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Abstract
We consider a version of the game “Twenty Questions” played on the set {0,---,N — 1}

where the player giving answers may lie in her answers. The questioner is allowed Q questions
and the responder may lie in up to rQ of the answers, for some fixed and previously known
fraction r. Under various models of this game and different question classes, we give precise
conditions (i.e. tight bounds on r and, in most cases, optimal bounds on Q) under which the
questioner has a winning strategy in the game.
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1 Introduction

Consider the following version of the classic game “Twenty Questions.” There are two players:
Paul (a.k.a. the Questioner) and Carole (a.k.a. the Oracle). Carole thinks of a number x between 0
and N — 1. Paul is permitted to ask Q “yes-or-no” questions, by means of which he must determine
x. It is easy to see that Paul has winning strategy in this game if and only if N is no bigger than
22. We make the game more interesting by allowing Carole to lie; in particular, in our game, Paul
must determine x in Q questions where Carole may tell at most [rQ] lies, for some fixed and
previously known fraction r. Now when does Paul have a winning strategy?

The answer, of course, depends on how big r and Q are, on where Carole is allowed to place
the lies, and on the kinds of questions Paul is allowed to ask. We will consider the following kinds
of questions:

1. Bit Questions: “Is the i-th bit in the binary representation of x equal to 1?”
2. Cut (or Comparison) Questions: “Is x less than y?”, for somey € {0,---,N —1}.

3. General (or Membership) Questions: “Is x € S?”, where S is some subset of {0, -+, N —1}.

How and where Carole is allowed to place her lies also makes a difference. Three successively
more restrictive models of the game will be considered:

1. Batch: Paul submits all his questions in batch. Thus, Carole is allowed to see all of Paul’s
questions before answering them.

2. Adaptive: Carole must answer Paul’s questions on-line.

3. Prefix-bounded: Carole must answer Paul’s questions on-line as well as never lie more than
|7i| times in any initial 7 questions.

This game is motivated from the problem of searching in a discrete bounded domain in the
presence of malicious errors. In our game, x is the searched element and Carole is the malicious
adversary introducing errors. An adversary who may lie arbitrarily is sure to prevent us from
succeeding in the search. Thus, in the literature on this subject, the adversary is usually restricted
in the number of lies she is allowed.

In their 1980 paper, Rivest, et al. [RMK"80] considered the case of a constant number of lies.
They showed that if there are no more than k lies, then log N + kloglog N + O(klogk) questions
are sufficient to search. Recent work [Pel89, AD91, SW90] has concentrated on the case where
the number of lies is proportional to the number of questions. In particular, Spencer and Winkler
[SW90] have showed the following about a Paul who may ask general “yes-or-no” questions:

Theorem 1 (Spencer,Winkler)
1. In the batch game on the set {0,---,N —1}:

(a) Ifr < 1/4, then Paul has a winning strategqy with ©(log N) questions.

(b) If r = 1/4, then Paul has a winning strategy with @ (N) questions.

(c) If r > 1/4, then Carole has a winning strategy for all N > N(r), no matter how large Q may
be.

2. In the adaptive game on the set {0,---, N — 1}:



(a) Ifr < 1/3, then Paul has a winning strategy with ©(log N) questions.
(b) If r > 1/3, then Carole has a winning strategy (for all N > 5).

3. In the prefix-bounded game on the set {0,---,N — 1}:

(a) Ifr < 1/2, then Paul has a winning strategy with @ (log N) questions."
(b) If r > 1/2, then Carole has a winning strategy (for all N > 3).

Some of these results were also obtained, but not published, by Lajos Pésa.

In this paper, we prove theorems of this nature when Paul is restricted in the sort of questions
he may ask. In particular, we look at the classes of bit and cut questions and examine their strength
against the three different (batch, adaptive and prefix-bounded) versions of this game.

We start in section 2 by considering the batch game. We show that the restricted question
classes are too weak for Paul to win for arbitrarily large N. In section 3, we consider the adaptive
game, and show that while bit questions are too weak for this model, Paul can win with O(log N)
cut questions, for all r < 1/3. This latter bound is first shown for a slightly weaker class of
questions, namely tree questions. Tree questions ask about an initial sequence of bits of the binary
representation of x; thus they can be formed using a conjunction of bit questions. Finally in section
4, following some results for cut questions in Aslam and Dhagat’s paper [AD91], we show how
Paul can win in the prefix-bounded game with restricted types of questions for any r < 1/2. Here,
however, O(log N) questions seem no longer sufficient, as they are when Paul may ask general
“yes-no” questions.

