutsch-Hull-Patrizi-Vianu ICDT 09]

Verification Problem

Artifacts
(Info models)

+

Semantic services
(IOPEs)

+
if C enable
…

Condition-
action

⎥= ϕ
?

2012/7/23NJU Summer School of Software Engineering 95

Analysis Problems
An artifact system W = (Γ, S, R)

artifacts, services, rules
Completion:

Does W allow a complete run of some artifact?
Dead-end:

Does W have a dead-end path?
Attribute redundancy:

Does W have a redundant attribute?

No attribute value comparisons

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

2012/7/23NJU Summer School of Software Engineering 96

Results
The problems are undecidable
Primary reason: workflow language is Turing complete

If we disallow creation of new artifacts
Initial: if each artifact has only initial attributes
defined

The analysis problems are PSPACE-complete
even for a single artifact

Consider only a single artifact

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

2012/7/23NJU Summer School of Software Engineering 97

Monotonic Workflow
Once an attribute is assigned a value, it cannot be
changed

For monotonic services:
Complexity ranging from linear to intractable under
various conditions

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

2012/7/23NJU Summer School of Software Engineering 98

Completion (Monotonic Workflow)
Linear time if

Services are deterministic (single effect)
Preconditions has no negation
Rule conditions are positive and does not check state
information

NP-complete if the above conditions are slightly relaxed

(single artifact)

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

2012/7/23NJU Summer School of Software Engineering 99

Dead-End & Redundancy (Monotonic Workflow)
Checking if there is a dead end path is Π2-complete,
even with various restrictions

Checking redundant attributes is co-NP-complete, even
with various restrictions

(single artifact)

p

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

2012/7/23NJU Summer School of Software Engineering 100

Three Analysis Problems: Review
An artifact system W = (Γ, S, R)

artifacts, services, rules
Completion: Does W allow a complete run of an artifact?
Dead-end: Does W have a dead-end path?
Attribute redundancy: Does W have a redundant
attribute?
Undecidable in general, PSPACE if no artifact creation,
intractable for monotonic workflows

[Bhattacharya-Gerede-Hull-Liu-S. BPM 07]

Ad hoc properties, restricted to defined-ness
How to verify LTL properties?

[Deutsch-Hull-Patrizi-Vianu ICDT 09]

2012/7/23NJU Summer School of Software Engineering 101

Adding Infinite States to Artifacts
An artifact is a pair:

a mapping from attributes to U ∪ IDs ∪ {⊥}
a state relation

ItemNo Qty cookingReq Table#

GuestCheck Artifact
GCID date time Name KOID table# TOTAL Payment ptime

Waiting for
table Seated Ordered CompletedDelivered

Items

2012/7/23NJU Summer School of Software Engineering 102

Services Can Update State Relations
Model operations on artifacts

updates of the artifact attributes
insertions/deletions in artifact states

Insertions & updates can draw values from …
current artifacts, state relations
external inputs (by programs or humans),
computation that returns new values

2012/7/23NJU Summer School of Software Engineering 103

Service Specification
Consists of

pre-condition: a Boolean query on current snapshot of
artifact system
post-condition : constraints on the updated artifacts
for each state relation, state insertion/deletion rules

specify tuples to add to (remove from) state relations
Defined as queries (over current snapshot)

queries, constraints: FO logic formulas

2012/7/23NJU Summer School of Software Engineering 104

LTL(FO) to Express Properties
LTL with propositions replaced by FO formulas
(statements on individual snapshots)
Classic LTL temporal operators
X p p holds in next snapshot
p U q p is true in every snapshot until q is
F p p is eventually true
G p p is always true

Example (with slight abuse of notation) :
G ¬(¬Defined(table#) ∧∃z Items(z))

The domain is dense order without endpoints

2012/7/23NJU Summer School of Software Engineering 105

Verification Problem

In general, it is undecidable [Deutsch-Hull-Patrizi-Vianu ICDT 09]

Need restrictions to turn it into decidable

ItemNo Qty cookingReq Table#

GuestCheck Artifact
GCID date time Name KOID table# TOTAL Payment ptime

Items
Services

⎥= ϕ
?

LTL(FO)

2012/7/23NJU Summer School of Software Engineering 106

Guarded FO
Guarded FO formulas restrict quantifications:

∃x ϕ(x) ⇒ ∃x (A(...,x,...) ∧ ϕ(x))
∀x ϕ(x) ⇒ ∀x (A(...,x,...) → ϕ(x))

A(...,x,...) : x is an attribute value and x cannot appear
in any state atoms in ϕ

All formulas used to update states are guarded FO
Guarded LTL(FO): only allow guarded FO formulas

Originated from input boundedness of [Spielmann 2003]

[Deutsch-Hull-Patrizi-Vianu ICDT 09]

2012/7/23NJU Summer School of Software Engineering 107

Guardedness is a Serious Limitation
Not guarded:

