
Choreography Revisited?

Jianwen Su and Yutian Sun

Department of Computer Science, UC Santa Barbara, USA

Abstract. A choreography models interoperation among multiple participants in
a distributed environment. Existing choreography specification languages focus
mostly on message sequences and are weak in modeling data shared by partici-
pants and used in sequence constraints. They further assume a fixed number of
participants and make no distinction between participant types and participant
instances. Artifact-centric business process models give equal considerations on
modeling data and on control flow of activities. These models provide a solid
foundation for choreography specification. Through a detailed exploration of an
example, this paper introduces a choreography language for artifacts that is able
to specify data conditions and the instance-level correlations among participants.

1 Introduction

Modern enterprises rely on business process management systems to support their busi-
ness, information flows, and data analytics [7]. Interoperation among business processes
(BPs) (in a distributed environment) continues to be a fundamental challenge. In gen-
eral, two approaches [9, 6], namely orchestration and choreography, are used to model
interoperation. An orchestration requires a designated “mediator” to communicate with
and coordinate all participating BPs. BPEL [1] is a typical orchestration language and
has been widely used in practice. However, orchestration reduces the autonomy of par-
ticipating BPs and does not scale well due to the mediator. The choreography approach
specifies desirable global behaviors among participating BPs but otherwise leaves the
BPs to operate autonomously and communicate in peer-to-peer fashion. One difficulty
for this approach is to coordinate among participating BPs in absence of a central con-
trol point. This paper introduces a language for choreography specification through a
detailed example. The formal model, syntax and semantics of this language were re-
ported in [10].

A choreography models interoperations among multiple participants in a distributed
environment. A choreography may be specified as a state machine representing message
exchanges between two parties [5] or permissible messages sequences among two or
more parties with FIFO queues [2]. It may even be specified as individual pieces using
patterns [12], or implicitly through participants behaviors [4].

Data play an essential role in process modeling [8]. Interoperation of BPs also needs
data to specify precisely global behaviors among participants. Existing choreography
languages focus mostly on specifying message sequences and are weak in modeling
data shared by participants and used in choreography constraints. A tightly integrated

? Supported in part by a grant from Bosch.

data model with message sequence constraints would allow a choreography to constrain
execution accurately. More importantly, the existing choreography languages (with an
exception of [10]) assume a fixed number of participants and make no distinction be-
tween participant types and participant instances. For example, an Order process in-
stance may communicate with many correlated Vendor process instances. Therefore, a
choreography language must be able to model correlations between process instances.

Artifact-centric process models [8] have attracted increasing attention in modeling
BPs. An artifact model includes an information model for business data and a specifica-
tion of lifecycle that defines permitted sequences of activities. Artifact models provide
an excellent starting point for developing choreography specification.

This paper focuses on choreography specification with process instance correlations
and data. Through a detailed running example, this paper demonstrates the following
four aspects of the language: (1) Each participant type is an artifact model with a spec-
ified part of its information model accessible by choreography specification. (2) Cor-
relations between participant types and instances are explicitly specified, along with
cardinality constraints on correlated instances. (3) Messages can include data; both
message data and artifact data can be used in specifying choreography constraints. (4)
Our language is declarative and uses logic rules based on a mix of first-order logic and
a set of binary operators from DecSerFlow [11]. In summary, this paper explains the
details of the choreography model and language presented in [10] and can be viewed as
a companion paper of [10].

The remainder of the paper is organized as follows. Section 2 introduces a collab-
orative BP example used throughout the paper. Sections 3 to 7 present the five main
components of the choreography language respectively. Section 8 briefly discusses the
semantics of the language. Section 9. concludes the paper.

2 A Running Example

To illustrate the choreography language, in this section we describe an online shopping
example that involve different participants in a collaborative business process.

Consider an online store whose items are owned and provided by many vendors. A
vendor may use several warehouses to store and manage its inventory. Once the cus-
tomer completes shopping, she initiates a payment process in her bank that will send a
check to the store on her behalf. Meanwhile, the store groups the items in her cart (1)
by warehouses and sends to each warehouse for fulfillment and shipping, and (2) by
vendors and subsequently requests each vendor to complete the purchase. The vendors
inform warehouses upon completion of purchase. After the store receives the payment
and vendors’ completion of purchases, the store asks warehouses to proceed with ship-
ping.

