Choreography Revisited

Jianwen Su
University of California at Santa Barbara

Computing

m Foundation for Science, Technology, Engineering
< Modeling & abstraction
< Algorithmic thinking

m This talk concerns business processes

< Retail industry, legal & government, health care, ...

BPs could be helped by CS in
<+ Management of data and processes
< Techniques for modeling & design, automation
< Business informatics (as a new sector?)
m Focus: collaboration between business processes

Collaboration Models (Extreme Cases)

m Hub-and-spoke or mediated v global state

x bottle neck:
Orchestration Mediator - performance
(parallel failure
programming) // '\\:\securlty
[Store Seller Warehouse Bank

m Peer to peer (communicate when needed) . 1o bottle neck

(lobal state
[Store < | Bank]

S can
contribute here

A4

[Seller] > Warehouse}

WS-FM 13 2013/08/30 3

Choreography

m A choreography defines how biz processes should
collaborate to achieve a business goal

[Store Bank]

choreography

[Seller Warehouse]

m Goal: Support for choreography languages:

< Design “correctness”, auto realization, mechanisms
for monitoring, ...

WS-FM 13 2013/08/30

Outline

m Choreography & biz processes
m Key Aspects of choreography specification

<+ \Weaknesses of existing choreography languages
m Ingredients of our approach

< Artifacts as biz processes

< Correlations

< Message diagrams
m Snapshots and temporal (choreography) constraints
m Realization
m Conclusions

Examples: Choreographies for Soccer

]
Building the Blitz The Brasilian Plan

Start - Development1 -~

~
Iﬂ,--‘# ¢t "',...'-'.1-“""_3.-
il
5m box . 5m box A
Development2 _ . »
'-- -#..:'.1 .i""? -k
kA" - '

8m box .
.~ " camesituation -

o n.:":"'.!.'l"h. T -
Fé-'- = - 1 - =
e , e e laf.
- Ad e ™ - .

.. e (M)

AL T R Y ® =

|

directionofrun = = » direction of pass = = » |

WS-FM 13

Choreographies for BPs Are More Complex

Views (for Analytics)

WS-FM '13 2013/08/30

Correlation of Process Instances

m A choreography should be aware of process instances
not just biz process types

[Store Bank]

{ Seller Warehouse]]]

\ - \ -
\ -) .

m EXxisting languages? None support such correlations:

WS-CDL, BPMN, process algebras, conversation
protocols, Let’'s Dance, (BPEL,) ...

Data in Messages and Process Instances

m Choreography constraints may depend on message
contents and data from process instances

[Store Bank]

Seller purchase
completion

is not needed for
“small” purchases

[Seller Warehouse]]]

\ - \ -
\) .

m Most choreography languages support no data, or no
general models for data

What are Needed?

Order Payment

.

Data: if the amount is less
10, then a fulfillment
instance can ship even the
check is not received

Purchase

Instance-level correlation: Which
instances are correlated during the
runtime? Who sends messages to whom?

Existing Choreography Languages

Instance Schema

correlation correlation Data
Conversation mode oy no
i3C 2005 0 Ve ariables
b ot ol 2006 no yes mo
[Decker et a1 2007, Lto-monly yes i biec
pfactcentic horeog @l no yes o
Our model yes yes yes

*no clear linkage between variables and processes

Outline

m Choreography & Biz Processes
m Key Aspects of Choreography Specification
+ \Weaknesses of existing choreography languages

m Ingredients of Our Approach
< Artifacts as Biz Processes w/ho

< Correlations to whom

<+ Message Diagrams sends what at what time
m Snapshots and Temporal (Choreography) Constraints
m Realization
m Conclusions

WS-FM 13 2013/08/30

Four Types of Data in Biz Processes

m Essential business data for the process logic: items,
shipping addresses, ...

m Current execution or enactment states: order sent,
shipping request made, ...

m Resource usage and states: cargo space reserved,
truck schedule to be determined, ...

m Correlation between processes instances: 3 warehouse
fulfillment process instances for a customer order instance, ...

m All data should be persistent (maintained properly)

m Traditional biz process modeling languages are weak in
modeling related data

BP Models: Data Abstraction to Artifacts

Four classes of Biz process models:
m Data agnostic models: data mostly not present
< WF nets (Petri nets), BPMN, ...