G ¬(¬Defined(table#) ∧∃z Items(z))

Guarded:
G ¬(¬Defined(table#) ∧ Items(fish, 1, x, 12))

2012/7/23NJU Summer School of Software Engineering 108

Decidability Result
It can be decided in PSPACE if a guarded artifact schema
satisfies a (guarded) LTL(FO)

Actually complete in PSPACE

[Deutsch-Hull-Patrizi-Vianu ICDT 09]

2012/7/23NJU Summer School of Software Engineering 109

Summary
Biz workflow a very promising application area for WS—
tremendous impact (potentially)
Analysis is hard but could be helped with modeling
choices
Artifact-centric workflow models: right intuition and
positive experiences in practice (IBM)
“Report on 2009 NSF Workshop on Data Centric
Workflows” dcw2009.cs.ucsb.edu

More than 20 contributors, experts from CS, MIS,
digital government, healthcare, scientific workflow

2012/7/23NJU Summer School of Software Engineering 110

Concluding Remarks
WS analysis and verification is important & interesting

Modeling
Design

Current results: a good starting point
SOA themes are yet to emerge, many open issues
related to analysis
Dynamic analysis

2012/7/23NJU Summer School of Software Engineering 111

Acknowledgements
Collaborators:

Tevfik Bultan (U C Santa Barbara)
Xiang Fu (Hofstra University)
Richard Hull, Kamal Bhatacharya, Rong Liu (IBM TJ
Watson)
Cagdas Gerede (TOBB Univ. of Economics & Tech.)

Others:
Victor Vianu, Alin Deutsch (UCSD)
Fabio Patrizi (U of Rome)

2012/7/23NJU Summer School of Software Engineering 112

References
K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su: Towards Formal Analysis of Artifact-Centric Business Process Models. BPM

2007: 288-304
D. Brand and P. Zafiropulo: On Communicating Finite-State Machines. J. ACM 30(2): 323-342 (1983)
T. Bultan, X. Fu, R. Hull, and J. Su: Conversation specification: a new approach to design and analysis of e-service composition. WWW

2003: 403-410
A. Deutsch, R. Hull, F. Patrizi, and V. Vianu: Automatic verification of data-centric business processes. ICDT 2009: 252-267
A. Deutsch, L. Sui, and V. Vianu: Specification and Verification of Data-driven Web Services. PODS 2004: 71-82
D. Fahland and W. Reisig: ASM-based Semantics for BPEL: The Negative Control Flow. Abstract State Machines 2005: 131-152
R. Farahbod, U. Glässer, and M. Vajihollahi: Specification and Validation of the Business Process Execution Language for Web

Services. Abstract State Machines 2004: 78-94
A. Ferrara: Web services: a process algebra approach. ICSOC 2004: 242-251
H. Foster, S. Uchitel, J. Magee, J. Kramer: Model-based Verification of Web Service Compositions. ASE 2003: 152-163
C. Fritz, R. Hull, and J. Su: Automatic construction of simple artifact-based business processes. ICDT 2009: 225-238
X. Fu, T. Bultan, and J. Su: Conversation Protocols: A Formalism for Specification and Verification of Reactive Electronic Services.

CIAA 2003: 188-200
X. Fu, T. Bultan, and J. Su: Analysis of interacting BPEL web services. WWW 2004: 621-630
X. Fu, T. Bultan, and J. Su: Model checking XML manipulating software. ISSTA 2004: 252-262
C. Gerede and J. Su: Specification and Verification of Artifact Behaviors in Business Process Models. ICSOC 2007: 181-192
C. Gerede, K. Bhattacharya, and J. Su: Static Analysis of Business Artifact-centric Operational Models. SOCA 2007: 133-140
M. Koshkina and F. van Breugel: Modelling and verifying web service orchestration by means of the concurrency workbench. ACM

SIGSOFT Software Engineering Notes 29(5): 1-10 (2004)
S. Merz: Model Checking: A Tutorial Overview. MOVEP 2000: 3-38
S. Nakajima: Model-Checking of Safety and Security Aspects in Web Service Flows. ICWE 2004: 488-501
A. Nigam and N. Caswell: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3): 428-445 (2003)
M. Pistore, P. Traverso, P. Bertoli, and A. Marconi: Automated Synthesis of Composite BPEL4WS Web Services. ICWS 2005: 293-301
G. Salaun, L. Bordeaux, and M. Schaerf: Describing and Reasoning on Web Services using Process Algebra. ICWS 2004: 43-51
G. Salaun, A. Ferrara, and A. Chirichiello: Negotiation Among Web Services Using LOTOS/CADP. ECOWS 2004: 198-212
M. Spielmann: Verification of relational transducers for electronic commerce. J. Comput. Syst. Sci. 66(1): 40-65 (2003)
V. Vianu: Automatic verification of database-driven systems: a new frontier. ICDT 2009: 1-13