In this example, four types of participants (store, vendor, warehouses, and bank) are
involved and each type has/can be viewed as its own business process. Although store
and bank have only one process instance each for a single customer shopping session,
there may be multiple instances for vendors as well as for warehouses. To design a
choreography for such collaborative processes with multiple collaborating participants,
the following five components are used in our language: artifacts, correlation graphs,
derived correlations, messages, and choreography constraints.

2

Artifacts: In artifact-centric modeling, an artifact instance encapsulates a running
process. For example, the store initiates an Order (artifact) instance that handles the
processing of an customer order. The Order instance contains the needed business data
such as items, customer names, date, etc. as well as a lifecycle that guides how the pro-
cess should progress. Similarly, other participant processes are also artifact instances,
Purchase instances represent order processing at vendors, Fulfillment instances
are packing and delivery processes at warehouses, and a Payment instance is initiated
upon a customer request to make a payment to the online store.

Correlation graphs: Over the (defined and) participating artifacts, a graph is used to
specify correlations among these artifacts. Essentially, correlations represent the need
for one process instance to communicate with another. For example, an edge between
Order (artifact) and Purchase represents that one Order instance can correlate
with many Purchase instances.

Derived Correlations: In addition the correlation specified by correlation graphs,
there are some correlations that can only specified by “rules” rather than edges in the
correlation graph. For example, a Purchase instance and a Fulfillment instance
are correlated when they share the same item ordered by a customer. (Thus, they need
to communicate, e.g., on the status of purchase processing by the vendor.) We call such
rule-specified correlations “derived correlations”.

Messages: Correlated participants can send messages between them. For exam-
ple, a Purchase instance can inform the completion of the purchase to all correlated
Fulfillment instances by sending ‘PC’ (purchase complete) messages; or, the cus-
tomer is informed the completion of the order by receiving an ‘OC’ (order complete)
message from the Order instance.

Choreography Constraints: Finally, a choreography is a specification of how, when,
and what messages should be sent among participants. To achieve this, declarative con-
straints are used. An example choreography constraint can be that whenever a PC (pur-
chase complete) message is sent, a SC (shipping complete) message is sent in the future.

We will introduce each of the above five components in Sections 3 to 7, respectively,
and illustrate the semantics of the choreography language in Section 8.

3 Artifacts

In our model, artifacts represent participant BPs, the notion of an “artifact interface”
captures an artifact with “visible” data contents for choreography specification.

An artifact (interface) is a complex data type. The attributes in an artifact can be
accessed in choreography. Each artifact always contains a top-level and non-set-typed
attribute ‘ID’ to hold a unique identifier for each artifact instance. The data type of an
attribute is hierarchically organized.

Fig. 1 shows interfaces of the four artifacts mentioned in Section 2, namely, Order,
Payment, Purchase, and Fulfillment. An Order artifact (interface) contains
‘ID’, order ‘Info’, ‘Customer’, and shopping ‘Cart’ as its top-level attributes, among
which, ‘Info’, ‘Customer’, and ‘Cart’ are complex attributes that contain nested at-
tributes. Moreover, ‘Cart’ is a relation-typed attribute (indicated by ‘⊕⊗’) that may in-
clude 0 or more tuples with six (nested) attributes: ‘Inv(entory) ID’, ‘Item’ name, ‘Quan-
tity’, ‘Unit Price’, ‘Vendor’ (seller of the item), and ‘Warehouse’ (location of the item).

3

Order

ID

Info

Total_Price

Date

Name

Cart

Inv_ID

Item

Unit_Price

Quantity

Customer

Addr

Payment_ID

Vendor

Warehouse

Payment

ID

Card_Info

Card_No

Cust_Name

Order_ID

Customer

Cust_Addr

Expire_Date

Amount

Purchase

ID

Vendor

Name

Inv_ID

Order_ID

Item

Name

Addr

Quantity

Fulfillment

ID

Warehouse

Name

Inv_ID

Order_ID

Item

Name

Addr

Quantity

Status

Order Payment Purchase Fulfillment

Fig. 1. artifact interfaces

Order

Purchase

1

m

Fulfillment

1

m

Payment1 1

Fig. 2. Correlation graph

Order

Purchase Fulfillment

Payment

OR

CP

PR

CH

CF

PC

RS

SC

OC IV

ext(ernal environment)

Fig. 3. Message diagram

The Payment interface contains attributes such as “Card No” and “Cust(omer) Name”
to record the payment information. The Purchase and Fulfillment interfaces are
structured similarly. Note that the “Item” attribute of Purchase and the “Item” at-
tribute of Fulfillment have the same structure but in general may store different
values. The “Item” of Purchase stores all items purchases by a customer that are pro-
vided by the same vendor; while the “Item” of Fulfillment stores all items purchases
by a customer that are stored in the same warehouse.

