The Shortest Path problem

» Given graph and a vertex s find shortest paths from s to all other
vertices.

» Map routing, robot navigation, urban traffic planning
» Optimal pipelining of VLSI chip

» Routing of telecommunication messages

» Network routing protocols (OSPF, BGP, RIP)

» Seam carving, texture mapping, typesetting in TeX!

Example with positive edge weights

Example with negative edge weights

Unweighted shortest paths

» Given unweighted graph G

v

Can assume all edge weights are 1

v

Find shortest paths from s

v

There is what is known as a shortest path tree!
Can be found using Breadth First Search (BFS)

v

Naive implementation: pseudo code

void Graph::unweighted(Vertex s){
Vertex v,w;
s.dist = O;
for(int currDist=0; currDist < NUM_VERTICES; currDist++)
for each vertex v
if(!v.known && v.dist == currDist){
v.known = true;
for each w adjacent to v
if(w.dist == INFINITY){
w.dist = currDist + 1;
w.path
}
}

A

Smarter implementation: pseudo code

void Graph::unweighted(Vertex s){
Queue q(NUM_VERTICES);
Vertex v,w;
q.enqueue(s);
s.dist = 0;
while(!q.isEmpty()){
v = q.dequeue();
v.known = true;
for each w adjacent to v
if(w.dist == INFINITY){
w.dist = v.dist + 1;
w.path = v;
q.enqueue(w);

}

Main structural properties of Shortest Paths

v

Prefixes of shortest paths are themselves shortest paths

v

Does a shortest path always exist?
What about a shortest path tree?

» How can we compute such a tree

v

Main concepts

> known vertices
» Relaxation of an edge (v, w) : d(w) = min(d(w), d(v) + cyw)
» Next: The Djikstra algorithm

Edsger W. Dijkstra: select quotes

“ Do only what only you can do.”

“ In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,
they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,

Lo » Edsger W. Dijkstra
therefore, be regarded as a criminal offence. Turing award 1972

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration.

“APL is a mistake, carried through to perfection. It is the

language of the future for the programming techniques
of the past: it creates a new generation of coding bums. ”

9/27

Edsger W. Dijkstra: select quotes

-

h

A

‘Object-orienteq
is an ex Programming
Ceptionally paq id

: 4 only have
 ‘eisinated in calyperes, .

== Bdsger Dijkstrs

10/ 27

Djikstra algorithm : arbitrary non-negative edge weights

v

Store d,,, known, p,

v

Pick vertex with minimum d, (that is not known)

v

Relax all edges outgoing from it

v

Repeat until all vertices are known

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

Example of Djikstra in action

¥]

V)
~

Example of Djikstra in action

¥]

V)
~

Djikstra data-structures

struct Vertex

{

};

List adj; // Adjacency list

bool known;

DistType dist;

Vertex path; // ref to parent in path

void Graph::createTable(vector<Vertex> & t){

readGraph(t); //Read graph, fill in adj
for(int i=0; i < t.size(); i++){
t[i] .known = false;
t[i] .dist = INFINITY;
t[i] .path = NOT_A_VERTEX;
}
NUM_VERTICES = t.size();

)

Shortest Paths after Djikstra run

void Graph::printPath(Vertex v)
{
if (v.path != NOT_A_VERTEX)
{
printPath(v.path);
cout << " to ";

b

}
cout << v;

3

The Djikstra algorithm: pseudo-code

void Graph::djikstra(Vertex s){
Vertex v,w;
s.dist = 0;
for(; ;){
v = smallest unknown distance vertex;
if(v == NOT_A_VERTEX)
break;
v.known = true;
for each w adjacent to v;
if('w.known)
if(v.dist + c(v,w) < w.dist){
10. decrease w.dist to v.dist + c(v,w);
11. w.path = v;
}

© 00 NO O WN -

Implementing Djikstra
» Naive implementation (using array to find min d,) :

O(|E| + |[V?[) = O([VP)
» Could we be better for sparse graphs?

16 /27

Implementing Djikstra

» Naive implementation (using array to find min d,) :
O(|E| +|V?]) = O(IV]?)
» Could we be better for sparse graphs?

PQ impl insert delete-min | decrease- total

key
unordered 1 \%4 1 V?
array
binary heap | log V' logV logV' FElogV
d-way heap | log,V dlog, V log, V logg \%
Fibonacci 1 logV 1 E+ViogV
heap

Negative edge weights!

Acyclic Graphs

» Important special case : Nonreversible chemcial reactions, critical
path analysis

» Running time is O(|E| + |V])

» Dijikstra can be implemented along with Topological sort

Example: Activity-node graph

Event-node graph

Earliest Completion times

Latest Completion times

N
N

V)

EC, LC, Slack, Critical Path

The Bellman Ford algorithm

» Why does this work?

«O)>» «F)»r « =>»

<

i
-

Do
24 /27

Bellman Ford: Queue Based Implementation

void Graph::weightedNegative(Vertex s){
Queue q(NUM_VERTICES);
Vertex v,w;
q.enqueue(s);
s.dist = 0;
while(! q.isEmpty()){
v=q.dequeue() ;
for each w adjacent to v
if(v.dist + c(v,w) < w.dist){
w.dist = v.dist + c(v,w);
w.path
if(w is not already in q)
q.enqueue (w) ;

v

Bellman Ford contd.

» Runtime is O(EV)
» Can be used to detect negative cycles

» Useful in finding arbitrage opportunities!

All-Pairs Shortest Path

» Can run |V| Djikstra’s - O(|E||V]log|V])
» Floyd Warshall : Dynamic programming algorithm
» Works in O(|V]3)