Remark Since Paul has a winning strategy in the adaptive game with tree questions but not with
bit questions, we have some evidence that, given a certain primitive class of questions, it is advan-
tageous to ask questions formed as conjunctions of primitives rather than asking the primitives
themselves. It is even more advantageous to ask the exclusive OR of primitive questions. Indeed,
such questions make linear error-correcting codes possible, with which even a batch strategy can
succeed.

2 The Batch Game

In this game, Paul must submit all of his Q questions to Carole initially. Carole then sends Paul
her answers to these questions, lying in at most [rQ| answers.

2.1 Bit Questions

We show that Paul has a winning strategy only for small values of N, roughly for N < 27, The
precise bound is as follows.

Q
Theorem 2 Paul has a winning strategy with Q bit questions in the batch game iff N < 2 M’QJ“J.

Proof:

I This result has also appeared in a paper by Aslam and Dhagat [AD91], who present a slightly different proof.



Q
(=) Suppose N > 2 M*QJ“J. Then the number of different bit questions available is [log, N| >
{WJ Thus there exists a bit question, say about bit j, asked by Paul at most 2 [rQ|

times. Since Carol is allowed to see Paul’s questions before answering them, she can win by
the following strategy:

— Answer each question not about bit j with a “no” (i.e. tell Paul that these bits are all
0’s).
— Answer half of the questions about bit j with a “yes” and the other half with a “no”.

Then both 000... 1 ...000and 000... 0  ...000 are possible values of x, since each has
~~ —~—

] ]
been lied about at most [rQ] times. Note that both numbers are in the required range.

(<) Since the number of different bit questions is now at most [WJ , Paul can ask each bit

question (2 [rQ] + 1) times, enabling him to determine the correct answer each time.

2.2 Cut Questions

Cut questions seem (somewhat counter-intuitively) to be even weaker than bit questions in the
batch game. It turns out that Paul has a winning strategy here only for N less than about 5-.

Theorem 3 Paul has a winning strategy with Q cut questions in the batch game iff N < ﬁ + 1

Proof:

(=) IfN < ﬁ + 1, then Paul can win by asking each of the N -1 < ﬁ questions
(2rQJ + 1) times, and determining the correct answer to each question by choosing the
majority answer.

(=) Now there must be at least one cut question which is asked at most 2 |7Q| times. Let us say
this question is “Is x less than k?” Now Carole’s winning strategy is as follows:

— Answer all questions of the type “Is x less than j?” where j < k with a “yes”.
- Answer all questions of the type “Is x less than j?” where j > k with a “no”.
— Answer half of the questions “Is x less than k?” with a “yes” and the other half with

" 7”7

no .

Then both k and k + 1 are possible values of x since both have been lied about at most [rQ]
times.

3 The Adaptive Game

The adaptive game gives Paul greater power by allowing him to look at Carole’s previous answer
before he asks the next question. However, we know from Theorem 1 that even with general
questions, Paul has no hope of winning when » > 1/3. We show here that, as in the batch game,
bit questions are not powerful enough to allow Paul to win for arbitrarily large N. However, with
cut questions, Paul has a winning strategy for all » < 1/3 which asks O(log N) questions.



3.1

Bit Questions
Q-1rQ|

Theorem 4 With Q bit questions, Paul has a winning strategy iff N < ZL rQl+ J

Proof:

(=)

Let M = ﬂog2 N ] be the number of different bit questions that Paul can ask. Note that
N > 2Q-1RN/(rQ+D) iff Q < (|rQ] + 1)M + |rQ].

Carole’s winning strategy is as follows: she answers all of Paul’s initial questions with a
“no” until answering the next question would allow Paul to win the game. Note that Paul
must have asked at least (|rQ] +1)M — 1 questions during this initial phase, since each bit
must be asked about at least [¥Q| + 1 times in order for Paul to win the game with all “no’s”.
Thus, there exists a bit i which has been asked about at most [rQ] times. In the remaining
questions, Carol continues to answer “no” to all questions except the ones about bit i, to
which she answers “yes”. Since there are at most |rQ | questions left to be asked during this
latter phase, both 000... 1 ...000and 000... 0 ...000 will be possible values of x.
~— ~—
1 1

Again letting M = [log N| be the number of different bit questions that Paul can ask, we
note that Q > (|rQ| +1)M + [rQ]. Thus, we will be done if we can show a winning strategy
for Paul which asks no more than (|rQ| +1)M + |rQ] questions.

