From Data-Centric Business Processes to Enterprise Process Frameworks

Jianwen Su UC Santa Barbara

A Traveler's Experience

friendly sky...

got a phone...

tax refund...

return the phone

upgrade

back home

tax refund of a new phone

mmigration

& Border

Protection

Business Services via an Example

- Subscription of broadband internet connection
- A collection of processes: order, shipping, installation, invoice, cancel, update order, …
 - Usually well specified and (formally) modeled
- Relationships between processes: order triggers shipping and installation, installation triggers invoice, cancel triggers invoice, ...
 - Usually in biz rules, documents, and manual
- Properties of relationships:
 - Often data-centered
 - Broader than choreography
- Modeling processes + relationships is beneficial

Plan for the Talk

The Need for Process-Process Relationships

- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges

Life Cycle of Guest Check Artifact

[Nigam-Caswell 03]

Discovery and Design of Artifacts

ER diagrams or other suitable modeling approaches

EDOC 2017 [Bhattacharya-Gerede-Hull-Liu-S. BPM 07] [Bhattacharya-Hull-S. 09]

Schedule and Vendor Lifecycles

Schedule

BOM Service: IOPEs of Create_schedule

- An Offered DES Service artifact o, and specifically the listing of used Generic Tasks, along with whether they are optional, and information about the Precedence relationships between them
- A Customer artifact c, ... A Site artifact si for c, ...
- A new *Schedule* artifact *sch*. The data written will include attributes schedule_ID, stage, plan
 Task portion of the includes relat
 The Site artifact si is updated ... attributes *schedule_ID*, *stage*, *planned_start_date*, and the *Generic* Task portion of the includes relationship
- Offered DES Service artifact o must be compatible with the Preinfrastructure and needs of site si
- If true, then *sch* is in stage *Schedule_planning* If true, then *sch* holds a schedule skeleton (i.e., appropriate Cond. portions of the relationship *includes* are filled in)

If true, ...

BOM: ECA Rules

R₁: initiate schedule

eventrequest by performer p to create a scheduleinstance for Offered DES Service artifact o,Customer artifact c, and Site artifact si

- condition the appropriate non-disclosure agreements (NDAs) are in place for *c*
- **action** invoke *Create_schedule(o, c, si)*
- **by** performer p where offer_manager in role(p) and qualification(p, o, region: si.region) ≥ 5

Alternative models can also be used

Artifact-Centric Biz Process Modeling

- ■Informal model [Nigam-Caswell 03]
- Systems: BELA (IBM 2005), Siena (IBM 2007), ArtiFlow, EZ-Flow (Fudan-UCSB 2010), GSM/Barcelona (IBM 2010)
- Formal models
 - State machines [Gerede-Bhattacharya-S. SOCA07][Gerede-S. ICSOC07]
 - Rules [Bhattacharya-Gerede-Hull-Liu-S. BPM07] [Hull et al WS-FM10]

An important problem [Hull-S. DCW09 report]
 More in SIGMOD tutorial [Hull-S.-Vaculin SIGMOD13]

Plan for the Talk

The Need for Process-Process Relationships

- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges

Dynamic Process Changes

[Xu.-S.-Yan-Yang-Zhang CoopIS11]

Artifact-centricity, EZ-Flow model

Each biz process has a core artifact (class)
 Business data (object) + enactment
 Similar notion in recent GSM model from IBM

Execution Semantics and Process Changes

Formal semantics for task execution based on Petri nets

Represents data (input/output) requirements and carries enactments

Declarative change specification

Four execution altering operators

Rules for applying the operators based on conditions

[Xu.-S.-Yan-Yang-Zhang CoopIS11]

New Fee Schedule for Low Income Housing

Affordable-Fee: MUST REPLACE PaymentProcessing BY AffordablePaymentProcessing ON PAF WHERE SELF.projectType="affordable"

[Xu.-S.-Yan-Yang-Zhang CoopIS11]

2017/10/12

Jointfounder Challenge

Hangzhou

Urumai

- Housing Management Bureau (HMB房管局) manages titles, licenses, permits, ... for a region
- Sells housing management workflow systems to HMBs
 - ✤ 20-30 HMBs as clients, including
- Maintenance contracts for clients
 - Each service call costs 4 6 person-days
 - Common types of issues: failures, changes caused by e.g. policy change, (tools for) analytics, ...
- Scalability problem:

More clients means more service technicians and associated management costs

Can Cloud be a Solution?

But only naïve approach: Run one WfM system for each client HMB due to disparate local data for each HMB's workflow instances
Hangzhou HMB Hangzhou

Shifts but does not reduce effort/cost in addressing clients technical problems: failures, changes, analytics, ...

Data Management in Workflow Systems

Typical architecture:

During execution, data can be held in each of the shaded boxes (shapes)

Problems? Plenty!

Similar: Local data store fails

Again, recovery at store, but data may not be consistent with data in EDb, engine, and wrappers

Independence of Data Management and Execution Management

Execution Independence

the freedom of changing the process execution system while leaving conceptual BP models unchanged and vice versa

Clean separation of responsibilities

 WfMS: Execution
 DBMS: Data

 Allows *Divide-and-Conquer* for management functions

 Helps in many aspects

[Sun-S.-Yang BPM14] [Sun-S.-Wu-Yang ICDE14]

Five Types of Data in Biz Processes

- 1. Specification of biz process models
- 2. Business data essential for business logic
 - ✤ e.g., items, shipping addresses, ...
- 3. Enactment status: the current execution snapshot
 - ✤ e.g., order sent, shipping request made, ...
- 4. Resource usage and state needed for BP execution
 - * e.g., cargo space reserved, truck schedule is to be determined, ...

