1

Approximation Algorithms

Subhash Suri
November 27, 2017

Bin Packing Algorithms

A classical problem, with long and interesting history. One of the early problems shown
to be intractable. Lends to simple algorithms that require clever analysis.

You are given N items, of sizes s1, Sa,...,Sy. All sizes are such that 0 < s; < 1. You
have an infinite supply of unit size bins. Goal is to pack the items in as few bins as
possible.

An Example. List of items: 0.2,0.5,0.4,0.7,0.1,0.3,0.8

Many applications: (1) placing data on multiple disks; (2) job scheduling; (3) packing
advertisements in fixed length radio/TV station breaks; (4) storing a large collection
of music onto tapes/CD’s, etc.

Two versions.

— Online: items arrive one at a time (in unknown order), each must be put in a bin,
before considering the next item.

— Offline: all items given upfront.

The online problem would seem more difficult. In fact, it’s easy to convince ourselves
that a ONLINE algorithm cannot always get the optimal solution.

Consider the following input:
M small items of size 1/2 — ¢, followed by
M large items of size 1/2 + ¢, for any 0 < e < 0.001.

The optimal solution is to pack them in pairs (one small, one large), which requires M
bins.

But the ONLINE algorithm doesn’t know the “future” items or even how many future
items.

So, for instance, what should it do with the first M small items. If it packs 2 of them
in each bin, then it will be stuck when the second half arrives, with M large items.

On the other hand, if it puts one small items in each bin in the first half, then we can
just stop the input right there, in which case the algorithm would have used twice as
many bins as needed.

This ad hoc argument is not a proof. But we can turn this into a formal proof, and
show the following lower bound.

Lemma: There exist inputs that can force any online bin-packing algorithm to use
at least 4/3 times the optimal number of bins.

Proof. An important observation is that because we (the adversary) can truncate the
input whenever we like, the algorithm must maintain its guaranteed ratio AT ALL
points during its course.

Consider the input sequence:
I1, sequence of M small items of size (1/2 — ¢), followed by
12, sequence of M large items of size (1/2 + ¢€).

Let’s consider the state of the online algorithm after it has processed I1.

Suppose it has used b number of bins. At this point, the optimal solution uses M/2
bins, so if the online algorithm beats 4/3 ratio, it must satisfy:

which implies b/M < 2/3.

Now consider the state of the online algorithm after all items have been processed.
Since all new items have size > 1/2, every NEW bin created after the first b bins will
have exactly one item put in it. (Some items may go into the first b bins.)

Since only the first b bins can have 2 items, and the remaining bins have 1 item each,
we see that packing 2M items will require at least (2M — b) bins.

Again, since the optimal at this stage uses M bins, the online algorithm must guarantee
that (2M — b) < $M, which simplifies to b/M > 2/3.

A contracdiction, since b/M cannot be both strictly larger and smaller than 2/3. Thus,
no online algorithm can beat the 4/3 ratio.

2

2

Approximation Algorithms

We now show 3 very simple online algorithms that each uses at most twice the optimal
bins.

Next Fit Algorithm.

When processing the next item, see if it fits in the same bin as the last item.
Start a new bin only if it does not.

Very simple to implement in linear time. An Example:

empty empty empty empty empty
0.50.1
0.2 0.40.70.30.8

The Next Fit algorithn has a simple worst-case analysis.

Theorem: If M is the number of bins in the optimal solution, then Next Fit never
uses more than 2M bins. There exist sequences that force Next Fit to use 2M — 2
bins.

Proof. Consider any two adjancent bins. The sum of items in these two bins must be
> 1; otherwise, NextFit would have put all the items of second bin into the first.

Thus, total occupied space in (B + By) is > 1. The same holds for Bs + By etc. Thus,
at most half the space is wasted, and so Next Fit uses at most 2M bins.

For the lower bound, consider the sequence in which s; = 0.5 for i odd, and s; = 2/N
for i even. (Assume N is divisible by 4.)

Then, the optimal puts all 0.5 items in pairs, using N/4 bins. All small items fit in a
single bin, so the opt uses N/4 + 1 bins.

Next Fit will put 1 large, 1 small in each bin, requiring N/2 bins.
Lower Bound:
0.5 0.5 \ldots 0.5 2/N

0.5 0.5 \ldots 0.5 2/N
\ldots

B1 B2 B_{N/4} B_{N/4 + 1}

empty empty \ldots empty empty
2/N 2/N 2/N 2/N
0.5 0.5 0.5 0.5

B1 B2 B_{N/2}

First Fit. The previous algorithm Next Fit can be easily improved: rather than
checking just the last bin, we check all previous bins to see if the next item will fit.
Start a new bin, only when it does not. This is the first fit algorithm.

Example:

empty empty empty empty

First Fit easy to implement in O(N?) time. With proper data structures, it can be
implemented in O(N log N) time.

Upper Bound Theorem: First Fit never uses more than 2M bins, if M is the
optimal.

Proof. At most one bin can be more than half empty: otherwise the contents of the
second half-full bin would be placed in the first.

Lower Bound Theorem: If M is the optimal number of bins, then First Fit never
uses more than 1.7M bins. On the other hand, there are sequences that force it to use
at least 15 (M — 1) bins.

