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1 Introduction

• Greedy algorithms are a commonly used paradigm for combinatorial algorithms. Com-
binatorial problems intuitively are those for which feasible solutions are subsets of a
finite set (typically from items of input). Therefore, in principle, these problems can
always be solved optimally in exponential time (say, O(2n)) by examining each of those
feasible solutions. The goal of a greedy algorithm is find the optimal by searching only
a tiny fraction.

• In the 1980’s iconic movie Wall Street, Michael Douglas shouts in front of a room full of
stockholders: “Greed is good. Greed is right... Greed works.” In this lecture, we will
explore how well and when greed can work for solving computational or optimization
problems.

• Defining precisely what a greedy algorithm is hard, if not impossible. In an informal
way, an algorithm follows the Greedy Design Principle if it makes a series of choices,
and each choice is locally optimized ; in other words, when viewed in isolation, that step
is performed optimally.

• The tricky question is when and why such myopic strategy (looking at each step in-
dividually, and ignoring the global considerations) can still lead to globally optimal
solutions. In fact, when a greedy strategy leads to an optimal solution, it says some-
thing interesting about the structure (nature) of the problem itself! In other cases,
even if the greedy does not give optimal, in many cases it leads to provably good (not
too far from optimal) solution.

• Let us start with a trivial problem, but it will serve to illustrate the basic idea: Coin
Changing.

• The US mint produces coins in the following four denominations: 25, 10, 5, 1.
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• Given an integer X between 0 and 99, making change for X involves finding coins
that sum to X using the least number of coins. Mathematically, we can write X =
25a+10b+5c+1d, so that a+ b+ c+d is minimum where a, b, c, d ≥ 0 are all integers.

• Greedy Coin Changing.

– Choose as many quarters as possible. That is, find largest a with 25a ≤ X.

– Next, choose as many dimes as possible to change X − 25a, and so on.

– An example. Consider X = 73.

– Choose 2 quarters, so a = 2. Remainder: 73− 2× 25 = 23.

– Next, choose 2 dimes, so b = 2. Remainder: 23− 2× 10 = 3.

– Choose 0 nickels, so c = 0. Remainder: 3.

– Finally, choose 3 pennies, so d = 3. Remainder: 3− 3 = 0.

– Solution is a = 2, b = 2, c = 0, d = 3.

• Does Greedy Always Work for Coin Changing? Prove that the greedy always produces
optimal change for US coin denominations.

• Does it also work for other denominations? In other words, does the correctness of
Greedy Change Making depend on the choice of coins?

• No, the greedy does not always return the optimal solution. Consider the case with
coins types {12, 5, 1}. For X = 15, the greedy uses 4 coins: 1× 12 + 0× 5 + 3× 1. The
optimal uses 3 coins: 3× 5. Moral: Greed, the quick path to success or to ruin!
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2 Activity Selection, or Interval Scheduling

• We now come to a simple but interesting optimization problem for which a greedy
strategy works, but the strategy is not obvious.

• The input to the problem is a list of N activities (jobs), each specified with a start and
end time, which require the use of some resource.

• Only one activity can be be scheduled on the resource at a time; once an activity is
started, it must be run to completion; no pre-preemption allowed.

• What is the maximum possible number of activities we can schedule?

• This is an abstraction that fits that many applications. For instance, activities can be
computation tasks and resource the processor, or activities can be college classes and
resource a lecture hall.

• More formally, we denote the list of activities as S = {1, 2, . . . , n}.

• Each activity has a specific start time and a specific finish time; the duration of different
activities can be different. Specifically, activity i is given as tuple (s(i), f(i)), where
s(i) ≤ f(i), namely, that the finish time must be after the start time.

• For instance, suppose the input is {(3, 6), (1, 4), (1.2, 2.5), (6, 8), (0, 2)}. Activities (3, 6)
and (6, 8) are compatible—they can both be scheduled—since they do not overlap in
their duration (endpoints are ok).

• Clearly a combinatorial problem: input is a list of n objects, and output is a subset of
those objects.

• Each activity is pretty inflexible; if chosen, it must start at time s(i) and end at f(i).

