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1 Dictionary Data Structure

• Many computing applications need data structures for fast searches over dynamically
changing sets of items. Examples include symbol tables in compilers, address tables in
IP routers, active clients at Web servers, spell checkers, caching of game configurations,
web pages etc.

• A useful abstraction for these data structures is dictionary, which is an ADT for sup-
porting the following three operations:

1. lookup (x): is item with key x in the set?

2. insert (x): insert x into the dictionary

3. delete (x): remove x from the dictionary

• Conventional language dictionaries are essentially organized as “sorted arrays,” where
updates are handled through periodic reprinting and the search cost is essentially
logarithmic. By contrast, we are interested in a data structure that can handle both
updates and searches in O(1) time, independent of the set size |S| = n.

• We will use the term key space to refer to the set of all possible key values. In most
CS applications, this space is extremely large compared to the actual set of key stored
in the data structure.

• For instance, the English language dictionary contains only about 10, 000 words, but
the number of all possible words of length, say, 20 is enormous: 2620. Similarly, a
router may need to remember a few hundred or few thousand IP addresses but the
space of all IP addresses is 232, namely, (0.0.0.0) through (255.255.255.255).

• We denote the key space by U , as mnemonic for universe. The data set (actual keys
present in the application) is denoted by S, with |S| � |U |. Conventionally, we assume
the input set has n keys, that is, |S| = n.
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2 Two Naive Implementations of Dictionary

• Linked List

1. Just keep an (unordered) linked list of the keys in S.

2. Insert is fast and easy in O(1) time: add to the head of list.

3. Find and Delete, however, require searching the list sequentially, and may be Ω(n)
time in the worst-case.

4. This method is space efficient but search and delete performance is very bad.

• Bit Vector (direct mapping)

1. Use a bit array A of size |U |, whose ith bit is reserved for the ith key of U .

2. For instance, the array for storing IP addresses will have size 232.

3. To insert key i, we do A[i] = 1. To delete it we do A[i] = 0.

4. lookup(i) simply returns A[i].

5. This method achieved O(1) time for all operations, but requires O(|U |) memory,
which is both bad and often completely infeasible (for instance, storing user names
in a data base).

• Balanced Search Trees

1. Later we will also see a very general ADT, balanced search trees, which achieve
O(log n) time for all operations using O(n) space, where n is the size of S.

2. BSTs are powerful but an overkill for implementing dictionaries.

3 Hash Tables

• Hash Tables are a simple and widely used data structure for efficiently implementing
the dictionary ADT. They are easy to use in practice although their analysis rests on
sophisticated math and theory.

• We will assume that all keys are integers from the key space U = {1, 2, . . . , |U |}. This
is not an onerous restriction since non-numeric keys (strings, webpage documents etc)
are internally stored in ASCII (numerical) format.

• The basic idea behind hashing is very simple. We will store the keys of the set S in a
table T of size m, where m is typically O(n), and thus much smaller than |U |.
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• To make searching for a key x fast, its location in T is determined entirely by the value
of x using a hash function h which maps each element of U to a unique location in the
table: h : U → {0, 1, . . . ,m− 1}. That is, x is stored at (or near) the location h(x) of
T .

• Think of h as assigning each x a short nickname, which is easier for the algorithm to
remember compared to much larger name x.

• One can imagine many such nickname-assigning functions, such as “use the last few
bits of x.” For instance, suppose we expect to have at most 100 keys in our set S.
Then, we can use the hash function h(x) = x (mod 100).

• Or, suppose we want to store IP addresses into a table of size 256. We could break the
addresses into 4 chunks of 8-bits each. Add up each the chunks bit-by-bit modulo 2,
which results in a 8-bit result.

0 1 0 0 1 0 0 0

1 1 1 1 0 0 1 1

0 0 1 0 1 1 0 0

0 0 0 1 1 1 1 1

1 0 0 0 1 0 0 0 sum modulo 2

• The important point of using a hash function is that each x maps to a unique value
h(x), and so applying the same hash function to x every time gives the same output.
We want the hash function to have two properties:

1. h() should be easy and fast to compute, and

2. h() should distribute the keys in the table as uniformaly as possible. In particular,
it should not cause multiple keys to hash to the same location.

• The simple hash function x (mod 100), for instance, satisfies the first property but
not the second. If all our input keys happen to end in 00, then h hashes them all to
the same location!

