
建立过程数据和持久数据的对应关系

Bridging Persistent Data

and Process Data

Jianwen Su (苏建文)

University of California at Santa Barbara

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 2

 Activity-centric, focusing on control flow (e.g. BPMN)

Mainly aiming at business management in general
(instead of software design/development)
e.g., resource planning, logistics

Missing data is a key reason for hindering software
design and management,

many miserable stories including

Hangzhou Housing Management Beauru

Kingfore Corporation (KFC, Beijing)

RuiJing hospital (Shanghai) &

Cottage hospital (Santa Barbara, CA)

IBM Global Financing (IGF)

Traditional BP Modeling

2013/08/29 CBPM '13 3

CBPM '13 4

Four Kinds of Data

 Business data: essential for business logic

− Examples: items, shipping addresses

 Enactment status: the current execution snapshot

− Examples: order sent, shipping request made

 Resource usage and state needed for service execution

− Examples: cargo space reserved, truck schedule to be
determined

 Correlation between processes instances

− Example: 3 warehouse fulfillment process instances for
Jane’s order

Need models that include both activities and data

2013/08/29

CBPM '13 5

Four Classes of BP Models

Data agnostic models: data mostly absent

– WF (Petri) nets, BPMN, UML Activity Diagrams, …

Data-aware models: data present (as variables), but
storage and management hidden

– BPEL, YAWL, …

 Storage-aware models: schemas for persistent stores,
mappings to/from data in BPs defined and managed
manually

– jBPM, …

Data encapsulting models: logical data modeling,
automated modeling other 3 types, data-storage
mapping

– Business objects, artifact-centric models

2013/08/29

CBPM '13 6

Artifact = Biz Process

 A business artifact is a key conceptual business element
that is used in guiding the operation of the business

 fedex package delivery, patient visit, application form,
insurance claim, order, financial deal, registration, …

Consists of a business entity and a lifecycle
[Nigum-Caswell IBM Sys J 03]

 Very natural to business managers and BP modelers

 For this talk : artifact is a synonym of BP
 (practically beneficial)

2013/08/29

application
preliminary
review

secondary
review approval

lic. fee payment certificate delivary

Business (biz) entity

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 7

Development of application systems in DB a course
Last Winter: a bank system

Accounts, clients, transactions; a small number of
typical transactions; teller & management: monthly
statements, tax reports

 Typical development approach: Entity-Relationship
modeling Java classes/modules Java & JDBC code

Most frequent mistakes:

Mismatch of data designs in Java and in ER:
omissions, incompatible semantics

Too bad: this is the best available to teach

Story 1: Toy Application Systems

2013/08/29 CBPM '13 8

The two sides of the coin are indeed separated

Heating repair workflow, consisting of
reporting problems, assign service persons, onsite repair,
and post-repair review visits

3-month development contracted to BUPT

 Their problem:

Mid-way requirement change including, in particular,
adding an activity to the repair workflow:
 demands rewriting a lot of code

Artifact BP helps conceptualizaing changes, but…

A close look: rewritten code mostly involve DB
accesses

Story 2: The Kingfore System

2013/08/29 CBPM '13 9

 Typical development steps:

Enterprise database design

The repair workflow modeled in XPDL (BPMN)

Each activity in the workflow coded,
“biz entity” never designed but just coded as needed

Developers made isolated decisions to “link” biz
entity to database (via SQL) (contrast to BP model)

 Elevating to the conceptual level

Biz entity artifact info model

Link database-entity mappings

could enable automating coding db accesses

2013/08/29 CBPM '13 10

Integrating the two sides helps application development

[Sun-S.-Wu-Yang 2013]

Database Design & Biz Entity Design

 Ad hoc design, developed over time, patches, multiple
technologies, … a typical legacy system

 Problems:
Embedded business logic, hard to learn
hard to maintain, costly to add new functionality
hard to change/evolve

An XXX Application System

2013/08/29 CBPM '13 11

Towards a goal of

 Business Process as a Service (BPaaS)

 Enterprises may run virtual IT systems

2013/08/29 CBPM '13 13

Enterprise
System Tax

Calculation

Reassessment

Title Change

Inheritance

Determine
tax base

AppraisalPAL

TaxPAL

TitlePAL

HR_PAL AccountingPAL
AssessorPAL

How do we do it?