The upper bound proof is quite complicated. For the lower bound, we show an example
that forces First Fit to use 10/6 times optimal.

Consider the sequence: 60 items of size 1/7+ ¢€; followed by 6 M items of size 1/3 +¢;
followed by 6M items of size 1/2 + €.

Optimal strategy is to pack each bin with one from each group, requiring 6 M bins.

4

e When First Fit is run, it packs all small items first, in 1 bin. It then packs all medium
items, but requires 6M /2 = 3M bins. (Only 2 per bin fit.) It then requires 6 bins
for the large items. Thus, in total First Fit uses 10M bins.

empty empty empty
1/7
1/7
\ldots
1/7 1/3
1/7
1/7
\ldots
1/7 1/3 + e
1/7 1/3 + e 1/2 + e

e Best Fit Algorithm. The third strategy places the next item in the tightest spot.
That is, put it in the bin so that smallest empty space is left.

Example. 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8

empty empty empty

e This is also easy to implement in O(N log N) time.

e Unfortunately, the generic bad cases for First Fit etc. apply to Best Fit also. Best Fit
never uses more than 1.7 times optimal. Complicated analysis, omitted.

Offline Algorithms.

e If we can view the entire sequence upfront, we should expect to do better. With
exhaustive enumeration, of course, we can find the optimum. But even offline bin
packing is not easy if we have only a polynomial amount of time. (NP-Complete.)

e A trouble with online algorithms is that packing large items is difficult, especially if
they occur late in the sequence. We can circumvent this by sorting the input sequence,
and placing the large items first. With sorting, we get First Fit Decreasing and Best
Fit Decreasing, as offline analogs of online FF and BF.

With sorting, the input sequence becomes:
0.8,0.7,0.5,0.4,0.3,0.2,0.1

Applying First Fit Decreasing, we get an optimal.

0.1
0.2 0.30.4
0.8 0.7 0.5

Note that the bad cases that require 10M bins as opposed to 6M also do not apply
here. In fact, we show the following theorem.

Theorem: First Fit Decreasing uses at most (4M + 1)/3 bins if the optimal is M.

Proof. The proof of FFD’s performance depends on two technical observations.

1. Suppose the N items have been sorted in descending order of size; s; > sy >
... > sy. If the optimal packing uses M bins, then all bins in the FFD after M
have items of size < 1/3.

2. The number of items FFD puts in bins after M is at most M — 1.

Proof of 1. By contradtiction.

— Suppose s; is the first item to be put in bin M + 1, and s; > 1/3.
— Therefore, we also have that sy, s,...,s;_1 > 1/3.
— From this, it follows that each of the first M bins has at most 2 items each.

— Claim. The state of FFD just before s; was placed is the following: the first few
bins have exactly 1 item, remaining have 2 items.

— If not, then there must be two bins B,, B,, with < y, such that B, has two
items z1, 2, and B, has 1 item y;.

— Since x; was put in earlier bin, z; > yl1.

— Since x5 was put in before s;, 9 > s;.

— Thus, x1 + x2 > y1 + s;.

— But this implies that s; could have fit in B,, which contradicts our assumption.

— Thus, if s; > 1/3, then the first M bins must be arranged so that first j have 1
item; the next M — 7 have two items.

To finish the proof, we now argue that there is no way put all the items in M
bins, contradicting the assumption of optimality.

No two items from sy, s2, ..., s; can be put in a single bin; if so, FF'D would have
done it.
Because FFD faild to put any of the items s;1,...,s;_1 into first j bins, in any

solution (including optimal), there must be j bins that do not contain any item
from sj41,...,8-1.

Thus, all these items must be contained in the remaining M — j bins.

Further, there are 2(M — j) such items (because in FFD each of these M — j bins
had 2 items).

Now, if s; > 1/3, then there is no way for s; to be placed in any of these M bins:
it can’t fit in the first j because otherwise FFD would have done it; it can’t go in
the remaining M — j because each of them already has two items of sizes > 1/3.

Thus, the optimal would require at least M + 1 bins, which is a contradiciton!

So, it must be that s; < 1/3.

e Proof of 2. By contradtiction.

Suppose that there are at least M objects put in the extra bins.
Since all items fit in M bins, we have Y| s; < M.

Suppose bin j is filled with total weight 1W;. Suppose the first M extra objects
have sizes x1,xa,..., 2.

Because the items packed by FFD in first M bins plus the first M extra are subset
of total, we have

N M M M
YDosi>Y Wit x> (W +ay)
i=1 j=1 =1 =1

Now, W; + z; > 1, for each j; otherwise FFD would put z; in B;.
Thus, ¥, s, > Y, 1> M
But that’s impossible because all s; fit in M bins.

So, there must be only M — 1 items in the extra bins.

e Proof of Theorem. There are M — 1 extra items, each of size < 1/3.

e Thus, there can be at most (M — 1)/3 extra bins. Thus, the total number of bins
needed by FFD is (4M +1)/3.

e More complicated Theorem. If M is the optimal number of bins, then FFD never
uses more than 11M1//9 4+ 4 bins. There are sequences for which FFD uses 11M/9 bins.