• Having multiple keys to hash to the same location is called a collision.

• One often sees the recommendation to use hash function x (mod p) for some prime
number p, but that does not solve the problem either: the gaps between input keys
may be multiples of p. We need to develop better insights into hashing.
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4 Collisions and an Impossibility Result

• Indeed, the hash function “x (mod 100)” works well if the keys are randomly selected
from U . In that case, the probability that many keys collide is small. But we do
not want our data structure to depend on such strong (and unrealistic) assumptions
about input data. Most data (e.g. program variables) are not random and have strong
dependence, creating data clumping, and we want to be able to handle even adversarial
data.

• So, what will be a good hash function? A little bit of thought, however, shows that
no single hash function can solve our problem! Intuitively, since m� |U |, the number
of possible nicknames is much much smaller than the list of actual names, by the
pigeonhole principle any nickname-assigning rule must assign the same nickname to
many real names (or, same hash table position to many x ∈ U).

• We can formalize this in the following theorem.

• Theorem: Suppose a hash table of size m is used to store a set S of n keys drawn
from the universe U , where |U | > nm. Then, no matter which hash function h : U →
{0, 1, . . . ,m} is chosen, there is a set S ⊂ U of n keys that all map to the same location.

• Proof.

1. Pick any hash function h of your choosing.

2. Map all the keys of U using h to the table of size m.

3. By the pigeon-hole principle, at least one table slot gets n keys because |U | > nm.

4. Choose those n keys as input set S.

5. Now h will maps S to a single location.

• So, in the worst-case no single hash function can avoid linear search complexity! How
do we reconcile this negative result with the hashing’s reputation?

5 Randomization to the Rescue

• The impossibility theorem brings out the key insight behind hashing:

if the input data is not random, then let’s make our hash function random!

• This subtle distiction is a deep and useful algorithm design principle, not just in hashing
but in many CS algorithms. When an idea works well on random distributions of data
but we cannot assume that the data will be necessarily random, we simulate our own
randomness in the algorithm!
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• What does it mean to choose a random hash function?

1. Choosing something at random necessarily means that there is an underlying
collection from which one member is chosen at random.

2. For instance, choosing a random card from a deck: there are 52 possibilities, and
we can choose the top one after a full shuffle.

3. So, our goal is to define and construct a family of hash functions with some nice
properties, and then choose one at random.

4. Our mathematical analysis will show that with a proper family, and a randomly
chosen function, the hash table will have good performance no matter what set
S is fed to it. In particular, the performance will be good even if an adversary
chooses S.

• We want our hash function to “uniformly distribute” keys in the hash table (”randomy
scatter” them), no matter which subset S is fed to it How do we formalize this random
behavior?

• In principle, one could imagine an ideal random hash function that maps each x ∈ U
to a totally random slot h(x) in the hash table. For instance, imagine rolling a new
m-sided die for each x to determine the hash value h(x).

• Such a hash function will in theory deliver strong guarantees about minimizing col-
lisions. Unfortunately, such an ideal hash function is also a theoretical fantasy: it is
computationally infeasible and inefficient. (For instance, either we have to find a way
to ensure that the dice rolls to the same value for a particular x each time, or store
that value somewhere to lookup when x is to be inserted. But isn’t looking up that
value itself the hashing problem?)

• Instead, it turns out that much weaker form of randomness is enough to achieve good
hashing performance. In particular, we use “pseudo-random” generators. These are
functions that can be efficiently evaluated, and generate “random-seeming” outputs
even though they are not really random. They use a seed value to start the random
sequence, and the sequence is entirely determined by the seed.

• One natural implication of randomness is that any key x is likely to be mapped to each
location of the table with equal probability. That is, suppose we have a key x, and we
choose a function h at random from our family of hash functions, then h(x) will be i,
with probability 1/m, for i = 0, 1, . . . ,m− 1.

• This sounds random enough, right? Unfortunately not!
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• Consider the following family of hash functions. It has m members ha, one each for
a = 0, 1, 2, . . . ,m− 1. Define the hash function as ha(x) = a, for all x.

• Observe that it satisfies the “randomly spreading” property: given any x, the prob.
that x maps to i is just 1/m, because we have m possibilities for our hash function
and we will choose hi precisely with prob. 1/m.