The LEGO Fantasy

Service Programming is an Art

2013/08/29 CBPM '13 14

Tax
Calculation

Reassessment Title Change

Inheritance

Sales-
transaction Determine

tax base

Certificate

new service
How to compose?

Is it “correct”?

Appraisal

services

How to query?

Warn if #applications
for title change involving
tax reassessment reach 5

Sales-
transaction

Add new edu tax

How to change
& evolve?

How to do
transactions?

age>55 & …

The real world is not very kind

HELP NEEDED

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 15

Conceptualizing Running Workflows

2013/08/29 CBPM '13 16

W
o

rk
fl
o

w
 i
n

s
ta

n
c
e

s

Database

 Each workflow (BP) instance consists of
 a biz entity and a lifecycle

Data mappings are ad hoc

Global as View (GAV): The global database is a view
(result of a query) on local data sources

 Local as View (LAV): each local data source stores the
result of view on the virtual global database

 Research focused on query evaluation

 Schema mapping (e.g., Clio) focused on computing
general target databases
 [Popa et al VLDB 02] [Fagin et al ICDT 03]

Data Integration: A Bird’s View

2013/08/29 CBPM '13 17

Local
data source

Local
data source

... Global
Database

[Lenzerini PODS 02]

Data Integration for Workflows?

2013/08/29 CBPM '13 18

GAV is not suitable:
Data not stored in workflow instances
The number of instances changes at runtime

 LAV?
Data not stored in workflow instances

W
o

rk
fl
o

w
 i
n

s
ta

n
c
e

s

Database

 A local view is

sound: only contains (part of) results of the view

complete: contains all results of the view

Workflow data mappings?

Must be exact, i.e., both sound and complete

Open problem:
 demands a better understanding of data mappings

Soundness and Completeness

2013/08/29 CBPM '13 19

Local
data source

Global
Database

[Lenzerini PODS’02]

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 20

w(ID)

w(Customer Name)

r(Customer Address)

w(Service ID)

w(Repairperson Name)

w(Repairperson Phone)

w(Material ID)

w(Material)

Repair Application

Application Review

Repairperson Assignment On-site Repair

Post-repair VisitDocument Archive
. . .

. . .

.

. . .
. . .

Example: The Database (& Lifecycle)

2013/08/29 CBPM '13 21

 Includes keys, foreign keys, and a cardinality
specification on each foreign key

Example: The Biz Entity

2013/08/29 CBPM '13 22

Tuple and
(nested) set constructs

 aID : tRepair.tRepairID

 aReason =

aReason.aRepair Info.aID@tRepair(tRepairID).tReason

 aCust Addr = aCust Addr.aCust Name.[aCust Last Name,

aCust First Name]@tUser(tLastName, tFirstName).tAddress

Example: Cross Reference Paths

2013/08/29 CBPM '13 23

 aServiceID : tServiceInfo.tServiceID when

 aServiceID.aService Info.aID = tServiceInfo.tRepairID SI

 aTime = aTime.aServiceID@tServiceInfo(tServiceID).tTime

 In summary, two kinds of mapping rules:

Key mapping rule — existentially quantified

Non-key mapping rules —access path with equality

More Cross Reference Paths

2013/08/29 CBPM '13 24

 ED cover consists of one mapping rule for each
primitive attribute in biz entity

Key attributes use key mapping rules

Non-key attributes use equality access rules

Great news: DB accessed can be auto-generated

Workflow modifies its entity, DB hidden

 Every update on DB can be propogated to entity?

 Every update on entity can be propogated to DB?