m Data-aware models: data (variables) present, but
storage and management hidden
< BPEL, YAWL, ...

m Storage-aware models: schemas for persistent stores,
data mappings to/from BPs defined/managed manually
< jBPM, ...

m Artifact-centric models: logical modeling for biz data,
automated: modeling other 3 types, data-storage

mapping
< GSM, EZ-Flow

Artifacts As Process Models

m Should support: instances, process contents, messages

m Artifact class or interface, data attributes, attribute
types may be relational or other artifact classes

Store: Order

ID |CName| Addr

Cart

Bank: Payment

INo

Seller

WHouse

Price

ID | OrdID

Seller: Purchase

ID

Warehouse: Fulfillment

ID

Lifecycle
specifications
not shown

Correlation Diagrams

m Two process instances are correlated if they are

involved in a common collaborative BP instance
% Messaging only between correlated instances

m Correlations of a CBP are defined in a diagram, with
one BP as the root or primary process

1
Payment
bank
m
Purchase nmA Fulfillment
seller warehouse

< Directed edge indicates creation of BP instance(s)
< Cardinality constraints are also defined
< Some syntactic restrictions (acyclic, “1” on roaot, ...)

Referencing Correlated BP Instances

] 1 1

m

m Skolem notations reference [Order Payment
correlated instances s l 1 N 07

m Fulfillment{os) is the set of Purchase

Fulfillment

all Fulfillment instances IDs that
are correlated to an Order instance with ID o.

Order{o,) is the Order instance correlated to a Payment
instance with 1D o,

m Path expressions used to access contents of artifact
attributes, o..Cart.Seller denotes all sellers of items in
the cart of order o,

Derived Correlations

m A Purchase instance and | Order Payment
a Fulfillment instance is l 1 \{A
. m
Correlated if Purchase Fulfillment

both correlated to the same
Order instance and share at least one item

CORRELATE (Purchase, Fulfillment) If
Order{Purchase) = Order{Fulfillment) A
Purchase.Items.INo 'l Fulfillment.ltems.INo

m Derived correlations have no cardinality constraints
specified, nor instance creation

"Managing"” Correlations

m Correlations are generated at runtime

m Some correlations are generated within collaborative BP
execution, e.g., creating Fulfillments by Order

m Some correlations are obtained through external
means, e.g., Payment & Order

m Need to know messaging “patterns’

m Runtime management of BP instance correlations using
Petri nets: [Zhao-Liu CAISE 07]

Messages Diagrams

l InVoice OrderComplete PaymentReq
______ v OrderReg" v

-External')I Order !< Payment

—>

OrderPayment

ReqShipping
+
ProcPurchase ProcFulfillment*

v 1
Purchase |LurchaseComplete, Fulfillment
ShippingComplete

m A message diagram defines message types and
sender/receiver of each type

» “External” denotes the environment
<+“+” means creation of new BP instance
m Message may have data attributes
< Path expressions are used to access data contents

Outline

m Choreography & Biz Processes
m Key Aspects of Choreography Specification
<+ Weaknesses of existing choreography languages
m Ingredients of Our Approach
< Artifacts as Biz Processes
< Correlations
<+ Message Diagrams
m Snapshots and Temporal (Choreography) Constraints
m Realization
m Conclusions

WS-FM '13 2013/08/30

21

System Snapshots (States)

m A system snapshot is a triple (A, M, m)

A : a set of “active” artifact instances,
M : a set of messages that are already sent, and
m : the current message sent

<+ Note that data contents are included
m Also “tracked”:
< Artifact instance correlations

+Message-artifact dependencies
(@ message creates an artifact instance)

+ Message-message dependencies
(a message replies to the previous message)

Message Predicates and Data Atoms

m Message predicates: M(u, a, b)

< M: message type, 1 message instance 1D,
a, b: 1D of artifact instance (sender, receiver)

m With a data atom:
ProcPurchase(p, a, b) A p.cart.price>100

< data atoms can involve artifacts (e.q., a, b)

Message-message dependencies
m M[y]: ID of the message of type M in response to vy

m M(M][y], a, b) abbreviated as M][y](a, b)

m A snapshot formula: a message predicate with one or
more data atoms

Choreography Constraints

m General form: v, op v,

<\, y, . snapshot formulas

< op : binary operators from DecSerFlow:
[van der Aalst et al, 2006]