• But this is not a good hash function at all: it will map all keys to the same location i!

• Since our primary goal is to minimize (eliminate?) collisions, what we really want is
that not too many keys should map to the same location. In other words, we should be
asking the question from the perspective of each table location: a random hash function
should treat all locations equally.

6 Universal Hash Functions

• The first successful definition of such hash functions was given by Carter and Wegman,
who called it universal hash functions.

• A family of hash functions H mapping U to {0, 1, . . . ,m− 1} is called universal if for
any hash function h ∈ H chosen randomly from it satisfies the following:

Prob[h(x) = h(y)] ≤ 1

m
, for any x, y ∈ U

• The prob. is over the choice of h. That is, adversary can choose x and y, but we
(algorithm designers) choose h.

• Universal hashing delivers excellent hash table performance. Specifically, we will prove
the following claim.

• Theorem. Suppose we apply universal hashing to map a set S of size n to a hash table
of size m. Then, the expected number of collisions at any hash location is ≤ (n−1)/m.
(The expectation is over our random choice of h, not on the choice of input set S.)

• Proof.

1. Consider any hash location, say, i, and any x ∈ S such that h(x) = i.

2. By universal hashing, for any other y, the prob. of h(y) = h(x) is at most 1/m.

3. Therefore, the expected number of y ∈ S that map to h(x) is ≤ (n − 1)/m (by
linearity of expectation).
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• In particular, if m = n, the expected number of collisions is 1.

• We are going to defer the discussion of how to construct universal hash functions to
later, and for now describe practical considerations of building a useful dictionary data
structure.

• Later we will describe several ways to construct these hash functions. For concreteness,
however, it is useful to know that one popular family has the following form:

h(x) = ax+ b (mod p)

where p is a prime number, which also fixes the size of the hash table.

• For now, let’s discuss how we implement hash table given universal hash functions. In
particular, how do we deal with the problem of collisions. Universal hashing bounds
the probability of collisions but collisions are inevitable unless the hash table size is
impractically large.

7 Hash Tables: Resolving Collisions

• The basic hash table set up is the following:

1. Choose a pseudo-random hash function h. (This will be a universal hash function)

2. An item with key x is put at location h(x).

3. To find an item with key x, we check location h(x).

• This is easy enough. The only problem is to decide what to do when there is a collision:
more than one key hashes to the same value.

• There are two main methods for handling collision:

1. Separate Chaining

2. Open Addressing

7.1 Separate Chaining

• Separate chaining resolves collisions by maintaining a separate linked list for each hash
location, which stores all the keys hashed to that location.

• Insert, Delete, and Find for key x search the linked list at location h(x).
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• Each hash operation, therefore, takes time O(1 + L(x)), where 1 is for accessing the
hash table location h(x), and L(x) is the size of the link list there.

• By the guarantees of universal hashing, the expected size of L(x) is O(1), assuming
m ≥ n.

• An example of searching and inserting with separate chaining, using (mod 11), is
shown below. Delete is similar.

7.2 Open Addressing

• In open addressing, all data is kept in the m-size hash table; no additional memory.

• Upon a collision, we search the table, starting at the hash location, for an available slot.
We store the new key at first open (unused) location.

• There are many implementations of open addressing, using different strategies for where
to probe next. Some common examples.
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1. Linear Probing: search locations h(x) + i, for i = 1, 2, . . .

2. Quadratic Probing: search h(x) + i2, for i = 1, 2, . . .

3. Double Hashing: search h1(x) + i× h2(x)

• To ensure sufficient empty slots, m is typically a constant times larger than n.

• Illustration of linear probing.
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7.3 Deletion in Linear Probing

• Deletion in open addressing is complicated because we cannot simply remove the item
stored at h(x).

• Removal will create an empty slot, which may invalidate the search path for a previous
insert.

• One simple idea is to mark the slot as empty which is available for new key but lets
the search proceed as if it is full.

• An example.
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• Another, more complex, method is called Eager Deletion, which deletes the key, but
then moves keys around to make sure all previous search paths still are valid.

• Analysis of linear probing is less intuitive, but has similar average case bounds as
separate chain.

7.4 Quadratic Probing

• Quadratic probing does larger jumps to overcome the problem of occasional “crowding”
in the hash table.

• Check h(x).