• A subset of activities is a feasible schedule if no two activities overlap (in time).

• Objective: Design an algorithm to find a feasible schedule with as many activities as
possible.

2.1 Potential Greedy Strategies

• The first obvious one is to pick the one that starts first. Remove those activities that
overlap with it, and repeat.

---- ---- ---- ----

-----------------------------------
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It is easy to see how this is not always optimal. Greedy picks just one (the longest
one), while optimal has 4.

• A more sophisticated algorithm might repeatedly pick the activity with the smallest
duration (and does not overlap with those already chosen). However, a simple example
shows that this can also fail.

------------ -------------

------------

• Yet another possibility is to count the number of other jobs that overlap with each
activity, and then choose the one with the smallest (overlap) count. This seems a bit
better, and does get optimal for both the earlier two cases. Still, this also fails to
guarantee optimality some times.

--------- ---------- --------- ---------

----------- --------- -----------

----------- -----------

----------- -----------

----------- -----------

The greedy starts by picking the one in the middle, which right away ensures that it
cannot have more than 3. The optimal chooses the 4 in the top row.

2.2 The Correct Greedy Strategy for Interval Scheduling

• All these false starts and counterexamples should give you pause whether any greedy
can ensure that it will find optimal in all cases.

• Fortunately, it turns out that there is such a strategy, though it may not be the one
that seems the most natural.

• The correct strategy is to choose jobs in the Earliest Finish Time order!

• More precisely, we sort the jobs in the increasing order of their finish time. By simple
relabeling of jobs, let us just assume that

f(j1) ≤ f(j2) ≤ f(j3) · · · ≤ f(jn)
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• An example instance of the problem.

Activity Start Finish
1 1 4
2 3 5
3 0 6
4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
10 2 13
11 12 14

• We can visualize the scheduling problem as choosing non-overlapping intervals along
the time-axis. (In my example, jobs are already labeled this way.)

-------------

----------

--------

----------------

-----------------

--------------

-------------------

--------------------- ----------

-------------------------------------------------

--------------------------

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

• The greedy algorithm can now be described as follows:

A = {1}; j = 1; // accept job 1

for i = 2 to n do

if s(i) >= f(j) then

A = A + {i}; j = i;

return A

• In our example, the greedy algorithm first chooses 1; then skips 2 and 3; next it chooses
4, and skips 5, 6, 7; so on.
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2.3 Analysis: Correctness

• It is not obvious that this method will (should) always return the optimal solution.
After all, the previous 3 methods failed.

• But the method clearly finds a feasible schedule; no two activities accepted by this
method can conflict; this is guaranteed by the if statement.

• In order to show optimality, let us argue in the following manner. Suppose OPT is
an optimal schedule. Ideally we would like to show that it is always the case that
A ≡ OPT ; but this is too much to ask; in many cases there can be multiple different
optima, and the best we can hope for is that their cardinalities are the same: that is,
|A| = |OPT |; the contain the same number of activities.

• The proof idea, which is a typical one for greedy algorithms, is to show that the greedy
stays ahead of the optimal solution at all times. So, step by step, the greedy is doing
at least as well as the optimal, so in the end, we can’t lose.

• Some formalization and notation to express the proof.

• Suppose a1, a2, . . . , ak are the (indices of the) set of jobs in the Greedy schedule, and
b1, b2, . . . bm the set of jobs in an optimal schedule OPT. We would like to argue that
k = m.

• Mnemonically, ai’s are jobs picked by our algorithm while bi’s are best (optimal) sched-
ule jobs.

• In both schedules the jobs are listed in increasing order (either by start or finish time;
both orders are the same).

• Our intuition for greedy is that it chooses jobs in such a way as to make the resource
free again as soon as possible. Thus, for instance, our choice of greedy ensures that

f(a1) ≤ f(b1)

(that is, a1 finishes no later than b1.)

• This is the sense in which greedy “stays ahead.” We now turn this intuition into a
formal statement.

• Lemma: For any i ≤ k, we have that f(ai) ≤ f(bi).

• That is, the ith job chosen by greedy finishes no later than the ith job chosen by the
optimal.
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• Note that the jobs have non-overlapping durations in both greedy and optimal, so they
are uniquely ordered left to right.