(co-)exists, succession (resp., prec.), etc.
(11 kinds)

m Examples

Messages Diagram for the Example

InVoice OrderComplete PaymentReqi
. __z__{_lOrderReq“L OrderP t
 External | Order !< T Payment
| ReqShipping
ProcPurchase” ProcFulfillment™
. PurchaseComplete [tz
Purchase —"=CT0E0 Fulfillment
ShippingComplete

Choreography Constraints

m General form: v, op v,

<\, y, . snapshot formulas

< op : binary operators from DecSerFlow:
[van der Aalst et al, 2006]

(co-)exists, succession (resp., prec.), etc.
(11 kinds)

m An example:
OrderReq(LL,EXT,x) A p.amount>10
SUCK ProcPurchase[1] (x,Purchase{x))

Each order request over 10 should be followed by one
(or more) processing purchase messages

m Free (artifact/message ID) variables are universally
quantified

Another Example

m VxeFulfillment VyePurchase(x)
PurchaseComplete(u, v, x) A y.cart.price>100

mift
all

SUCg

purchasing completion

ReqShipping[w](Order{x), x)
nere is an item priced >100, shipping request is after

In Vozce OrderComplete ~ Paymen tReqi

-_ I_E_X_t_e_r_n_e';}I_')I Order !< OrderPayment Payment
| ReqShipping
+
ProcPurjhase ProcFulfillment*
\ v
Purchase |LurchaseComplete, Fulfillment
ShippingComplete

Semantics Based on FO-LTL

m DecSerFlow operators are expressible in Linear-Time
Logic (LTL)

m Choreography constraints can be translated to first-
order LTL

m Semantics of FO-LTL is based on sequences of system
snhapshots

Outline

m Choreography & Biz Processes
m Key Aspects of Choreography Specification
<+ Weaknesses of existing choreography languages
m Ingredients of Our Approach
< Artifacts as Biz Processes
< Correlations
<+ Message Diagrams
m Snapshots and Temporal (Choreography) Constraints
m Realization
m Conclusions

WS-FM '13 2013/08/30

29

Realization

{ Store Bank]
choreography
[Seller Warehouse]

m A choreography = a set C of snapshot sequences that
satisfy constraints

m Executable system = a set E of snapshot sequences
that may be produced

m The choreography is realized by the executable system
if C=E

Choreography Decision Problem

m Problem: Given a choreography, is it realizable?
< Raised in [Bultan-Fu-Hull-S. WWW 03]

< Studied in many contexts, especially with process
algebras since 2004 [s.-Bultan-Fu-zhao, WS-FM 07]

m Crux of the problem:

¢ A B C D
A—-B:m,
5 ’
C-»D:m, gml gml m *T?mz
5 o0
Choreography an projection to 4 peers

m When A, B, C, D operate autonomously, m,m, is
possible

Choreography Realization Problem

Store Bank

m Given a choreography,
how do we design chareography
an executable system to realize it?

Seller arehouss

m More practical:
< Choreography design is a business decision
< System design is software engineering problem

m Preliminary result: If a choreography has only 1-1
correlations, it can be realized

< The executable system uses a small number of
auxiliary messages to synchronize

Outline

m Choreography & Biz Processes
m Key Aspects of Choreography Specification
<+ Weaknesses of existing choreography languages
m Ingredients of Our Approach
< Artifacts as Biz Processes
< Correlations
<+ Message Diagrams
m Snapshots and Temporal (Choreography) Constraints
m Realization
m Conclusions

WS-FM '13 2013/08/30

Conclusions

m BPM is a rich research area for CS:
modeling, analytics, interoperation, evolution, ...

m Collaborative BPs an interesting & very relevant thread
in BPM

< CS techniques helpful for orchestration
m CS techniques necesssary for choreography
< This talk: trying to get to the technical details

development of specification languages, realization
techniques, runtime monitoring and support, making
changes, etc.

Future Problems

m Choreography specification with instance and data
<+ FO+LTL semantics

< Alternative framework? E.g., FSMs, process algebras,
Petri nets, ...

m Analysis of choreography
< Satisfiability? (Seems undecidable for our language)

< Finiteness? (Guarantee to terminate in finite steps,
likely undecidable)

m Realization
< Static compilation
< Dynamic schemes