• If collision, check h(x) + 1

• If collision, check h(x) + 4
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• If collision, check h(x) + 9

• · · ·

7.5 Double Hashing

• When collision occurs, we use a second hash function.

• One example:
h2(x) = R − (x mod R)

where R is the largest prime number smaller than table-size.

• Insert 12.

• h2(x) = 7− (x mod 7) = 7 − (12 mod 7) = 2
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• Check h1(x).

• If collision, check h(x) + i× h2(x).

• That is, h(x) + 2, h(x) + 4, etc.

7.6 Table Size and Resizing

• What do we do if we do not know the size of the input set S when initializing the hash
table?
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• A common practice is to start with a good guess, and then rebuild the hash table with
double that estimate when the table gets too full.

• This periodic resizing increases the overall cost of table building by a factor of two.

8 Theory: Constructing Universal Hash Functions

• We will discuss two methods for constructing universal hash functions. The first one
is called the Matrix Method. We will call the second one Modular Method.

8.1 The Matrix Method

• We assume that the keys are u-bits long. That is, the size of the universe is |U | = 2u.

• Suppose we want a table of size 2b, that is, m = 2b.

• We choose a random b× u binary matrix h, and define the hash function as

h(x) = hx (mod 2)

That is, to get the hash value, we multiply the matrix h with the u-bit long vector x,
taking the sum modulo 2. Observe that the product is a b-bit vector, which becomes
the hash location for x in the table.

• As a toy example, consider a 3 × 4 matrix whose rows are (1 0 0 0), (0 1 1 1), and
(1 1 1 0). Let x be the column vector (1, 0, 1, 0). Then, hx = (1, 1, 0).

• Each b × u matrix is a hash function. How many hash functions are there in this
family?

• For instance, our universe could be the IP address space of 32 bits, and the table could
have size 256. In that case, the matrix h is a 8 × 32 matrix of 0s and 1s, where each
bit is equally likely to be 0 or 1.

• The theoretical guarantee of this hash function is given by the following theorem.

• Claim. Suppose x 6= y are two keys. Then,

Prob[h(x) = h(y)] = 1/m = 1/2b

• Proof.
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1. Multiplying matrix h with x means that we add some columns of h (performing
vector addition modulo 2), where the 1 bits in x indicate which columns to add.

2. For instance, revisiting the earlier toy example, where x = (1, 0, 1, 0), to compute
hx, we add first and third columns of h, which are (1, 0, 1) and (0, 1, 1). Their
sum modulo 2 is (1, 1, 0). Verify that this is exactly the matrix-vector product
hx.

3. Now suppose x and y are two arbitrary keys. Since x 6= y, they must differ in
at least one coordinate. For concreteness, suppose they differ in ith coordinate,
namely, xi = 0 and yi = 1.

4. Imagine now that we have chosen all of h (randomly) except the column i. Call
this (partial) function h′.

5. Then, it is easy to see that for all possible choices of column i, we have h(x) = h′(x)
since xi = 0. (That is, ith column is not used in the sum.)

6. But since yi = 1, the ith column causes h′(y) to change to a different vector h(y).
Specifically, h(y) = h′(y) + hi, where hi is the ith column of h.

7. Observe that the b bits of the ith column can be set in 2b distinct ways, ranging
from (0, 0, . . . , 0) to (1, 1, . . . , 1). Each of these 2b choices of hi results in a different
value of h(y). (To see this, suppose not, and there are two distinct b vectors, say,
B1 and B2, which give the same sum when added to h′(y). Since B1 6= B2, they
must differ in some bit position; say, jth bit. But when jth bits flips, the jth bit
of the corresponding sum with h′(y) always flips, so h′(y) + B1 and h′(y) + B2

must differ in the jth bit, contradicting that they are the same.)

8. Since the ith column hi is chosen uniformly at random, there is exactly 1/2b

chance that h(x) = h(y).

9. This completes the proof.

• Observe that this method produces a family of hash functions. Each random matrix
h corresponds to a distinct hash function of this family. (Specifically, the family has
2ub hash functions.) By choosing h randomly, we are selecting a member of this family
uniformly at random.

8.2 A little bit of number theory: modular arithmetic

• Before we describe the second method, a quick review of the modular arithmetic is
helpful.

