
On Playing “Twenty Questions” with a Liar
BUCS Tech Report #91-006
November 23, 2004

Aditi Dhagat∗
MIT

Peter Gács†
Boston University

Peter Winkler‡
Bellcore 2L335

Abstract

We consider a version of the game “Twenty Questions” played on the set {0, · · · ,N − 1}
where the player giving answersmay lie in her answers. The questioner is allowedQ questions
and the responder may lie in up to rQ of the answers, for some fixed and previously known
fraction r. Under various models of this game and different question classes, we give precise
conditions (i.e. tight bounds on r and, in most cases, optimal bounds on Q) under which the
questioner has a winning strategy in the game.

∗Author was supported by DARPA Contract N00014-87-K-825, National Science Foundation Grant CCR-8912586,
and Air Force Contract AFOSR-89-0271. Author’s net address: aditi@theory.lcs.mit.edu
†Supported in part by NSF Grant CCR-9002614. Author’s net address: gacs@cs.bu.edu
‡Author is on leave from Emory University; research at Emory supported by ONR grant N00014 85-K-0769. Au-

thor’s net address: pw@bellcore.com

1

1 Introduction

Consider the following version of the classic game “Twenty Questions.” There are two players:
Paul (a.k.a. the Questioner) and Carole (a.k.a. the Oracle). Carole thinks of a number x between 0
and N− 1. Paul is permitted to askQ “yes-or-no” questions, bymeans of which hemust determine
x. It is easy to see that Paul has winning strategy in this game if and only if N is no bigger than
2Q. We make the game more interesting by allowing Carole to lie; in particular, in our game, Paul
must determine x in Q questions where Carole may tell at most "rQ# lies, for some fixed and
previously known fraction r. Now when does Paul have a winning strategy?
The answer, of course, depends on how big r and Q are, on where Carole is allowed to place

the lies, and on the kinds of questions Paul is allowed to ask. We will consider the following kinds
of questions:

1. Bit Questions: “Is the i-th bit in the binary representation of x equal to 1?”

2. Cut (or Comparison) Questions: “Is x less than y?”, for some y ∈ {0, · · · ,N − 1}.

3. General (or Membership) Questions: “Is x ∈ S?”, where S is some subset of {0, · · · ,N− 1}.

How and where Carole is allowed to place her lies also makes a difference. Three successively
more restrictive models of the game will be considered:

1. Batch: Paul submits all his questions in batch. Thus, Carole is allowed to see all of Paul’s
questions before answering them.

2. Adaptive: Carole must answer Paul’s questions on-line.

3. Prefix-bounded: Carole must answer Paul’s questions on-line as well as never lie more than
"ri# times in any initial i questions.

This game is motivated from the problem of searching in a discrete bounded domain in the
presence of malicious errors. In our game, x is the searched element and Carole is the malicious
adversary introducing errors. An adversary who may lie arbitrarily is sure to prevent us from
succeeding in the search. Thus, in the literature on this subject, the adversary is usually restricted
in the number of lies she is allowed.
In their 1980 paper, Rivest, et al. [RMK+80] considered the case of a constant number of lies.

They showed that if there are no more than k lies, then logN + k log logN +O(k log k) questions
are sufficient to search. Recent work [Pel89, AD91, SW90] has concentrated on the case where
the number of lies is proportional to the number of questions. In particular, Spencer and Winkler
[SW90] have showed the following about a Paul who may ask general “yes-or-no” questions:

Theorem 1 (Spencer,Winkler)

1. In the batch game on the set {0, · · · ,N − 1}:

(a) If r < 1/4, then Paul has a winning strategy with Θ(logN) questions.
(b) If r = 1/4, then Paul has a winning strategy with Θ(N) questions.
(c) If r > 1/4, then Carole has a winning strategy for all N > N(r), no matter how large Q may
be.

2. In the adaptive game on the set {0, · · · ,N − 1}:

2

(a) If r < 1/3, then Paul has a winning strategy with Θ(logN) questions.
(b) If r ≥ 1/3, then Carole has a winning strategy (for all N ≥ 5).