5. Correlation between processes instances

* e.g., 3 warehouse fulfillment process instances for Jane's order (instance), ...

Traditional biz process models are weak in modeling data (types 2-5) [Sun-S.-Yang BPM14] [Sun-S.-Wu-Yang ICDE14]

Universal Artifacts (UA)

A universal artifact contains everything an engine needs

^{2017/10/12}

The SeGA Framework

[Sun-S.-Yang BPM14]

Key idea: a process wrapper to supply all data (i.e., "universal" artifact) when the engine needs to run

EDOC 2017

2017/10/12

Plan for the Talk

The Need for Process-Process Relationships

- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges

(Modeling) Process Relationships

Three Types of Process Relationships

Consider binary relationships

- Occurrences: how their instances should be related
 - **e.g.**, adding a driver to an auto policy causes new insurance cards to be sent
- Cardinality: How many instances should be related
 - *e.g., if a posted charge reaches 80% of the credit limit, at most 3 warning messages should be sent at a 3-day interval
- Data: the relationship depends on the data content
 - *e.g., if the reimbursement total exceeds CA\$5000, dean's approval is necessary

(Modeling) Process Relationships

Desirable: upper-right region

DecSerFlow (DECLARE)

- Modeling language constraining behaviors (executions) through occurrences of activity instances
- Unary: number of executions of an activity
- Binary: (co-)existence, response, precedence, etc.
 - Alternative, succession
- N-ary constraints are possible, negation is also allowed
- Example: Every A is followed by a B (response)

DecSerFlow (DECLARE)

- Modeling language constraining behaviors (executions) through occurrences of activity instances
- Unary: number of executions of an activity
- Binary: (co-)existence, response, precedence, etc.
 - Alternative, succession
- N-ary constraints are possible, negation is also allowed
- Example: Every A is followed by a distinct B (alt. resp.)

Needed: cardinality, data

Correlation Diagram

[Sun-Xu-S. ICSOC12]

Choreography constraints on messages
 Examples:

 $\forall x \in \text{Order OR}(\mu, \text{ext}, x) \land \mu.\text{amount} > 10 \ (succ) \rightarrow \ \text{CP}[\mu](x, \text{Purchase}[\mu])$

 $\forall x \in \text{Fulfillment} \forall y \in \text{Purchase}(x) \text{PC}(\mu, y, x) \land y.\text{cart.price} > 100 \\ (succ) \rightarrow \text{RS}[\mu](\text{Order}(x), x)$

Needed: occurrences, cardinality

Modeling Relationships (Early Thinking)

■ *Order*(ID, ..., | Cost, ...)

Shipping(... | ...) Cancel (|), Invoice (|)

 $O = Order(ID:x|) \longrightarrow O < \exists Shipping(OrderID:x|)$

$$Order(ID:x|) \xrightarrow{<} \exists Shipping(OrderID:x|)$$
$$Cancel(OrderID:x|Credit:y) \xrightarrow{<} \exists Invoice(OrderID:x, Credit:y|)$$

■ Under development [S.-Wen-Yang '17]

Enterprise Process Framework

- Aiming to model biz services, 4 components:A data model
 - ✤ For data access by at least the biz service
- A set of processes
 - Accessing data instances of the data model
- A set of relationships between processes
 - Constraining instances of process instances
- A set of KPIs / QoSs
 - Measuring aspects of interest

Plan for the Talk

The Need for Process-Process Relationships

- Process Design and Modeling with Data
- Runtime Management
- Towards Process-Relationship (PR) Modeling
- Further Challenges

Modeling Process Relationships

Choice of data model: ER or XML
 What should be included?
 Choice of process model: data is essential
 *IOPE seems natural
 Relationships:

Axiom of Anticipation for Proc. Modeling

Combining all processes in a biz service into a single one Modeling languages usually allow such ✤ But not a good idea: -- long lasting processes -- harder to maintain the workflow system What is the right size? Except for the initial event, all other events/activities should be known to happen

Modeling Process Relationships

Choice of data model: ER or XML

- What should be included?
- Choice of process model: data is essential
 - ✤ IOPE seems natural

Relationships:

- Occurrences & cardinality
- Data: data flow, other factors?
- Temporal constraints
- QoSs/KPIs: realistic indicators

Goals: enabling reasoning/analytics, and (next slides)

Optimization and Automation

- Measuring QoSs/KPIs
 - Effectiveness?
- Optimizing EPFs based on QoSs/KPIs
 - Move activities from one process to another
 - Remove redundant activities
 - Replace activities by "cheaper" version
 - Batch executions
- Automation
 - Specification of EPF to technical model?
 - Data (documents, logs, emails, ...) to technical models----cognitive computing

Changes and Change Impact Analysis

Example: add services for low income housing

Seems benign for existing services but could impact property tax (reduction)

Add luxury tax:

- Could be a fraud to avoid
- Intra-EPF impact analysis
- Inter-EPF impact analysis

Previous work focus on individual processes

Anomaly Detection and Incident Mining

Anomaly: a potentially undesired incident

- Tax refund example:
 - Detectable if EPFs of biz accessible
 - Algorithms to analyze EPFs of vendor with tax refund EPF of customs & border control
- Double reimbursement: similar
 - Adjunct appointments routine

Same reimbursement from two different institutions?

Mining logs to discover possible anomalies? ISC mining may help [Winter-Rinderle-Ma EDOC17]

Conclusions

A new approach to modeling business services

- Cumbersome to put all in one process axiom of anticipation
- Process relationships a key element in gluing together processes
 - Similar to modularity, hierarchies, yet fundamentally distinct
- Fairly green field, not much has been done
 - Techniques from data modeling might be useful