• Our clocks reset every day, in fact twice a day, at noon. Our calendars reset every
year. These modest tricks keep the “numbers that track elapsed time” from getting
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cumbersomely large. The use of 32 bit numbers in computers also means that the
number 232 resets to 0.

• Modular arithmetic is a system for performing arithmetic in which numbers remain
bounded in a restricted range.

• Specifically, x (mod N) is defined to be the remainder when x is divided by N : that
is, if x = qN + r, with 0 ≤ r < N , then x (mod N) = r.

• This creates equivalence classes of numbers in which all numbers that differ by a
multiple of N are equivalent. That is,

x = y (mod N) ⇐⇒ N divides (x− y)

• For instance, 253 = 13 (mod 60) because 253− 13 is a multiple of 60.

• Intuitively, the modular arithmetic limits numbers to the range {0, 1, . . . , N − 1}, and
wraps around like the hands of a clock.

• For example, in modulo 3 arithmetic, all integers are grouped into three equivalence
classes:

· · · − 9 − 6 − 3 0 3 6 9 · · ·
· · · − 8 − 5 − 2 1 4 7 10 · · ·
· · · − 7 − 4 − 1 2 5 8 11 · · ·

• For instance, when viewed modulo 3, numbers 5 and 11 are no different. Similarly, 4
and −2 are no different.

• In modular arithmetic, the addition and multiplication rules hold: if x = x′ (mod N)
and y = y′ (mod N), then

(x+ y) = (x′ + y′) (mod N) and xy = x′y′ (mod N)

• In real arithmetic, every number a 6= 0 has an inverse 1/a. That is, a× (1/a) = 1.

• In modular arithmetic, we say that x is a multiplicative inverse of a modulo N if ax = 1
(mod N). We denote the inverse by a−1.
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• In modular arithmetic, however, the inverse does not always exist! For instance, con-
sider x (mod 6), whose elements are {0, 1, 2, 3, 4, 5}. There is no element in this set
which is the inverse of 2, that is, 2x 6= 1 (mod 6) for all choices of x.

– Since a = 2 and N = 6 are both even, a (mod N) is also even because it is
simply a− kN for some k.

– In particular, we have that GCD(a,N) divides ax (mod N) because the latter
can be written as ax+ kN .

– Therefore, if GCD(a,N) > 1, then ax 6= 1 (mod N), no matter what x is.

– Thus, a = 2 does not have a multiplicative inverse.

• It turns out that a necessary and sufficient condition for this anomaly is gcd(a,N) > 1.
Consequently, if gcd(a,N) = 1, that is, if a and N are relatively prime, then inverse
always exists. In particular, we have the following theorem.

• Let N be a prime. Then, for any number a ∈ {1, 2, . . . , N − 1}, there exists a unique
a−1 such that aa−1 = 1 (mod N).

• As an example, for N = 7, the respective inverses of a = 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6.

8.3 Modulo Primes Method

• In the modulo primes method, we interpret the input keys as vector of integers instead
of vector of bits.

• Specifically, we assume that the table size is M , for some prime M .

• Then, each key x is written as [x1, x2, . . . , xk] where each xi is in the range [0,M − 1].

• For instance, suppose keys are IP addresses (32 bits long integers), and the table size
is 257, a prime number. We can, therefore, write each key as the vector of four bytes,
each byte taking values in the range {0, 1, . . . , 255}.

• To select a hash function h, we choose k random integers {a1, a2, . . . , ak} in [0,M − 1],
and define the hash function as:

h(x) = a1x1 + a2x2 + · · ·+ akxk (mod M)

• For instance, in the IP address example, a key x = 128.0.59.80 will hash to

h(x) = 128a1 + 0a2 + 59a3 + 80a4 (mod 257)
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• The proof that this hash function is also universal follows closely along the lines of
matrix method’s proof. We will show that Pr[h(x) = h(y)] ≤ 1/M , for x 6= y.

• Proof.

1. Since x 6= y, there must be some index i such that xi 6= yi.

2. Now imagine choosing all the random numbers a1, a2, . . . , ak except ai.

3. Let h′(x) =
∑
j 6=i ajxj (mod M) be the “hash” of x using these k−1 coefficients.

4. Clearly, once we pick the last coefficient ai, we will get h(x) = h′(x) + aixi
(mod M).

5. Thus, we have a collision between x and y exactly when h′(x)+aixi = h′(y)+aiyi
(mod M), or equivalently, when

ai(xi − yi) = h′(x) − h′(y) (mod M)

6. Since M is a prime, division by a non-zero value is legal, since every integer in
{0, 1, . . . ,M − 1} has a multiplicative inverse.