If a bit question is not answered consistently, then we know that the number of lies told
about it is at least the minimum of the number of “yes” answers and the number of “no”
answers. If, at any point during the questioning, this minimum becomes larger than |[rQ],
then we can stop asking that bit question and determine the true value of that bit. So Paul’s
winning strategy will be as follows:

Phase 1: Ask each bit question [*Q| + 1 times, keeping track of the /; = min(Y;, N;), for each bit

i, where Y; is the number of “yes” answers given in response to the question about bit i
and N; is the number of “no” answers.

Phase 2: For those bits i which have I; < [rQ], ask the i-th bit question until max(Y;, N;) =

Q] + 1.
During phase 1, Paul asks exactly (|rQ| + 1) M questions.

Claim 1 Paul asks at most |rQ| questions in phase 2.

Proof: At the end of the game, for any bit 7, max(Y;, N;) < [rQ] + 1. So:

%max(Yi, N;) < M(|rQ]| +1).
i=1

We also know that:

M=

I < [rQ]

Il
—_

Since Q = Y™, [max(Y;, N;) 4 I;], it must be that Q < M([rQ] + 1) + |rQ]. Since M(|rQ] +
1) of these questions were asked in phase 1, at most [¥Q| questions must have been asked
in phase 2. [ |



3.2 Cut and Tree Questions

In this subsection, it will be more convenient to say that the numbers range between 0 and N — 1.

We will investigate two possible sets of allowed questions: cut questions, i.e., when questions
refer to intervals of the form {0,...,b — 1} for all b and tree questions, when they refer to binary
intervals, i.e., intervals of the form [i2j i+ 1)Zj ) for all i,j. It turns out that in both cases, there
is a strategy for the Paul if and only if » < 1/3 and with Q = O(log N). The fact that Carole has
a winning strategy here when r > 1/3 follows from the fact that Carole has winning strategy for
r > 1/3 even when Paul may ask general questions.

Theorem 5
With tree questions, Paul has a winning strategy for all r < 1/3 asking

2log N +1

Q:Ktree(er): ’7 1—3r

—‘ questions.

For cut questions, and r < 1/3, the bound is

Q = Keut(r, N) = { 8log N w .

Tree Questions. Let us give the proof first for the tree question case. For simplicity, let us assume
that N is a power of two, with
n =logN.

The strategy consists of stages, where each stage consists of one or two questions. Between any
two stages, Paul divides the answers into the set T of trusted and the set D of discarded answers.
The set D of discarded answers is the union of inconsistent subsets where each subset contains
two or three answers. The trusted set T comes from a sequence of positive answers giving rise to
the corresponding nested binary question intervals Iy, . .., I, where for all j < 1, the length of [;
is N/2.

We describe the questions leading from one stage to the next one. Suppose first that I, has
length greater than 1 and it corresponds to answer ag. Let us denote the left and right halves of
I, by U and V. Then in the first question of this stage, Paul asks about the set U. If the answer a;
is positive, then he adds it to the set of trusted answers and the stage ends here. If it is negative,
then Paul also asks V. If this answer a5 is positive, then he adds it to the set of trusted answers
and the stage ends here. If it is negative, then he removes ¢ from the trusted answers and adds
the contradictory triple {ao, a1, 4, } to the discarded answer set D.

Suppose now that I,, has length 1. Then Paul asks I, again; let this be a;. If the answer
is positive, he adds it to the trusted answers. If it is negative, he removes a4y from the trusted
answers and adds the contradictory pair {ag, a1 } to the discarded answers.

Let Q = (%W be the number of questions asked. Let us take a count at the end of the game.
The (not necessarily integer) number d = |D|/3 is at least as large as the number of false answers,
therefore

d < rQ,
Q < 2|T|+3d4 <2|T|+3rQ,
IT| > Q(1-3r)/2>n.



trusted

————————————————————

16<, <16, <20, <24
16<,24<, 32<, <32

discarded

Figure 1: Adaptive strategy with cut questions, n = 64.

It follows that I;, has length 1. Let u = |T| — (n —1). Then u > 1 and the last u intervals I; are
identical and have length 1. Let us show that x is in this interval. Suppose it is not. Then the
last interval is false. But then at least 1 4+ d answers are false: d in the discarded set and the last u
trusted answers. We have (remember that u > 1)

. brn 2n
1-3r 1-3r
<Q=2n4+u+3d-2=2n+3(u+d)—2u—-3<2n+3(u+d) -3,

2

hence

2rn 2rn
1< < < .
1—3r+ _u+d_rQ_1_3r+r

This contradiction proves that x is in the last trusted interval (which has length 1).