The attributes in an artifact interface can be accessed in choreography. Each artifact
interface always contains the attribute ‘ID’ to hold a unique identifier for each artifact
instance. The data type of an attribute can be hierarchical or another artifact interface;
in the latter case, values of the attribute are identifiers of the referenced interface.

Given an artifact interface, an artifact instance is a partial mapping from all the
attributes of the artifact to their corresponding domains, such that ID is defined and
unique.

4

4 Correlation Graphs

We now introduce an important notion of a “correlation graph”. Intuitively, a correla-
tion graph specifies whether two BP instances (or equivalently, artifact instances) are
correlated and whether the correlation is one instance of a BP correlating to 1 or many
instances of the other BP. Similar to WS-CDL, only a pair of correlated instances may
exchange messages in our model.

Informally, a correlation graph is a rooted, acyclic, and connected graph whose
nodes represent artifacts and edges denote “correlations” among the artifacts. More
precisely, if two artifacts are correlated (connected by an edge), it indicates that some
instances of these two artifact interfaces are correlated. For example, Fig. 2 shows the
correlation among the four artifacts in Fig. 1. The root of this graph is the Order arti-
fact, which means that the creation of an Order artifact instance also starts the entire
collaborative process instance. Our model restricts that there exists exactly one root
artifact instance in a collaborative process instance. The three edges in Fig. 2 indi-
cate that some instances of Order are correlated with some instances of Payment,
Purchase, and Fulfillment respectively.

The edges among nodes (i.e., artifacts) can be directed to denote a creation relation-
ship (correlation will be created during execution through messages) or undirected to
denote a correlation that is externally set up. Moreover, each edge should have a cardi-
nality, which can be either ‘1’ or ‘m’ on each end to denote correlated instances of the
two artifacts satisfy 1-to-1, 1-to-many, m-to-1, or m-to-m constraint. In Fig. 2, the corre-
lation between Order and Payment is undirected (the correlation is set up externally)
and has the 1-to-1 cardinality constraint (one Order instance correlates to exactly one
Payment instance). The correlations between Order and Purchase and between
Order and Fulfillment are directed (creation) to denote that an Order may cre-
ate at runtime multiple Purchase instances and multiple Fulfillment instances.

Naturally, the specified cardinality may contradict with each other in general. Con-
sider the example in Fig. 2, where the cardinality between Order and Payment is
1-to-1 the cardinality between Order and Purchase is 1-to-m. Suppose we add an
edge between Payment and Purchase with cardinality 1-to-1. Then we will have a
problem at runtime when an Order instance correlates with two Purchase instances
and one Payment instance: one of the two Purchase instances will not be able to
correlate with any Payment instances. The consistency of cardinality can be checked
in linear time [10]. Thus we only consider correlation graphs that have consistent car-
dinality. The correlation graph shown in Fig. 2 is cardinality consistent.

5 Derived Correlations

In addition to correlations specified in a correlation graph, there may be correlations
that are “derived” from existing correlations.

Intuitively, two artifact instances that have no direct correlation (i.e., no edge be-
tween these two artifacts in their corresponding correlation graph) can have a “de-
rived correlation” if some rules are satisfied. For our example (Fig. 1 and Fig. 2), a
Fulfillment instance and a Purchase instance may be correlated if they have
one item in common (i.e. the vendor stores this item bought by a customer through a

5

correlated Order instance, in the warehouse). In our choreography language, rules are
used to specify derived correlations based on existing (direct or derived) correlations.
Thus, whenever a correlation is established, it can be used in rules for specifying other
derived correlations.

Before introducing the rules to build derived correlations, we need the concepts of
“correlation references”, “path expressions”, “binary operators”, and “quantifiers”.