7. This means that there is precisely one value of ai (mod M) for which this equa-
tion is true, namely,

ai = (h′(x) − h′(y)) /(xi − yi) (mod M)

8. Since ai is chosen uniformly at random between 0 and M − 1, the probability of
this occurring is precisely 1/M .

9 Pairwise and k-wise Independent Hashing

• A few years after the original paper, Carter and Wegman proposed a stronger require-
ment for hashing, which they called pairwise independent. A more general idea is the
following, called k-wise independence.

• k-wise independent. A family of hash functions H mapping U to {0, 1, . . . ,M −
1} is k-wise independent if for any distinct k keys x1, x2, . . . , xk and any k values
a1, a2, . . . , ak ∈ [0,M − 1] (not necessarily distinct), for any h ∈ H, we have the
following:

Prob[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xk) = ak] ≤ 1/Mk

• The case of k = 2 is called pairwise independent.
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• One can easily prove the following facts about a k-wise independent hash family H,
for k ≥ 2.

1. H is also (k − 1)-wise independent.

2. H is universal.

• So, 2-wise independence is at least as strong a condition as universality. On the other
hand, a universal hash function is not necessarily 2-wise independent.

10 Theory: How Many Collisions to Expect

• With a random universal hash function, we can guarantee that the expected number
of collisions per slot is O(n/m), if n keys are hashed into a table of size m.

• The guarantee holds for any set S of keys from U , with the expectation over the choices
of hash functions h from the universal family.

• But a guarantee on the average load means that some slots may have fewer than
average, while others more than average.

1. How much larger?

2. How likely is that, say, 100 keys collide?

3. How uneven can the load be across the hash table?

4. Suppose we have a hash table of size M = 106. How large should n be before we
start to see collisions?

• The answers to these questions are actually surprising, and may seem counter-intuitive.

• The analysis is often carried out using the classical probability theory setting of “balls
and bins.”

• Suppose we have n bins, labeled 1, 2, . . . , n, and a set of k identical balls. We throw
each ball in turn at random into one of the bins. What is the distribution of balls into
the bins? In particular, we may ask:

1. How many balls can be expected to land in each bin?

2. How large is k before we expect to see a collision?

3. What is the maximum number of balls expected to land in one bin?

• The balls-and-bins setting an abstract mathematical device for analyzing many prob-
lems, including Hashing, but also load balancing in assigning jobs to servers.
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• Let us first quickly review the relevant concepts from probability theory, and then
consider a famous probability puzzle called birthday paradox.

10.1 A Brief Review of Prob. Theory

• Random Variables. A random variableX is a function from the set of possible outcomes
to a measurable space. Typically, we writeX : Ω→ R for real-valued random variables.

• A random variable does not return a probability; it is a numerical function attached
to an outcome.

• Examples of a random variable:

– roll of a dice, where the r.v. is assigned the value of the face on top. In this case,
the possible outcomes are 1, 2, ..., 6.

– Toss of a coin, where +1 for heads, and −1 for tails.

– Roll of two dice, and +100 for sum > 10, and 0 otherwise.

• Expectation of a random variable.

– If X is a random variable that takes on values x1, x2, . . . , then the expected value
is the average:

E[X] =
∑
i

xi.P r[X = xi]

– The sum is replaced by integral when X is continuous.

• Example: Expected value of a dice roll.

E[X] =
6∑
i=1

i.Pr[X = i] =
1

6

∑
i

i =
21

6
= 3.5

• Variance. Measure of how much a random variable deviates from its expected value.

V ar[X] = E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2]

• (For the middle term, use linearity of expectation, and take out the term E[X] as a
fixed constant, which gives us 2(E[X])2.)

• Variance simplifies to
V ar[X] = E[X2]− E2[X],

where we write E2[X] for (E[X])2.
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• Corollary: V ar[cX] = c2V ar[X].

• Standard Deviation: σ(X) =
√
V ar[X].

The std deviation has the same unit as expectation, whereas Variance has units “squared.”

• Example: Variance of a dice roll.