Cut Questions. In case of cut questions, a similar strategy is used. Rather than give the strategy
for r < 1/3, we will give first a weaker one working for » < 1/4 and giving

o- 2y,

There is again a sequence Iy, ..., I, of nested trusted binary intervals and a set D of discarded
questions that consists of contradictory 3-tuples and 4-tuples. Paul will group all trusted answers
into pairs Py, .. ., Py, where P; is the pair of answers associated with the ends of interval I;. The set
T is the disjoint union of the pairs P;.

Paul asks two questions in a stage. First, he asks the question referring to the midpoint of I,,.
Without loss of generality, suppose that the answer g says x is smaller than the midpoint of I,,.
Then, next he asks a question referring to the left endpoint of I,,,. If the answer b; is consistent with
P, then he removes ap and adds it to b; to form P,,41. If by contradicts Py, (this never happens
if m = —1) then he removes P, from the trusted set and puts it, together with ay and by, as a
contradictory 4-tuple, into the discarded set.

A computation completely analogous to the case of tree questions shows that this strategy is
successful.

To achieve the bound 1/3, the sequence Iy, ..., I, of intervals must decrease slower: each
binary interval occurring in it must occur s = [ ;2. | times. With a careful strategy, Paul discards
contradicting 3-tuples rather than 4-tuples most of the time, which results in the improved bound
1/3. (Only about every sth discarded tuple is a 4-tuple.)



4 The Prefix-Bounded Game

Now we consider the game where Carole must adhere to the fraction r throughout the game. That
is, during any initial set of i questions, Carole may lie at most | ri| times. Aslam and Dhagat [AD91]
have considered this problem when Paul may only ask cut questions and shown the following;:

Theorem 6 (Aslam, Dhagat) For any r < 1/2, Paul has a winning strategy in the prefix-bounded game
played in {1,---,N} ofO(N1°g2(ﬁ)) cut questions.

Since the exponent of the bound is always smaller than 1 when r < 1/2, the bound is sub-
linear.

Paul’s strategy to achieve this bound is simple: he does a binary search using cut questions,
but with the following modification. He maintains a set of “candidates” for x, and associated with
each candidate is a number of lies that have been told if that candidate is the true value of x. After
g questions have been asked, a candidate is thrown out if the number of lies associated with it is
greater than [rq]. Since each new question of the binary search can be picked so as to divide the
remaining candidates in half, it is asked repeatedly until one or the other half of the candidates
can be thrown out. Then a new question is picked to divide the remaining candidates in half.The
analysis of this strategy to show the above bound can be found in Aslam and Dhagat’s paper
[AD91].

This strategy can easily be extended to work with bit questions. Each successive bit question,
starting with one about the first bit, cuts the pool of candidates by a half. Thus a search which
asks successive bit questions repeatedly until one or the other half of the remaining candidates are
eliminated is essentially following the same strategy as the one above for cut questions. Thus we
can conclude that:

Corollary 11 Foranyr < 1/2, Paul has a winning strategy in the prefix-bounded game played in {1,---, N}
of O(N'&(15)) bit questions.
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A Proof of Theorem 5

In the strategies below, a question is an element of the set Q. An answer is marked with a symbol a
to which belongs a pair (B,, €,) where B, was the question set, and €, = 1 means that Responder
said x € B, while ¢, = —1 means that Responder said x ¢ B,. We will also speak about positive



and negative answers. Let A be the set of all answers during the game. We could identify A with
the set {1,...,k} in case there were k questions. The strategy is similar to the case of tree questions
but both interval ends have to be asked now several times. Let

=l

We divide the answers into the set T of trusted and the set D of discarded answers and a possible
extra answer. The set D of discarded answers is the union of a sequence D1, Dy, ... of inconsistent
subsets where each subset contains two, three or four answers.

The consistent set T of trusted answers will give rise to a sequence of nested binary question
intervals Iy, . .., I,;. There are s intervals of length N /2, further s intervals of length N /4, etc., and
possibly more intervals of length 1. Let us also define I_; to be the whole set {0,..., N —1}. Itis
easy to see that I, has length 1 if and only if m > s(n — 1). All trusted answers will be grouped
into pairs Py, ..., P, where P; is the pair of answers associated with the ends of interval [;. The set
T is the disjoint union of the pairs P;.

The extra answer, if there is one, refers to either a midpoint or an endpoint of I,,. We will
denote it by ag. It is such that it can potentially be added to these trusted answers later. If I,,, ;4
must be smaller than I, then the extra answer refers to the midpoint of I,,.

Here is the strategy of Questioner. Depending on what she sees, she asks one or two questions
in a stage. We will see that if m is large enough then there is always only one question per stage.

1 Suppose that I,,,+1 must be smaller than I, (i.e., either we are at the start, with m = —1, or I,
has length greater than1and m = —1 (mod s)).