• Proof.

– We already saw that the statement is true for i = 1, by the design of greedy.

– We inductively assume this is true for all jobs up to i− 1, and prove it for i.

– So, the induction hypothesis says that f(ai−1) ≤ f(bi−1).

– Since clearly f(bi−1) ≤ s(bi), we must also have f(ai−1) ≤ s(bi).

– That is, the ith job selected by optimal is also available to the greedy for choosing
as its ith job. The greedy may pick some other job instead, but if it does, it must
be because f(ai) ≤ f(bi). Thus, the induction step is complete.

• With this technical insight about the greedy, it is now a simple matter to wrap up the
greedy’s proof of optimality.

• Theorem: The greedy algorithm returns an optimal solution for the activity selection
problem.

• Proof. By contradiction. If A were not optimal, then an optimal solution OPT must
have more jobs than A. That is, m > k.

• Consider what happens when i = k in our earlier lemma. We have that f(ak) ≤ f(bk).
So, the greedy’s last job has finished by the time OPT’s kth job finishes.

• If m > k, meaning there is at least one other job that optimal accepts, that job is also
available to Greedy; it cannot conflict with anything greedy has scheduled. Because
the greedy does not stop until it no longer has any acceptable jobs left, this is a
contradiction.

2.4 Analysis: Running time

• The greedy strategy can be implemented in worst-case time O(n log n). We begin by
sorting the jobs in increasing order of their finish times, which takes O(n log n). After
that, the algorithm simply makes one scan of the list, spending a constant time per
job.

• So total time complexity is O(n log n) + O(n) = O(n log n).
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3 Interval Partitioning Problem

• Let us now consider a different scheduling problem:

given the set of activities, we must schedule them all using the minimum
number of machines (rooms).

• An example.

• An obvious greedy algorithm to try is the following:

Use the Interval Scheduling algorithm to find the max number of activities
that can be scheduled in one room. Delete and repeat on the rest, until no
activities left.

• Surprisingly, this algorithm does not always produce the optimal answer.

a b c

------ ------ ----------------------------

d e f

--------------------- ------- ---------

These activities can be scheduled in 2 rooms, but Greedy will need 3, because d and c
cannot be scheduled in the same room.

• Instead a different, and simpler, Greedy works.

Sort activities by start time.

Start Room 1 for activity 1.

for i = 2 to n

if activity i can fit in any existing room, schedule it in that room

otherwise start a new room with activity i

• Proof of Correctness. Define depth of activity set as the maximum number of activities
that are concurrent at any time.

• Let depth be D. Optimal must use at least D rooms. Greedy uses no more than D
rooms.
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4 Data Compression: Huffman Codes

• Huffman coding is an example of a beautiful algorithm working behind the scenes, used
in digital communication and storage. It is also a fundamental result in theory of data
compression.

• For instance, mp3 audio compression scheme basically works as follows:

1. The audio signal is digitized by sampling at, say, 44KHz.

2. This produces a sequence of real numbers s1, s2, . . . , sT . For instance, a 50 min
symphony corresponds to T = 50× 60× 44000 = 130M numbers.

3. Each si is quantized, using a finite set G (e.g., 256 values for 8 bit quantization.)
The quantization is fine enough that human ear doesn’t perceive the difference.

4. The quantized string of length T over alphabet G is encoded in binary.

5. This last step uses Huffman encoding.

• To get a feel for compression, let’s consider a toy example: a data file with 100, 000
characters.

• Assume that the cost of storage or transmission is proportional to the number of bits
required. What is the best way to store or transmit this file?

• In our example file, there are only 6 different characters (G), with their frequencies as
shown below.

Char a b c d e f
Freq(K) 45 13 12 16 9 5

• We want to design binary codes to achieve maximum compression. Suppose we use
fixed length codes. Clearly, we need 3 bits to represent six characters. One possible
such set of codes is:

Char a b c d e f
Code 000 001 010 011 100 101

• Storing the 100K character requires 300K bits using this code. Is it possible to improve
upon this?