– V ar[X] = E[(X − 3.5)2]

– V ar[X] =
∑6
i=1(i− 3.5)2.P r[X = i]

– V ar[X] = 1
6
[6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25] = 17.5/6 = 2.917.

– Standard deviation of a dice roll is 1.7.

• Independence of R.Vs.

– Two r.v. X, Y are independent if and only if, for all x, y, we have

Pr[X = x, Y = y] = Pr[X = x].P r[Y = y]

– Variables X1, X2, . . . , Xn are mutually independent iff

Pr[X1 = x1, . . . , Xn = xn] = Pr[X = x1] · · ·Pr[X = xn]

– Xis are pairwise independence if any two are independent.

• Examples of independent random variables.

• Linearity of Expectation:

– E[cX] = cE[X], for any c

– E[X + Y ] = E[X] + E[Y ]

– E[aX + bY + c] = aE[X] + bE[Y ] + c, for any reals a, b, c.

– A useful fact: E[X] =
∑∞
i=1 Pr[X ≥ i], if all xi ≥ 0 and integer-valued.

• Linearity of expectation holds without need for independence:

E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi]

• In the case of Variance, the linearity holds only for pairwise independent variables :

V ar[
n∑
i=1

Xi] =
n∑
i=1

V ar[Xi]
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• The Union Bound. During the course, we will be dealing with situations where a set
of “bad events” must be precluded. We will need an upper bound on the prob. that
none of the bad events occur.

• Note that
Pr[E1 ∨ E2 ∨ · · · ∨ En] = 1− Πn

i=1(1− Pr[Ei])

• A very simple, but still powerful, bound is called the Union Bound:

Pr[E1 ∨ E2 ∨ · · · ∨ En] ≤
n∑
i=1

Pr[Ei]

• Union bound holds even for dependent variables, but sometimes it can be too loose to
be useful. But we will see many examples of its success.

10.2 Birthday Paradox

• Each person has a unique birthday, which is an integer between 1 and 365.

• We assume that birthdays are chance events: each person’s date of birth is a random
variable, uniformly distributed in [1, 365].

• The paradox asks the following question:

What are the chances that in a group of 30 people, at least two have the
same birthday?

• One might think not very much: perhaps 10%. There are 365 different birthdays, and
30 is less than one tenth of that. In fact, the prob. is quite large.

• We will show that prob. already with 23 people is 50%. With 30, the prob. is about
73%!

• Let us do a careful analysis.

10.3 Analysis of the Birthday Paradox

• First consider N = 2. What is the prob. that 2 people have the same birthday?

• the answer is 1/365: all birthdays are equally likely, so the chance that B’s birthday
falls on A’s birthday is 1 in 365.

• Now suppose we have N = k people.
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• It will be more convenient to calculate the prob. that no two have the same birthday.
Then, our desired answer will be 1 minus that prob.

• Define Pi to be the prob. that first i all have distinct birthdays

• For notational convenience, let us write α = 1/365.

• Then, we have the following equalities:

P1 = 1

P2 = (1− α)

P3 = P2 × (1− 2α)
...

Pk = Pk−1 × (1− (k − 1)α)

• By unraveling the recurrence, we have

Pk = (1− α)× (1− 2α)× · · · × (1− (k − 1)α)

• To solve this, we make use of the following inequality (from Taylor’s series expansion
of the exponential function)

1− x ≤ e−x, for x < 1

Thus, 1− jα ≤ e−jα.

• We also have ex + ey = ex+y.

• Therefore,
Pk ≤ e−(α+2α+3α ··· +(k−1)α) ≤ e−k(k−1)α/2

• For k = 23, we have k(k − 1)/(2 × 365) = 0.69, and e−0.69 ≤ 0.4999. Therefore,
1− P23 > 0.5.

• That is, with just 23 people in a room, there is more than 50% chance that two have
the same birthday!

• The connection between birthday paradox and hashing is transparent: think of each
person as an input key, and her birthday as a random slot in the table. Given a table
of size M = 365, after only n = 23 keys, we have a 50% chance of collision.
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• Going back to our earlier example, if we have a hash table of size n = 106, it just takes√
n = 1000 key inserts before a collision occurs with probability at least 1/2!

• So, for instance, if we don’t provide any collision-resolution policy, we expect to handle
only O(

√
n) items in a table of size n before things break down.