3. In the prefix-bounded game on the set {0, · · · ,N − 1}:

(a) If r < 1/2, then Paul has a winning strategy with Θ(logN) questions.1

(b) If r ≥ 1/2, then Carole has a winning strategy (for all N ≥ 3).

Some of these results were also obtained, but not published, by Lajos Pósa.
In this paper, we prove theorems of this nature when Paul is restricted in the sort of questions

hemay ask. In particular, we look at the classes of bit and cut questions and examine their strength
against the three different (batch, adaptive and prefix-bounded) versions of this game.
We start in section 2 by considering the batch game. We show that the restricted question

classes are too weak for Paul to win for arbitrarily large N. In section 3, we consider the adaptive
game, and show that while bit questions are too weak for this model, Paul canwin with O(logN)
cut questions, for all r < 1/3. This latter bound is first shown for a slightly weaker class of
questions, namely tree questions. Tree questions ask about an initial sequence of bits of the binary
representation of x; thus they can be formed using a conjunction of bit questions. Finally in section
4, following some results for cut questions in Aslam and Dhagat’s paper [AD91], we show how
Paul can win in the prefix-bounded game with restricted types of questions for any r < 1/2. Here,
however, O(logN) questions seem no longer sufficient, as they are when Paul may ask general
“yes-no” questions.

Remark Since Paul has a winning strategy in the adaptive game with tree questions but not with
bit questions, we have some evidence that, given a certain primitive class of questions, it is advan-
tageous to ask questions formed as conjunctions of primitives rather than asking the primitives
themselves. It is even more advantageous to ask the exclusive OR of primitive questions. Indeed,
such questions make linear error-correcting codes possible, with which even a batch strategy can
succeed.

2 The Batch Game

In this game, Paul must submit all of his Q questions to Carole initially. Carole then sends Paul
her answers to these questions, lying in at most "rQ# answers.

2.1 Bit Questions

We show that Paul has a winning strategy only for small values of N, roughly for N < 2
1
2r . The

precise bound is as follows.

Theorem 2 Paul has a winning strategy with Q bit questions in the batch game iff N ≤ 2
⌊

Q
2!rQ"+1

⌋

.

Proof:
1This result has also appeared in a paper by Aslam and Dhagat [AD91], who present a slightly different proof.

3

(=⇒) Suppose N > 2
⌊

Q
2!rQ"+1

⌋

. Then the number of different bit questions available is
⌈
log2 N

⌉
>⌊

Q
2"rQ#+1

⌋
. Thus there exists a bit question, say about bit j, asked by Paul at most 2 "rQ#

times. Since Carol is allowed to see Paul’s questions before answering them, she can win by
the following strategy:

– Answer each question not about bit j with a “no” (i.e. tell Paul that these bits are all
0’s).
– Answer half of the questions about bit j with a “yes” and the other half with a “no”.

Then both 000 . . . 1︸︷︷︸
j

. . . 000 and 000 . . . 0︸︷︷︸
j

. . . 000 are possible values of x, since each has

been lied about at most "rQ# times. Note that both numbers are in the required range.

(⇐=) Since the number of different bit questions is now at most
⌊

Q
2"rQ#+1

⌋
, Paul can ask each bit

question (2 "rQ# + 1) times, enabling him to determine the correct answer each time.

2.2 Cut Questions

Cut questions seem (somewhat counter-intuitively) to be even weaker than bit questions in the
batch game. It turns out that Paul has a winning strategy here only for N less than about 12r .

Theorem 3 Paul has a winning strategy with Q cut questions in the batch game iff N ≤ Q
2"rQ#+1 + 1.

Proof:

(⇐=) If N ≤ Q
2"rQ#+1 + 1, then Paul can win by asking each of the N − 1 ≤ Q

2"rQ#+1 questions
(2 "rQ# + 1) times, and determining the correct answer to each question by choosing the
majority answer.

(=⇒) Now there must be at least one cut question which is asked at most 2 "rQ# times. Let us say
this question is “Is x less than k?” Now Carole’s winning strategy is as follows:

– Answer all questions of the type “Is x less than j?” where j < k with a “yes”.
– Answer all questions of the type “Is x less than j?” where j > k with a “no”.
– Answer half of the questions “Is x less than k?” with a “yes” and the other half with
“no”.