• Huffman Codes. We can improve on this using Variable Length Codes.
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• Motivation: use shorter codes for more frequent letters, and longer codes for infrequent
letters.

• (A similar idea underlies Morse code: e = dot; t = dash; a = dot-dash ; etc. But
Morse code is a heuristics; not optimal in any formal sense.)

• One such set of codes shown below.

Char a b c d e f
VLC 0 101 100 111 1101 1100

• Note that some codes are smaller (1 bit), while others are longer (4 bits) than the fixed
length code. Still, using this code2, the file requires

1× 45 + 3× 13 + 3× 12 + 3× 16 + 4× 9 + 4× 5

Kbits, which is 224 Kbits.

• Improvement is 25% over fixed length codes. In general, variable length codes can give
20− 90% savings.

• Problems with Variable Length Codes. We have a potential problem with variable
length codes: while with fixed length coding, decoding is trivial, it is not the case for
variable length codes.

• Example: Suppose 0 and 000 are codes for letters x and y. What should decoder do
upon receiving 00000?

• We could put special marker codes but that reduce efficiency.

• Instead we consider prefix codes: no codeword is a prefix of another codeword.

• So, 0 and 000 will not be prefix codes, but (0, 101, 100, 111, 1101, 1100), the example
shown earlier, do form a prefix code.

• To encode, just concatenate the codes for each letter of the file; to decode, extract the
first valid codeword, and repeat.

• Example: Code for ‘abc’ is 0101100. And ‘001011101’ uniquely decodes to ’aabe’.
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4.1 Representing Codes by a Tree

• Instead of the table-based format, the coding and decoding is more intuitive to describe
using a Binary Tree format, in which characters are associated with leaves.

• Code for a letter is the sequence of bits between root and that leaf.

4.2 Measuring Optimality

• Before we claim the optimality of a coding scheme, we must agree on a precise quanti-
tative measure by which we evaluate the goodness (figure of merit). Let us formalize
this.
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• Let C denote the alphabet. Let f(p) be the frequency of a letter p in C. Let T be the
tree for a prefix code; let dT (p) be the depth of p in T . The number of bits needed to
encode our file using this code is:

B(T ) =
∑
p∈C

f(p)dT (p)

• Think of this as bit complexity. We want a code that achieves the minimum possible
value of B(T ).

• Optimal Tree Property. An optimal tree must be full: each internal node has two
children. Otherwise we can improve the code.

• Thus, by inspection, the fixed length code above is not optimal!

• Greedy Strategies. Ideas for optimal coding??? Simple obvious heuristic ideas do
not work; a useful exercise will be to try to “prove” the correctness of your suggested
heuristic.

• Huffman Story: Developed his coding procedure, in a term paper he wrote while
a graduate student at MIT. Joined the faculty of MIT in 1953. In 1967, became the
founding faculty member of the Computer Science Department at UCSC. Died in 1999.

• Excerpt from an Scientific American article about this:

In 1951 David A. Huffman and his classmates in an electrical engineering
graduate course on information theory were given the choice of a term paper
or a final exam. For the term paper, students were asked to find the most
efficient method of representing numbers, letters or other symbols using a
binary code. · · · Huffman worked on the problem for months, developing a
number of approaches, but none that he could prove to be the most efficient.
Finally, he despaired of ever reaching a solution and decided to start studying
for the final. Just as he was throwing his notes in the garbage, the solution
came to him. “It was the most singular moment of my life,” Huffman says.
“There was the absolute lightning of sudden realization.”

Huffman says he might never have tried his hand at the problem—much less
solved it at the age of 25—if he had known that Fano, his professor, and
Claude E. Shannon, the creator of information theory, had struggled with it.

Huffman Codes are used in nearly every application that involves the com-
pression and transmission of digital data, such as fax machines, modems,
computer networks, and high-definition television.
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• Huffman’s Algorithm. The algorithm constructs the binary tree T representing the
optimal code.

• Initially, each letter represented by a single-node tree. The weight of the tree is the
letter’s frequency.

• Huffman repeatedly chooses the two smallest trees (by weight), and merges them. The
new tree’s weight is the sum of the two children’s weights.

• If there are n letters in the alphabet, there are n− 1 merges.