1.1 Suppose that there is no extra answer. Then we ask the question referring to the mid-
point of I, and the answer becomes the extra answer.

1.2 Suppose that there is an extra answer ag. Without loss of generality, suppose that it says
x is smaller than the midpoint of I,,. Then, next we ask a question referring to the left
endpoint of ;. If the answer b; is consistent with P, then we remove gy and add it to
by to form P,,.1. If by contradicts Py, (this never happens if m = —1) then we remove
P,, from the trusted set and put it, together with b, as a contradictory 3-tuple, into the
discarded set. The extra answer remains.

2 Suppose that I,, 1 must be equal to I, (i.e., m > s(n—1) orm # —1 (mod s)). Then there is at
least one pair, P, of trusted answers referring to the endpoints of I,, and we have to add yet
another pair.

2.1 Suppose that there is no extra answer. Then we ask one of the endpoints and get an
answer by. If b; is consistent with P, then it becomes the extra answer. Otherwise,
we remove Py, and with by, form a contradictory triple which will be added to the
discarded set.

2.2 Suppose that there is an extra answer ag9. Without loss of generality, suppose that it
implies that the left half of I, contains x (it refers then to either to the midpoint or the
right endpoint). Then we ask the left endpoint. The answer is b;.

2.2.1 If by is consistent with P, and ay refers to the right end of I, then by and ag form
P m+1-



2.2.2 If b; is consistent with P,, and ag refers to the midpoint of I, then we ask the right
end. This is the only case when there are two questions in a stage. If the answer b,
is consistent with P, then by and b, form P,, 1. Otherwise, b, contradicts ap and we
move the pair formed from b, and a4 to the discarded set and turn b; into the extra
answer.

2.2.3 If by contradicts P, and either s does not divide m or ag refers to the right endpoint
then we move the contradictory triple formed from P,, and b; to the discarded set.

2.2.4 If by contradicts P, and s divides m, and further a refers to the midpoint then we
move the contradictory 4-tuple formed from Py, b; and g to the discarded set.

Notice that the last case can occur only after at least s — 1 steps in which it did not occur.
Indeed, it is a case in which there is an extra answer ag referring to the midpoint of I, and there is
only one pair Py, referring to the endpoints of I,,. The answer ag could arise only when there were
s pairs in T referring to the endpoints of I,. There had to be at least s — 1 stages eating up s — 1 of
these pairs before we come to this last case. This implies the following observation about the sets
Dy, D, ...

If D; contains four answers then D; 1,D; »,...,D; 4.1 will all contain at most three
answers.

Let d1 be the number of contradictory 4-tuples D; and d, the number of contradictory 2- and 3-
tuples together. Then, due to the above observation, these numbers satisfy the following inequal-
ities:

dl < dZ/(S - 1)/
|ID| < 4dy + 3d;.
Under these conditions, the minimum value of d; + d5 is %. There are therefore at least this

many lies.
Let k = Kcut (7, N) be the number of questions asked. Let us take counts at the end of the game.

Let
2

T 1-3r
then s = [t] > 3. Hence the number of false answers is at least

t > 2,

ID|/3A

where A = 1+ 1/t < 2since t > 2. Hence |D| < 3dA < 3rAk, hence k < |T|+ |D|+1 <
|T| 4 3rkA + 1, hence
|T| > k(1 —3rA) —1.

By definition the number k of questions is [(153%)2-‘ . Let us bring this to a more convenient form.
Wehave2 > 1+3rand 1 < 2 — 3r, therefore

4 S 2(1+3r)
(1-3r)2 = (1-3r)2(2—3r)

Simple verification shows that the latter expression is equal to {251 It follows that

. 2(t—|—1)n‘
— 1-3rA



Using the above lower bound on |T|, we find that
IT| >2(t+1)n—1=2(t+1)(n—1)+2t+1>2s(n —1) +2t.
It follows that I, has length 1 and
u=|T|/2—s(n—1) >t

is the number of pairs P; with [; = 1. Let us show that x is in I;. Suppose it is not. Then one of
the endpoints of I, is false. But then at least u 4 d answers are false: d in the discarded set and u
in the last u trusted pairs. We have,
6rA(t+1)n  2(t+1)n
L T S I
<k<|T|+|D|4+1<2s(n—1)+2u+3dA+1

<2sn+3u+dA—u—-2s+1
<2(t+Dn+3(u+d)A—3t+1.

(weused A > 1and u > t). Hence

2r(t+1)n  3t—1 2r(t+1)n
< < < ‘7
T s 3y Sutdsrks s

This is a contradiction since r < 1/3, A < 2,t > 2, and it proves that x is in I,,.