Then both k and k+ 1 are possible values of x since both have been lied about at most "rQ#
times.

3 The Adaptive Game

The adaptive game gives Paul greater power by allowing him to look at Carole’s previous answer
before he asks the next question. However, we know from Theorem 1 that even with general
questions, Paul has no hope of winning when r ≥ 1/3. We show here that, as in the batch game,
bit questions are not powerful enough to allow Paul to win for arbitrarily large N. However, with
cut questions, Paul has a winning strategy for all r < 1/3 which asks O(logN) questions.

4

3.1 Bit Questions

Theorem 4 With Q bit questions, Paul has a winning strategy iff N ≤ 2
⌊
Q−!rQ"
!rQ"+1

⌋

.

Proof:

(=⇒) Let M =
⌈
log2 N

⌉
be the number of different bit questions that Paul can ask. Note that

N > 2(Q−"rQ#)/("rQ#+1) iff Q < ("rQ# + 1)M+ "rQ#.
Carole’s winning strategy is as follows: she answers all of Paul’s initial questions with a
“no” until answering the next question would allow Paul to win the game. Note that Paul
must have asked at least ("rQ# + 1)M− 1 questions during this initial phase, since each bit
must be asked about at least "rQ#+ 1 times in order for Paul to win the gamewith all “no’s”.
Thus, there exists a bit i which has been asked about at most "rQ# times. In the remaining
questions, Carol continues to answer “no” to all questions except the ones about bit i, to
which she answers “yes”. Since there are at most "rQ# questions left to be asked during this
latter phase, both 000 . . . 1︸︷︷︸

i

. . . 000 and 000 . . . 0︸︷︷︸
i

. . . 000 will be possible values of x.

(⇐=) Again letting M =)logN* be the number of different bit questions that Paul can ask, we
note thatQ ≥ ("rQ#+ 1)M+ "rQ#. Thus, we will be done if we can show awinning strategy
for Paul which asks no more than ("rQ# + 1)M+ "rQ# questions.
If a bit question is not answered consistently, then we know that the number of lies told
about it is at least the minimum of the number of “yes” answers and the number of “no”
answers. If, at any point during the questioning, this minimum becomes larger than "rQ#,
then we can stop asking that bit question and determine the true value of that bit. So Paul’s
winning strategy will be as follows:

Phase 1: Ask each bit question "rQ# + 1 times, keeping track of the li = min(Yi,Ni), for each bit
i, where Yi is the number of “yes” answers given in response to the question about bit i
and Ni is the number of “no” answers.

Phase 2: For those bits i which have li ≤ "rQ#, ask the i-th bit question until max(Yi,Ni) =
"rQ# + 1.

During phase 1, Paul asks exactly ("rQ# + 1)M questions.

Claim 1 Paul asks at most "rQ# questions in phase 2.

Proof: At the end of the game, for any bit i, max(Yi,Ni) ≤ "rQ# + 1. So:

M

∑
i=1
max(Yi,Ni) ≤ M("rQ# + 1).

We also know that:
M

∑
i=1
li ≤ "rQ#

Since Q = ∑Mi=1[max(Yi,Ni) + li], it must be that Q ≤ M("rQ# + 1) + "rQ#. Since M("rQ# +
1) of these questions were asked in phase 1, at most "rQ# questions must have been asked
in phase 2.

5

3.2 Cut and Tree Questions

In this subsection, it will be more convenient to say that the numbers range between 0 and N − 1.
We will investigate two possible sets of allowed questions: cut questions, i.e., when questions

refer to intervals of the form {0, . . . , b − 1} for all b and tree questions, when they refer to binary
intervals, i.e., intervals of the form [i2j, (i + 1)2j) for all i, j. It turns out that in both cases, there
is a strategy for the Paul if and only if r < 1/3 and with Q = O(logN). The fact that Carole has
a winning strategy here when r ≥ 1/3 follows from the fact that Carole has winning strategy for
r ≥ 1/3 even when Paul may ask general questions.

Theorem 5
With tree questions, Paul has a winning strategy for all r < 1/3 asking

Q = Ktree(r,N) =
⌈
2 logN + 1
1− 3r

⌉
questions.