• In the pseudo-code, below Q is a priority Queue (say, heap).

1. Q← C

2. for i = 1 to n− 1 do

– z ← allocateNode()

– x← left[z]← DeleteMin(Q)

– y ← right[z]← DeleteMin(Q)

– f [z]← f [x] + f [y]

– Insert(Q, z)

3. return FindMin(Q)

8. Illustration of Huffman Algorithm.

Initial f:5 e:9 c:12 b:13 d:16 a:45
Merge/Reorder c:12 b:13 f+e:14 d:16 a:45

Next f+e:14 d:16 c+b:25 a:45
Next c+b:25 (f+e)+d:30 a:45
Next a:45 (c+b)+((f+e)+d):55
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4.3 Analysis of Huffman

• Time complexity is O(n log n). Initial sorting plus n heap operations.

• We now prove that the prefix code generated is optimal. It is a greedy algorithm, and
we use the swapping argument.

• Proof intuition:

1. We will use proof by induction on the size of the alphabet |C|.
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2. The base case of |C| = 2 is trivial: we have a depth 1 tree, with two leaves, each
with codelength 1.

3. In the general case, we will assume that induction holds for |C| = n − 1, and
prove it for |C| = n.

4. Which character xi should we drop for induction? As a thought experiment,
suppose we drop xn. Then, by induction, we have an optimal solution for the
subproblem on {x1, x2, . . . , xn−1}.

5. This is a tree with n− 1 leaves. How can we grow it into an n-leaf tree? We get
stuck!

6. Instead, we are going to try a different idea. We take the last two characters
xn−1 and xn. We combine them into a single new character z, and set f(z) =
f(xn−1) + f(xn).

7. We now remove xn−1 and xn from C and replace them with z. The new, reduced
set has size |C ′| = n− 1.

8. By induction, we find the optimal code tree of C ′. This tree has z at some leaf.
We now expand z by attaching the original nodes xn−1 and xn, which turns the
tree for C ′ into one for C, while preserving the prefix property.

9. We are going to show that given optimal tree for C ′, this new tree will be optimal
for C.

10. This still has one problem: in our construction, the nodes xn−1 and xn will neces-
sarily end up as siblings. (That is, the codes for these two will be identical except
in the last bit.)

11. How can we choose xn−1 and xn at the onset so that in the optimal tree they are
guaranteed to have this property?

12. This is where Huffman’s greedy choice enters the proof: we will choose two lowest
freq. characters.

• Lemma: Suppose x and y are the two letters of lowest frequency. Then, there exists
an optimal prefix code in which codewords for x and y have the same (and maximum)
length and they differ only in the last bit.

• Proof. The idea of the proof is to take the tree T representing an optimal prefix code,
and modify it to make a tree representing another optimal prefix code in which the
characters x and y appear as sibling leaves of max depth.
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• In that case, x and y will have the same code length, with only the last bit different.

• Assume an optimal tree that does not satisfy the claim. Assume, without loss of
generality, that a and b are the two characters that are sibling leaves of max depth in
T . Without loss of generality, assume that

f(a) ≤ f(b) and f(x) ≤ f(y)

• Because f(x) and f(y) are 2 lowest frequencies, we get:

f(x) ≤ f(a) and f(y) ≤ f(b)
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• (Remark. Note that x, y, a, b need not all be distinct; for instance, may be y lies at the
max depth and is therefore one of a or b.)

• We first transform T into T ′ by swapping the positions of x and a.

• Intuitively, since dT (a) ≥ dT (x) and f(a) ≥ f(x), the swap does not increase the
frequency × depth cost. Specifically,

B(T )−B(T ′) =
∑
p

[f(p)dT (p)]−
∑
p

[f(p)d′T (p)]

= [f(x)dT (x) + f(a)dT (a)]− [f(x)d′T (x) + f(a)d′T (a)]

= [f(x)dT (x) + f(a)dT (a)]− [f(x)dT (a) + f(a)dT (x)]

= [f(a)− f(x)]× [dT (a)− dT (x)]

≥ 0

• Thus, this transformation does not increase the total bit cost.

