The Shortest Path problem

» Given graph and a vertex s find shortest paths from s to all other
vertices.

» Map routing, robot navigation, urban traffic planning
» Optimal pipelining of VLSI chip

» Routing of telecommunication messages

» Network routing protocols (OSPF, BGP, RIP)

» Seam carving, texture mapping, typesetting in TeX!



Example with positive edge weights




Example with negative edge weights




Unweighted shortest paths

» Given unweighted graph G

v

Can assume all edge weights are 1

v

Find shortest paths from s

v

There is what is known as a shortest path tree!
Can be found using Breadth First Search (BFS)

v



Naive implementation: pseudo code

void Graph::unweighted( Vertex s ){
Vertex v,w;
s.dist = O;
for(int currDist=0; currDist < NUM_VERTICES; currDist++)
for each vertex v
if( !v.known && v.dist == currDist ){
v.known = true;
for each w adjacent to v
if( w.dist == INFINITY ){
w.dist = currDist + 1;
w.path
}
}

A



Smarter implementation: pseudo code

void Graph::unweighted( Vertex s ){
Queue q( NUM_VERTICES );
Vertex v,w;
q.enqueue(s);
s.dist = 0;
while( !q.isEmpty() ){
v = q.dequeue();
v.known = true;
for each w adjacent to v
if( w.dist == INFINITY ){
w.dist = v.dist + 1;
w.path = v;
q.enqueue( w );

}



Main structural properties of Shortest Paths

v

Prefixes of shortest paths are themselves shortest paths

v

Does a shortest path always exist?
What about a shortest path tree?

» How can we compute such a tree

v



Main concepts

> known vertices
» Relaxation of an edge (v, w) : d(w) = min(d(w), d(v) + cyw)
» Next: The Djikstra algorithm



Edsger W. Dijkstra: select quotes

“ Do only what only you can do.”

“ In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,
they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,

Lo » Edsger W. Dijkstra
therefore, be regarded as a criminal offence. Turing award 1972

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration.

“APL is a mistake, carried through to perfection. It is the

language of the future for the programming techniques
of the past: it creates a new generation of coding bums. ”
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Edsger W. Dijkstra: select quotes

-

h

A

‘Object-orienteq
is an ex Programming
Ceptionally paq id

: 4 only have
 ‘eisinated in calyperes, .

== Bdsger Dijkstrs

10/ 27



Djikstra algorithm : arbitrary non-negative edge weights

v

Store d,,, known, p,

v

Pick vertex with minimum d, (that is not known)

v

Relax all edges outgoing from it

v

Repeat until all vertices are known



Example of Djikstra in action
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Djikstra data-structures

struct Vertex

{

};

List adj; // Adjacency list

bool known;

DistType dist;

Vertex path; // ref to parent in path

void Graph::createTable( vector<Vertex> & t){

readGraph( t ); //Read graph, fill in adj
for(int i=0; i < t.size(); i++){
t[i] .known = false;
t[i] .dist = INFINITY;
t[i] .path = NOT_A_VERTEX;
}
NUM_VERTICES = t.size();

)



Shortest Paths after Djikstra run

void Graph::printPath( Vertex v )
{
if (v.path != NOT_A_VERTEX)
{
printPath( v.path );
cout << " to ";

b

}
cout << v;

3



The Djikstra algorithm: pseudo-code

void Graph::djikstra( Vertex s ){
Vertex v,w;
s.dist = 0;
for( ; ; ){
v = smallest unknown distance vertex;
if( v == NOT_A_VERTEX )
break;
v.known = true;
for each w adjacent to v;
if( 'w.known )
if( v.dist + c(v,w) < w.dist ){
10. decrease w.dist to v.dist + c(v,w);
11. w.path = v;
}
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Implementing Djikstra
» Naive implementation (using array to find min d,) :

O(|E| + |[V?[) = O([VP)
» Could we be better for sparse graphs?
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Implementing Djikstra

» Naive implementation (using array to find min d,) :
O(|E| +|V?]) = O(IV]?)
» Could we be better for sparse graphs?

PQ impl insert delete-min | decrease- total

key
unordered 1 \%4 1 V?
array
binary heap | log V' logV logV' FElogV
d-way heap | log,V dlog, V log, V logg \%
Fibonacci 1 logV 1 E+ViogV
heap




Negative edge weights!




Acyclic Graphs

» Important special case : Nonreversible chemcial reactions, critical
path analysis

» Running time is O(|E| + |V])

» Dijikstra can be implemented along with Topological sort



Example: Activity-node graph




Event-node graph




Earliest Completion times




Latest Completion times
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EC, LC, Slack, Critical Path




The Bellman Ford algorithm

» Why does this work?
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Bellman Ford: Queue Based Implementation

void Graph::weightedNegative( Vertex s ){
Queue q(NUM_VERTICES);
Vertex v,w;
q.enqueue(s);
s.dist = 0;
while(! q.isEmpty()){
v=q.dequeue() ;
for each w adjacent to v
if(v.dist + c(v,w) < w.dist){
w.dist = v.dist + c(v,w);
w.path
if(w is not already in q)
q.enqueue (w) ;

v



Bellman Ford contd.

» Runtime is O(EV)
» Can be used to detect negative cycles

» Useful in finding arbitrage opportunities!



All-Pairs Shortest Path

» Can run |V| Djikstra’s - O(|E||V]log|V])
» Floyd Warshall : Dynamic programming algorithm
» Works in O(|V]3)