If there is an edge connecting two artifacts in an correlation graph for two ar-
tifacts, operator ‘�’ can be used to link these two artifacts to denote all correlated
artifacts instances of the current one(s). Consider the example in Fig. 2, expression
‘Order�Purchase’ denotes all correlated Purchase instances of an Order in-
stance. Furthermore, suppose o is an instance of Order, ‘o�Purchase’ denotes
all Purchase instances correlated with o. We also denote this expression simply as
‘Purchase〈o〉’. The “�” operator can be chained together, crating a correlation refer-
ence. An example correlation reference is the following:

Order�Fulfillment�WarehouseGrouping,

where WarehouseGrouping is an artifact representing a process that collects the
items from different locations in the same warehouse.

In general, given a fixed artifact instance, the same correlation reference expres-
sion can return different instances due to the fact that some more instances might
be created. In Fig. 2, the instance level correlations between Order and Purchase
(Fulfillment) are created at runtime. If two artifacts are connected by an undi-
rected edge, their correlated identifier pairs are assumed to exist in the system. In our
running example, the instance level correlation between Order and Payment may be
specified by the customer using, e.g., the Order ID submitted to the bank.

Path expressions (with the “dot” operator), are used to access hierarchical data [3] of
an artifact. In our example (Fig. 1 and Fig. 2), ‘Order.Cart.Inv ID’ is a path expression
denoting all inventory IDs of a given Order instance. Moreover, the path expressions
can contain correlation references. For instance, ‘Order�Fulfillment.Item.Name’
denotes the item names in all Fulfillment instances that are correlated to a given
Order instance. Similar to correlation references, given o as an instance of Order,
‘o�Fulfillment.Item.Name’ denotes the values returned by evaluating path expres-
sion ‘Order�Fulfillment.Item.Name’ but restricted to paths starting from o. An
equivalent alternative expression is ‘Fulfillment〈o〉.Item.Name’.

To manipulate on the values returned by a path expression, quantifiers (SOME and
ALL) and operators such as >, ,, < (comparisons of values) and IN (set membership
testing) can be used to forming Boolean conditions. For example, if a Purchase in-
stance p and a Fulfillment instance f correlate to the same Order instance, then
‘SOME(Order〈p〉) IN Order〈 f 〉’ is true. In this case, since there is exactly one Order
instance correlated with p and with f , the stronger condition ‘Order〈p〉 = Order〈 f 〉’
is also true. (Note that an operator “u” was used in [10] to express the former condition
of having an overlap.)

By using correlation references, path expressions, quantifiers, and comparison op-
erators, we can specify derived correlations among artifacts (instances). For example,

6

in Fig. 2, one valid correlation rule for Purchase and Fulfillment can be

COR(Fulfillment, Purchase) :
SOME(Purchase.Item.Inventory ID) IN Fulfillment.Item.Inventory ID

which specifies that a given Fulfillment instance has a derived correlation with
a given Purchase instance if they share at lease one common item. The expression
has two parts: (1) ‘COR(Fulfillment,Purchase)’ declares a derived correlation
between Purchase and Fulfillment, and (2) the remaining (i.e., the expression
after colon) defines a Boolean condition for this correlation. Two artifact instances are
correlated if and only if the corresponding Boolean condition evaluates to true on the
two instances.

Once a derived correlation is defined, the correlation references can be used upon
the corresponding artifacts. Continuing the example discussed in the above, the expres-
sion ‘Fulfillment�Purchase’ can be used even though there is no edge between
them in the correlation graph. However, different from edge-specified correlations, de-
rived correlations do not have associated cardinality constraints.

6 Messages

With correlations defined, messages can be sent between two correlated artifact in-
stances. This section describes specifications of message types and instances.

A graphical representation of all messages types are shown as a message diagram,
where each edge represents a message (type) with the edge direction indicating the
message flow. A message diagram for our running example is shown in Fig. 3.

Example 6.1 in the following depicts a complete scenario of all messages sending
and receiving based on Fig. 3.

Example 6.1 An Order artifact instance is created upon receiving an order request
(OR) message instance from a requesting customer. The created Order instance will
then send an invoice (IV) message instance back to the customer. Upon receiving the
invoice, the customer is able to send a payment request (PR) message instance to the
bank that will make a payment through sending a check (CH) to the Order instance.
Once the payment is made, the online store can create several (correlated) Purchase
and Fulfillment artifact instances by sending create purchase (CP) and create ful-
fillment (CF) messages. A purchase complete (PC) is sent from a Purchase instance
to each correlated Fulfillment after a vendor completes the purchase. When all
purchases complete, the Order instance will request each Fulfillment instance
to ship the items ordered by the customer by sending request shipping (RS) messages.
When items are sent to delivery, shipping complete (SC) messages are sent from ware-
houses to the online store, which will then close the case by informing the customer
through an order complete (OC) messages.