Entity-Database Cover

2013/08/29 CBPM '13 25

Workflow
DB

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 26

Database updability:
for each update Dd on d,
 there is an e such that e = m(Dd(d))

 Entity updability:
for each update De on e = m(d),
 there is a d such that m(d) = De(e)

Updatability

2013/08/29 CBPM '13 27

Workflow e = m(d)
DB

d

m

Database updability:
for each update Dd on d,
 there is an update De such that De(m(d)) = m(Dd(d))

 Entity updability:
for each update De on m(d),
 there is an update Dd such that m(Dd(d)) = De(m(d))

Updatability

2013/08/29 CBPM '13 28

Workflow e = m(d)
DB

d

m

De Dd
m

Dd(d) De(m(d))

Database updatability: forward, can always be done

 Entity updatability: backward, often not possible

 Very closely related to database view update problem
 [Bancilhon-Spyratos TODS 81]

View complement [BS81] [Lechtenbörger et al PODS 03]

Clean source [Dayal-Bernstein TODS 82][Wang et al DKE 06]

 Fortunate here:
Theorem: Every non-overlaping ED cover is entity updatable

 [Sun-S.-Wu-Yang ICDE 14]

Entity Update & View Update

2013/08/29 CBPM '13 29

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 30

 SeGA separates data from execution engine

 Serves as a mediator

SeGA: A Service Wrapper/Mediator

2013/08/29 CBPM '13 31

[Sun-Xu-S.-Yang CoopIS ’12]

SeGA

...

Disp
atch
er

Artifac
t

Reposi
tory

Event Queue

Barc
elon

a

Engi
ne 1

EZ-
Flow

Engi
ne 1
Barc
elon

a

Engi
ne n

.

.

.

.

.

.

.

.

.

Inco
ming
even

t
BP
inst
anc
e

Sch
em
a

Outg
oing
even

t

1. SeGA receives
incoming events

2. A
dispatch
er
fetches
the
correlate
d BP
instance
s
accordin
g to the
type of
the
incomin
g event

3. The
dispatcher
sends the
incoming
event, the
BP
instances,
and their
schemas to
the
correspond
ing engine

4. The engine
then processes the
incoming event,
updates the BP
instances, and
sends outgoing
events

5. The
dispatcher
retrieve the
updated BP
instances
from the
engine and
store them
back to the
repository

Possible only if “footprints” of BP instances disjoint

 m is isolating if each update on a single entity (instance)
will not affect
write (and/or read) attributes of other entity instances

 Theorem: Isolation can be tested

Testing “conflicting” updates

 EXPTIME with conditional updates

Isolation of BP Instances

2013/08/29 CBPM '13 32

S
n
a
p
s
h
o
t

DB

d

m

.
.
.

[Sun-S.-Wu-Yang ICDE 14]

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 33

 Fundamentals

What are these mappings?
db queries phrased in 1960’s, not understood until
 [Chandra-Harel JCSS 79, Bancilhon-Paredaens IPL 79]

Updatability, what else?

Mapping languages

Design principles

Isolation, for lifecycles?, runtime mechanisms?

Data design completeness, needs ontology

Implementability: translating IOPEs on artifact to DB

 Transactions

Workflow vs databases

Connecting Biz Entities and Databases

2013/08/29 CBPM '13 34

 Activity data-centricity artifact

 Lessons from practice

 BP as a Service

 Extending the artifact concept:
 Help from data integration? (or not)

 Cross reference paths

 The updatability requirement

 Isolation of process “footprints” or dataprints

Many challenges ahead

 Conclusions

Outline

2013/08/29 CBPM '13 35

 Research on artifact BPs: need to look outside

Data is the enabler/destroyer

Holistic approaches including data and BPs can benefit
practice, i.e., software design for enterprises

 BPaaS requires independence of service and data
management [S. ICSOC’12]

Need a new forum to explore holistic approaches

Conclusions

2013/08/29 CBPM '13 36

Data, Processes, and Sofewate Systems

2013/08/29 CBPM '13 37

DPSS

Data
Management

BPM

Services

Software
Engineering

Info
Systems