• Similarly, we then transform T ′ into T ′′ by exchanging y and b, which again does not
increase the cost.

So, we get that B(T ′′) ≤ B(T ′) ≤ B(T ). If T was optimal, so is T ′′, but in T ′′ x and
y are sibling leaves and they are at the max depth.

• This completes the proof of the lemma.

• We can now finish the proof of Huffman’s optimality.

• But need to be very careful about the proper use of induction. For instance, here is
a simple and bogus idea: Base case: two characters. Huffman’s algorithm is trivially
optimal. Suppose it’s optimal for n− 1, and consider n characters. Delete the largest
frequency character, and build the tree for the remaining n − 1 characters. Now, add
the nth character as follows: create a new root; make the nth character left child, and
hang the (n− 1) subtree as its right child. Even though this tree will have the properly
of Lemma above (two smallest characters being deepest leaves, and the largest frequency
having the shortest code), this proof is all wrong—it neither shows that the resulting
tree is optimal, nor is that tree even the output of actual Huffman’s algorithm.

• Instead, we will do induction by removing two smallest keys, replacing them with their
“union” key, and looking at the difference in the tree when those leaves are added back
in.
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• When x and y are merged; we pretend a new character z arises, with f(z) = f(x)+f(y).

• We compute the optimal code/tree for these n− 1 letters: C + {z} − {x, y}. Call this
tree T1.

• We then attach two new leaves to the node z, corresponding to x and y, obtaining the
tree T . This is now the Huffman Code tree for character set C.

• Proof of optimality. The cost B(T ) can be expressed in terms of cost B(T1), as
follows. For each character p not equal to x and y, its depth is the same in both trees,
so no difference.

• Furthermore, dT (x) = dT (y) = dT1(z) + 1, so we have

f(x)dT (x) + f(y)dT (y) = [f(x) + f(y)]× [dT1(z) + 1]

= f(z)dT1(z) + [f(x) + f(y)]

• So, B(T ) = B(T1) + f(x) + f(y).

• We now prove the optimality of Huffman algorithm by contradiction. Suppose T is
not an optimal prefix code, and another tree T ′ is claimed to be optimal, meaning
B(T ′) < B(T ).

• By the earlier lemma, T ′ has x and y as siblings. Let T ′1 be this tree with the common
parent of x and y replaced by a leave z, whose frequency is f(z) = f(x) + f(y).

• Then,

B(T ′1) = B(T ′)− f(x)− f(y) < B(T )− f(x)− f(y) < B(T1)

which contradicts the assumption that T1 is an optimal prefix code for the character
set C ′ = C + {z} − {x, y}. End of proof.

4.4 Beyond Huffman codes

• Is Huffman coding the end of the road, or are there other coding schemes that are even
better than Huffman?

• Depends on problem assumptions.
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• Huffman code does not adapt to variations in the text. For instance, if the first half
is mostly a, b, and the second half c, d, one can do better by adaptively changing the
encoding.

• One can also get better-than-Huffman codes by coding longer words instead of indi-
vidual characters. This is done in arithmetic coding. Huffman coding is still useful
because it is easier to compute (or you can rely on a table, for instance using the
frequency of characters in the English language).

• There are also codes that serve a different purpose than Huffman coding: error detect-
ing and error correcting codes, for example. Such codes are very important in some
areas, in particular in industrial applications.

• One can also do better by allowing lossy compression.

• Even if the goal is lossless compression, depending on the data, Huffman code might
not be suitable: music, images, movies, and so on.

• One practical disadvantage of Huffman coding is that it requires 2 passes over the data:
one to construct to code table, and second to encode, which means it can be slow and
also not suitable for streaming data. Not being error-correcting is also a weakness.
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5 Horn Formulas

• Horn formulas are a particular form of boolean logic, and often used in AI systems for
logical reasoning.

• Each boolean variable represents an event (or possibility), such as

1. x = the murder took place in the kitchen

2. y = the butler is innocent

3. z = the colonel was asleep at 8 pm.

• A Boolean variable can only take one of two values { true, false }. A literal is either a
variable x or its negation x̄.

• In Horn Formula, constraints among variables is represented by two kinds of clauses.