We use an artifact with name ‘ext’ (whose structure only contains attribute ‘ID’) to
denote the external environment (as the sender or receiver). Furthermore, the artifact
instance of ‘ext’ also has ID ‘ext’.

7

Message names Abbr. Sender Receiver Data structure ic min max
Order Request OR Ext Order OR[ID, Customer[..], Cart*[..], ..] + 1 1
Invoice IV Order Ext IV[ID, Amount, BankInfo[..], ..] − 1 1
Payment Request PR Ext Payment PR[ID, Amount, Customer[..], ..] + 1 1
Check CH Payment Order CH[ID, OrderID, Amount, ..] − 1 1
Create Purchase CP Order Purchase CP[ID, Cart*[Item[Price, ..], ..], ..] + 1 ∞

Create Fulfillment CF Order Fulfillment CF[ID, Cart*[Item[..], ..], ..] + 1 ∞

Purchase Complete PC Purchase Fulfillment PC[ID, PurchaseID, ..] − 0 ∞

Request Shipping RS Order Fulfillment RS[ID, OrderID, ..] − 0 ∞

Shipping Complete SC Fulfillment Order SC[ID, FulfillmentID, ..] − 1 ∞

Order Complete OC Order Ext OC[ID, OrderID, Date, ..] − 1 1

Fig. 4. A comlete set of messages

A message contains a message name, a sender artifact name, a receiver artifact
name, a complex data structure (which resembles an artifact structure) representing the
content of the message, a flag ‘ic’ (abbreviation for ‘is-creation’) ranging over {+,−}
to denote if the message can create new artifact instances (‘+’) or not (‘−’), and and
minimum and maximum number of message instances that a sender artifact instance
can send.

Fig. 4 summarizes all messages for the running example, where the data structure
is described using brackets ([]) and stars (∗). For example, OR (order request) message
contains child attributes ‘ID’, ‘Customer’, and ‘Cart’, where ‘Cart’ is a set of tuples;
while ‘ID’ and ‘Customer’ are non-set attributes. According to Fig. 4, ‘CP1:∞(Order,
+Purchase) [ID, Cart∗[Item[Price, ..], ..], ..]’ defines a message type from Order
to Purchase. ‘1 : ∞’ specifies the minimum (i.e., 1) and maximum numbers (i.e.,
∞ or unlimited) of CP message instances that can be sent by an Order instance. The
‘+’ symbol indicates that a new receiving instance will be created from each arriving
message. The attributes inside ‘[...]’ denote message contents. Similarly, ‘PR1:1(ext,
+Payment) [ID, Amount, Customer[..], ..]’ is a message type whose messages are
from the external environment.

The sender and receiver of a message cannot both be ‘ext’; when neither is ‘ext’,
the two artifacts should have correlation between them (either an edge in the correlation
graph, or a derived correlation).

Analogous to artifact instances, a message instance is an assignment of values to
the corresponding fields in a message type.

7 Choreography Constraints

In this section we introduce “choreography constraints”, which specify temporal condi-
tions on message occurrences and may also contain conditions on data in related artifact
instances and the messages.

As stated in Example 6.1, the order of messages cannot be arbitrary. Therefore,
we need temporal constraints to restrict the behavior of message sending/receiving. In
addition to temporal restrictions, conditions on data are also essential. For example, it
is feasible for a Fulfillment instance to ship the items without receiving the PC

8

(purchase complete) message from its correlated Purchase instance if every item has
price less than $100. To specify such conditions involving data, an augmentation of the
temporal constraints is needed.

Roughly, we use (non-temporal) “message formulas”, which can examine message
names and contents as well as the contents of sending/receiving artifact instances. Each
constraint then uses a temporal operator to connect two message formulas. Individual
LTL operators are not expressive enough while general LTL formulas would make the
language rather complicated. We thus use binary operators from DecSerFlow [11] to
connect two message formulas.

In order to give an overall view of choreography constraints, we provide Examples
7.1 and 7.2 below that include two complete choreography constraints.