11 Perfect Hashing: lookup in worst-case O(1) time

• Universal hashing is a scheme for table lookup with expected O(1) time complexity.

• Is it possible to achieve the (much) stronger worst-case guarantee of O(1) lookups?
Such a hashing is (naturally) called Perfect Hashing.

• We consider the problem of perfect hashing for a static set of n keys. That is, suppose
need to maintain an arbitrary (adversarial) but fixed set S of n keys, drawn from
universe U . Static input means there are no insert and delete operations, just lookups.

• What is the best search time we can achieve using O(n) space? We know how to
achieve O(log n) time using a sorted array? Can that be beaten?

• Whether O(1) worst-case lookup using O(n) space (namely, perfect hashing) is possible,
was a major open problem for many years, memorably posed as the problem of Should
tables be sorted?

• After a long series of increasingly complicated attempts, the problem was solved with
a very elegant idea of using universal hash functions in a 2-level scheme.

• We first describe a solution that requires O(n2) space, and then present the final
solution with O(n) space.

11.1 An O(n2) Space Solution (Method 1)

• If we are willing to sacrifice O(n2) space to store n keys, then there is a simple method
to achieve perfect hashing.

• We use table size M = n2, and choose a random hash function h from the universal
hash function family to hash the keys of S.

• We claim that there is at least 50% chance of zero collisions.

• Claim. If we hash n keys into a n2 size table using a random universal hash function
h, then prob. that no two keys collide is ≥ 1/2.
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• Proof.

1. The proof is just the flip side of the birthday paradox.

2. There are
(
n
2

)
pairs of keys in S.

3. Since h is a universal hash function, the prob. that any pair collides is ≤ 1/M .

4. Therefore, the probability of at least one collision is ≤
(
n
2

)
/M < 1/2.

• So, we try a random h, and if we get any collisions, we discard this table, and choose
a new h to try again. Since the prob. of success is > 1/2, on average we need only two
tries to find a collision-free hashing.

11.2 The Optimal O(n) Space Solution (Method 2)

• The method works as follows.

1. We first hash the keys of S into a table of size n using universal hashing.

2. This will most likely produce some collisions.

3. We will then rehash each “bin” (keys hashed to the same slot) using Method 1,
with a quadratic size hash table.

4. That is, we have a first level hash function h and a first level hash table A.

5. We then have n second-level hash functions h1, h2, . . . , hn, and n second level hash
tables A1, A2, . . . , An.

6. To look up an element x, we first compute i = h(x), and then (assuming there
were collisions at that slot) find the element at location Ai[hi(x)].

• The correctness of the method follows from correctness of Method 1, and so we can
always find the key in two lookups.

• What remains is to prove that the method requires only O(n) space.

11.3 Space Complexity Analysis of Perfect Hashing

• The memory needed for the first level table is n.

• Suppose after the first-level hashing, slot i received ni elements. So,
∑
i ni = n.

• By Method 1, thus, the total memory needed for second level hashing is
∑n
i=1 n

2
i . (We

use the shorthand notation n2
i for (ni)

2.) We will show below that this quantity is
bounded by O(n). Specifically, we prove the following.
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• Lemma. If the first level hash function h is chosen at random from a universal hash
family, then

Prob[
∑
i

n2
i > 4n] < 1/2

• Proof.

1. We will prove this claim by showing that E[
∑
i n

2
i ] < 2n. That suffices because

by Markov’s inequality, Pr[X > 2µ] < 1/2. (That is, a random variable cannot
have more than 50% chance of assuming a value more than twice the expected
value.)

2. For any two elements x, y ∈ S, define an indicator random variable Cxy so that
Cxy = 1 if x and y collide, and Xxy = 0 otherwise. Then, we have the following
sequence of inequalities.

E[
∑
i

n2
i ] = E[

∑
x

∑
y

Cxy]

= n+
∑
x

∑
y 6=x

E[Cxy]

≤ n+ n(n− 1)/M

< 2n assuming M = n

• So, we simply try a random hash function h until we find one that gives
∑
i n

2
i < 4n,

and then fixing that h, we find n secondary hash functions hi for the second-level
tables.

• By this lemma, on average we have to try just twice to find a good h, and once we do,
the total memory needed by the data structure is O(n).
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