• Implication Clauses: whose left-hand-side is an AND of any number of positive
literals, and whose right-hand-side is a single positive literal.

(z ∧ y) ⇒ x

It asserts that “if the colonel was asleep at 8 pm, and the murder took place at 8 pm,
then the murder took places in the kitchen.”

A degenerate statement of the type “ ⇒ x” means that x is unconditionally true. For
instance, “the murder definitely occurred in the kitchen.”

• Negative Clauses. Such a clause consists of an OR of any number of negative literals,
as in (ū ∨ t̄ ∨ ȳ), where u, t, y, resp., means that constable, colonel, and butler is
innocent. This clause means asserts that “they can’t all be innocent.”

• A Horn formula is a set of implications and negative clauses.

• Problem: Given a Horn formula, determine it is satisfiable. That is, is there a
true/false assignment of variables where all clauses are satisfied. Such an assignment
is called a satisfying assignment.

• Examples:
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1. The following Horn formula

⇒ x, ⇒ y, x ∧ u ⇒ z, x̄ ∨ ȳ ∨ z̄

has a satisfying assignment

u = 0, x = 1, y = 1, z = 0

2. But the following formula

⇒ x, ⇒ y, x ∧ y ⇒ z, x̄ ∨ ȳ ∨ z̄

is not satisfiable.

3. How do we decide this for a general Horn formula, such as the following?

⇒ x, (x ∧ z)⇒ w, (w ∧ y ∧ z)⇒ x

x⇒ y, (x ∧ y)⇒ w, (w̄ ∨ x̄ ∨ ȳ)

• Trying each setting of boolean variables requires testing 2n possible settings.

• The nature of Horn clauses suggests a natural greedy algorithm:

1. Initially set all variables to false.

2. While there is an unsatisfied Implication clause, set its RHS to true.

3. If all pure negative clauses are satisfied, return the assignment; otherwise, formula
is not satisfiable.

• In the example formula above, we start with w = x = y = z = 0.

• Then, the first implication forces x = 1, which in turns uses x⇒ y to set y = 1.

• Once x = y = 1, we are forced to have w =.

• However, with x = y = w = 1, the negative clause cannot be satisfied, and so this
formula is not satisfiable.

• To prove that this algorithm is correct, we reason as follows. Clearly, if the algorithm
returns a satisfying assignment, then it is a valid assignment because it satisfies all
negative and implication clauses.

• In order to show that if the algorithm does not find a satisfying assignment, there is
none, we observe that the algorithm maintains the following invariant.
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If a certain set of variables is set to true, then they must be true in any
satisfying assignment. Namely, we only set a variable true when it is forced
upon us.

• Horn formulas lie at the heart of Prolog programming language, and with some care
the greedy algorithm can be implemented in linear time (in the length of the formula).
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6 Set Cover

• The set cover problem is a fundamental problem, often used to model complex decision
making.

• In the basic formulation, we have a base set B = {1, 2, . . . , n} of n elements, and a
collection S = {S1, S2, . . . , Sm} of m subsets, with each Si ⊆ B.

• The problem is to choose the smallest number of subsets whose union is B. That is,
the chosen sets jointly cover all the elements of B.

• As one example of Set Cover’s modeling power, consider the following problem. We
have a collection of n towns in a county. The county is deciding where to put schools,
subject to the following two constraints: (1) each school should be in a town, and (2)
no one should have to travel more than 30 miles to reach one of the schools.

• For the purposes of modeling, we assume each town is small enough that it can be
represented as a point on the map, and so the inter-town distances are really the
inter-point distances.

• For each town x, let Sx be the subset of towns within 30 miles of it. A school at x will
essentially “cover” all the towns of Sx. How many sets Sx must be picked to cover all
the towns in the county?

• The problem suggests a natural greedy algorithm.
Repeat until all elements of B are covered.
Pick the set St containing the largest number of still-uncovered elements.

• Example from DPV book.

• The greedy algorithm will pick four sets. But there is a better solution with 3 sets.

• So, while the greedy does not give an optimal answer, its solution is not far from the
optimal.