Example 7.1 Consider the following restriction on message sequences: For each OR
(order request) sent to a (new) Order instance, there is a corresponding CP (create pur-
chase) message in the future sent by the Order instance to each correlated Purchase
instances, and vice versa. The choreography constraint defining the restriction is

∀x ∈ Order ∀y ∈ Purchase〈x〉 MSG(OR, zOR, ext, x) −[scc]→ MSG[zOR](CP, zCP, x, y)

In the above expression, MSG(OR, zOR, ext, x) and MSG[zOR](CP, zCP, x, y) represent mes-
sage instances of OR and CP respectively, where zOR and zCP are variables holding the
corresponding message instances (IDs). For MSG(OR, zOR, ext, x), ext is the sender and
x is the receiver (a variable holding an instance of Order) of message zOR; while for
MSG[zOR](CP, zCP, x, y), MSG[zOR] denotes that message instance zCP is a response to mes-
sage instance zOR. The operator ‘−[scc]→’ is “normal succession” that means: if the
condition on the left-hand side of −[scc]→ is true, then in the future, the condition on
the right-hand side of −[scc]→ is true, and vice versa.

Example 7.2 The following shows a constraint that defines a sequential restriction be-
tween messages CP (create purchase) and PC (purchase complete):

∀y ∈ Purchase ∀w ∈ Fulfillment〈y〉 ∀x ∈ Order〈y〉
MSG(CP, zCP, x, y) ∧ SOME(zCP.cart.item.price)>100 −[rsp]→ MSG(PC, zPC, y,w)

The above constraint states the following: for each Purchase instance y, each cor-
related Fulfillment instance w of y, and each correlated Order instance x of y,
whenever x sends a CP (create purchase) message to y that contains at least one item
(denoted by quantifier ‘SOME’) that has price greater than 100, then in the future (de-
noted by operator ‘−[rsp]→’), y will send a PC (purchase complete) message to w. (In
other words, if all items are priced 6 100, this constraint is automatically satisfied.)

Examples 7.1 and 7.2 illustrate that a choreography constraint built with a “temporal
operator” connecting two “message formulas” to define a causal relationship. In the
remainder of this section, we briefly explain these two main concepts.

9

Relationships Operators Semantics
exist a−[ex]− b If a is true, then b must be true in the future or past
co-exist a−[co-ex]− b Both a−[ex]− b and b−[ex]− a
normal response a−[rsp]→ b If a is true, then b must be true in the future
normal precedence a−[prc]→ b If b is true, then a must be true in the past
normal succession a−[scc]→ b Both a−[rsp]→ b and b−[prc]→ a

alternative response a−[al-rsp]→ b
If a is true, then b must be true in the future; and before this b is true,

no other a can be true (i.e., a and b should be alternative)

alternative precedence a−[al-prc]→ b
If b is true, then a must be true in the past; and before this a is true,

no other b can be true (i.e., b and a should be alternative)
alternative succession a−[al-scc]→ b Both a−[al-rsp]→ b and b−[al-prc]→ a
immediate response a−[im-rsp]→ b If a is true, then b must be true immediately after
immediate precedence a−[im-prc]→ b If b is true, then a must be true immediately before
immediate succession a−[im-scc]→ b Both a−[im-rsp]→ b and b−[im-prc]→ a

Fig. 5. Temporal operators

Temporal operators
Temporal operators in our language are the binary operators from DecSerFlow [11].

These operators define the following 11 binary relationships: exist, co-exist, normal re-
sponse, normal precedence, normal succession, alternative response, alternative prece-
dence, alternative succession, immediate response, immediate precedence, and imme-
diate succession. The operators and semantics are summarized in Fig. 5.

Message formulas
A message formula is composed of two parts: a message predicate and a conjunction

of data conditions.
A message predicate has the name ‘MSG’ with four parameters: a message name,

a message instance (ID), a sender artifact instance (ID), and a receiver artifact instance
(ID). Example 7.2 shows two occurrences of the message predicate: MSG(CP, zCP, x, y)
and MSG(PC, zPC, y,w), where CP and PC are message names, zCP and zPC are message
instances, x and y are senders, and y and x are receivers. MSG(CP, zCP, x, y) denotes that
an Order instance x sends a CP message instance zCP to its correlated Purchase
instance y sometime during the execution of the collaborative business process.

