
Optimal Binary Search Trees

Subhash Suri

November 2, 2017

1 Optimal Binary Search Trees

• Binary search trees are used to organize a set of keys for fast access: the tree maintains
the keys in-order so that comparison with the query at any node either results in a
match, or directs us to continue the search in left or right subtree.

• A balanced search tree achieves a worst-case time O(log n) for each key search, but
fails to take advantage of the structure in data.

• For instance, in a search tree for English words, a frequently appearing word such as
“the” may be placed deep in the tree while a rare word such as “machiocolation” may
appear at the root because it is a median word.

• In practice, key searches occur with different frequencies, and an Optimal Binary Search
Tree tries to exploit this non-uniformity of access patterns, and has the following
formalization.

• The input is a list of keys (words) w1, w2, . . . , wn, along with their access probabilities
p1, p2, . . . , pn. The prob. are known at the start and do not change.

• The interpretation is that word wi will be accessed with relative frequency (fraction
of all searches) pi. The problem is to arrange the keys in a binary search tree that
minimizes the (expected) total access cost.

• In a binary search tree, accessing a key at depth d incurs search cost d+ 1. Therefore,
if the word wi is placed at depth di in the tree, the total search cost (the quantity we
want to minimize) is:

n∑
i=1

pi × (di + 1)

1



• An example:

Word Probability

a 0.22
am 0.18
and 0.20
egg 0.05
if 0.25

the 0.02
two 0.08

• Notice that the access probabilities of these 7 words sum to 1.

• Now look at the following 3 search trees:

if

a

and

egg

two

the

am

ifa and

egg

two

theam ifa

and

egg two

the

am

Figure 1: Greedy, Balanced, and Optimal search trees.

• The three trees are constructed by a Greedy method, balanced tree, and optimal tree.

– The greedy puts the most frequent word at the root, and then recursively builds
the left and right subtrees.

– The balanced makes the height the smallest.

– The third is created by the optimal algorithm, about to be discussed.

• The costs of these trees are: 2.43 (Greedy), 2.70 (Balanced), and 2.15 (Optimal).

For instance, the Greedy tree’s search cost is calculated as

0.22× 2 + 0.18× 4 + 0.20× 3 + 0.05× 4 + 0.25× 1 + 0.02× 3 + 0.08× 2 = 2.43.

• Neither greedy nor balanced is optimal.

• The problem is also different in two crucial ways from the Huffman coding problem.:
First, the keys are not restricted to be in leaves only (no prefix problem), as was the
case in Huffman. Second, the in-order of the keys is fixed—dictated by the ordering of
the keys.

2



• The Dynamic Program for the optimal search tree follows the same pattern we have
seen multiple times now.

– We consider a sub-problem [i, j], namely, the subset of words wi, . . . , wj.

– Let S(i, j) be the total search cost for the optimal tree for this subproblem.

– Suppose the opt tree for this subproblem has wr as root, where i ≤ r ≤ j, with
depth 0, then the picture looks like the following:

wr

wi, .., w{r-1} w{r+1}, ..., wj

• We can therefore write the following recurrence for the total cost of this tree:

S(i, j) = pr + S(i, r − 1) + S(r + 1, j) +
r−1∑
k=i

pk +
j∑

k=r+1

pk,

which has the following explanation.

• The root wr has depth 0, and search cost 1, so it contributes pr× 1 to the overall cost.

• S(i, r−1) and S(r+1, j) are the search trees for their subproblems assuming we count
the search from their respective roots.

• Making them children of wr increases the path length of each of their nodes by 1, and
so the two remaining terms are simply adding those additional costs.

• We can simplify this calculation as follows:

S(i, j) = S(i, r − 1) + S(r + 1, j) +
j∑

k=i

pk

• This shows that the problem satisfies the principle of optimality: since the last term is
fixed regardless of how the two subtrees are built, the optimal solution for [i, j] must
use optimal solutions for the subproblems [i, r − 1] and [r + 1, j].

3



• Finally, as usual, since we don’t the r, we optimize this expression over all choices of
r, giving us the final recurrence, for i < j.

S(i, j) = min
i≤r≤j

{S(i, r − 1) + S(r + 1, j) +
j∑

k=i

pk}

If i ≥ j, then S[i, j] = 0 clearly.

• The running time is O(n3) time.

4