• Claim. Suppose B contains n elements, and the optimal cover consists of k sets.
Then, the greedy algorithm returns a solution with at most k lnn sets.

• Proof.

1. Let nt be the number of elements still not covered after t iterations of the greedy
algorithm. That is, n0 = n.

23



2. Since these remaining elements are covered by the optimal k sets, there must be
some set that covers at least nt/k of them.

(Do we need to worry that this set may not be available any more—because greedy
may have already picked it? No, because we are focusing on only those elements
that are still uncovered—all elements of any set added to G are already in the
covered portion. Equivalently, consider the reduced problem where the base set is
just the set of remaining items, and now consider the optimal solution’s behavior
on this reduced set.)

3. Since the greedy chooses a set covering most uncovered elements, we have

tt+1 ≤ nt −
nt

k
= nt(1−

1

k
)

4. By repeated application, we get nt ≤ n0(1− 1/k)t.

5. By using the inequality 1− x ≤ e−x, for all x, we get

nt ≤ n0(1−
1

k
)t < n0e

−t/k = ne−t/k

6. At t = k lnn, therefore nt is strictly smaller than ne− ln = 1, which means that
no elements remain to be covered. This completes the proof.
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7 Greedy Algorithms in Graphs

• The shortest path algorithm of Dijkstra and minimum spanning algorithms of Prim
and Kruskal are instances of greedy paradigm.

• We briefly review the Dijkstra and Kruskal algorithms, and sketch their proofs of
optimality, as examples of greedy algorithm proofs.

• Dijkstra’s algorithm can be described as follows (somewhat different from the way it’s
implemented, but equivalent.)

• Dijkstra’s Algorithm.

1. Let S be the set of explored nodes.

2. Let d(u) be the shortest path distance from s to u, for each u ∈ S.

3. Initially S = {s}, and d(s) = 0.

4. While S 6= V do

(a) Select v 6∈ S with the minimum value of

d′(v) = min
(u,v),u∈S

{d(u) + cost(u, v)}

(b) Add v to S, set d(v) = d′(v).

• Example.

• Proof of Correctness.

1. We show that at any time d(u) is the shortest path distance to u for all u in S.

2. Consider the instant when node v is chosen by the algorithm. Let (u, v) be the
edge, with u ∈ S, that is incident to v.

3. Suppose, for the sake of contradiction, that d(u) + cost(u, v) is not the shortest
path distance to v. Instead a shorter path P exists to v.

4. Since that path starts at s, it has to leave S at some node. Let x be that node,
and let y 6∈ S be the edge that goes from S to S.
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5. So our claim is that length(P ) = d(x) + cost(x, y) + length(y, v) is shorter than
d(u) + cost(u, v). But note that the algorithm chose v over y, so it must be that
d(u) + cost(u, v) ≤ d(x) + cost(x, y).

6. In addition, since length(y, v) > 0, this contradicts our hypothesis that P is
shorter than d(u) + cost(u, v).

7. Thus, the d(v) = d(u) + cost(u, v) is correct shortest path distance.

• Kruskal’s MST algorithm has a similar proof of correctness.

1. For simplicity, assume that all edge costs are distinct so that the MST is unique.
Otherwise, add a tie-breaking rule to consistency order the edges.

2. Proof by contradiction: let (v, w) be the first edge chosen by Kruskal that is not
in the optimal MST.

3. Consider the state of the Kruskal just before (v, w) is considered.

4. Let S be the set of nodes connected to v by a path in this graph. Clearly, w 6∈ S.

5. The optimal MST does not contain (v, w) but must contain a path connecting v
to w, by virtue of being spanning.

6. Since v ∈ S and w 6∈ S, this path must contain at least one edge (x, y) with x ∈ S
and y 6∈ S.

7. Note that (x, y) cannot be in Kruskal’s graph at the time (v, w) was considered
because otherwise y will have been in S.

8. Thus, (x, y) is more expensive than (v, w) because it came after (v, w) in Kruskal’s
scan order.

9. If we replace (x, y) with (v, w) in the optimal MST, it remains spanning and has
lower cost, which contradicts its optimality.

10. So, the hypothesis that (v, w) is not in optimal must be false.
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