There is a variant of message predicates, which has been shown in Example 7.1.
MSG[zOR](CP, zCP, x, y) augments the notation of a message predicate by adding a re-
sponding correlation MSG[zOR].

Data conditions have similar forms to correlation rules. In Example 7.2, the rule in-
cludes the condition “SOME(zCP.cart.item.price)>100” to mean that the message instance
zCP should have at least one item with price greater than 100.

In conclusion, choreography constraints are composed of message formulas and
temporal operators. Note that all variables in a choreography constraint are always uni-
versally quantified. Also, choreography constraints can be expressed in first-order LTL.

10

8 Semantics

Our declarative choreography language is composed of five components that were intro-
duced in Sections 3 to 7. In this section, we explains the semantics for the choreography
language.

The semantics of the language is based on sequences of system snapshots. A system
snapshot is “captured” whenever a message instance is sent within the collaborative
business process, and the snapshot contains the information of all active artifact in-
stances as well as the only current message instance. We assume that messages cannot
be sent simultaneously.

For example, suppose the current system contains an Order instance o, a Payment
instance m, two Purchase instances p1, p2, and three Fulfillment instances f1,
f2, f3. Among them, o is correlated with every instance other than itself, p1 is cor-
related with f1 and f2, and p2 is correlated with f1 and f3 (through derived correlation
rules). Suppose a PC message instance mPC is sent from p2 to f1; then the current system
snapshot contains all artifact instances together with their correlations and the message
instance mPC. We call this snapshot Σ1.

Now consider the following choreography constraint:

∀y ∈ Fulfillment ∀w ∈ Purchase〈y〉 ∀x ∈ Order〈y〉
MSG(PC, zPC,w, y) −[rsp]→ MSG(RS, zRS, x, y) ∧ y.status = “Not-Yet-Shipped”

which specifies that for each Fulfillment instance y, if each Purchase instance
w correlated to y sends a PC (purchase complete) message to y, then in the future, y’s
correlated Order instance w should send a RS (request shipping) message to y and y’s
attribute “status” should have the value “Not-Yet-Shipped”.

Then, if snapshot Σ1 occurs in the system, a snapshot Σ2 must occur some time in the
future to satisfy the above constraint where Σ2 contains the same artifact instances and
correlations as the ones in Σ1, f1’s “status” attribute has the value “Not-Yet-Shipped”,
and the current message sent in Σ2 is a message instance of RS from o to f1.

9 Conclusions

This paper uses an example to illustrate the declarative choreography language pro-
posed in [10]. The language can express correlations and choreographies for artifact-
centric BPs in both type and instance levels. It also incorporate data contents and car-
dinality on participant instances into choreography constraints. Reference [10] also in-
cludes discussion on realizability, i.e., how to implement a choreography, and on further
research issues.

References

1. Web Services Business Process Execution Language (BPEL), Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

2. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach to design
and analysis of e-service composition. In Proc. of the 12th Int. Conf on World Wide Web,
WWW, pages 403–410, 2003.

11

3. R. Cattell and D. Barry. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.
4. G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL for Model-

ing Choreographies. In Proc. of the 5th Int. Conf. on Web Services, ICWS, 2007.
5. J. Hanson, P. Nandi, and S. Kumaran. Conversation support for business process integration.

In Enterprise Distributed Object Computing Conference, 2002. EDOC ’02. Proceedings.
Sixth International, pages 65 – 74, 2002.

6. R. Hull and J. Su. Tools for composite web services: a short overview. SIGMOD Record,
34(2):86–95, 2005.

7. R. Hull, J. Su, and R. Vaculı́n. Data management perspectives on business process manage-
ment: tutorial overview. In SIGMOD Conference, pages 943–948, 2013.

8. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.
IBM Systems Journal, 42(3):428–445, 2003.

9. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer, 36(10):46–52,
2003.

10. Y. Sun, W. Xu, and J. Su. Declarative choreographies for artifacts. In ICSOC, pages 420–434,
2012.

11. W. M. P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In Proc. of the 3rd Int. Workshop on Web Services and Formal Methods, WS-FM,
pages 1–23, 2006.

12. J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Let’s Dance: A Language
for Service Behavior Modeling. In Proc. of the 14th Int. Conf. on Cooperative Information
Systems, CoopIS, pages 145–162, 2006.

12