For cut questions, and r < 1/3, the bound is

Q = Kcut(r,N) =
⌈
8 logN

(1− 3r)2

⌉
.

Tree Questions. Let us give the proof first for the tree question case. For simplicity, let us assume
that N is a power of two, with

n = logN.

The strategy consists of stages, where each stage consists of one or two questions. Between any
two stages, Paul divides the answers into the set T of trusted and the set D of discarded answers.
The set D of discarded answers is the union of inconsistent subsets where each subset contains
two or three answers. The trusted set T comes from a sequence of positive answers giving rise to
the corresponding nested binary question intervals I1, . . . , Im, where for all j ≤ n, the length of Ij
is N/2j.
We describe the questions leading from one stage to the next one. Suppose first that Im has

length greater than 1 and it corresponds to answer a0. Let us denote the left and right halves of
Im by U and V. Then in the first question of this stage, Paul asks about the set U. If the answer a1
is positive, then he adds it to the set of trusted answers and the stage ends here. If it is negative,
then Paul also asks V. If this answer a2 is positive, then he adds it to the set of trusted answers
and the stage ends here. If it is negative, then he removes a0 from the trusted answers and adds
the contradictory triple {a0, a1, a2} to the discarded answer set D.
Suppose now that Im has length 1. Then Paul asks Im again; let this be a1. If the answer

is positive, he adds it to the trusted answers. If it is negative, he removes a0 from the trusted
answers and adds the contradictory pair {a0, a1} to the discarded answers.
Let Q =

⌈ 2n
1−3r

⌉
be the number of questions asked. Let us take a count at the end of the game.

The (not necessarily integer) number d = |D|/3 is at least as large as the number of false answers,
therefore

d ≤ rQ,
Q ≤ 2|T| + 3d ≤ 2|T| + 3rQ,
|T| ≥ Q(1− 3r)/2 ≥ n.

6

trusted

1≤ <32

16≤ <32

16≤ <24

<20<16
!
!!

" #

$
16≤, <16, <20, <24
16≤, 24≤, 32≤, <32

discarded

Figure 1: Adaptive strategy with cut questions, n = 64.

It follows that Im has length 1. Let u = |T| − (n − 1). Then u ≥ 1 and the last u intervals Ij are
identical and have length 1. Let us show that x is in this interval. Suppose it is not. Then the
last interval is false. But then at least u+ d answers are false: d in the discarded set and the last u
trusted answers. We have (remember that u ≥ 1)

2n+
6rn
1− 3r =

2n
1− 3r

≤ Q = 2n+ u+ 3d− 2 = 2n+ 3(u+ d) − 2u− 3 ≤ 2n+ 3(u+ d) − 3,

hence
2rn
1− 3r + 1 ≤ u+ d ≤ rQ ≤ 2rn

1− 3r + r.

This contradiction proves that x is in the last trusted interval (which has length 1).

Cut Questions. In case of cut questions, a similar strategy is used. Rather than give the strategy
for r < 1/3, we will give first a weaker one working for r < 1/4 and giving

Q =
⌈
2(logN + 1)
1− 4r

⌉
.

There is again a sequence I0, . . . , Im of nested trusted binary intervals and a set D of discarded
questions that consists of contradictory 3-tuples and 4-tuples. Paul will group all trusted answers
into pairs P1, . . . , Pm, where Pj is the pair of answers associated with the ends of interval Ij. The set
T is the disjoint union of the pairs Pj.
Paul asks two questions in a stage. First, he asks the question referring to the midpoint of Im.

Without loss of generality, suppose that the answer a0 says x is smaller than the midpoint of Im.
Then, next he asks a question referring to the left endpoint of Im. If the answer b1 is consistent with
Pm, then he removes a0 and adds it to b1 to form Pm+1. If b1 contradicts Pm (this never happens
if m = −1) then he removes Pm from the trusted set and puts it, together with a0 and b1, as a
contradictory 4-tuple, into the discarded set.
A computation completely analogous to the case of tree questions shows that this strategy is

successful.
To achieve the bound 1/3, the sequence I0, . . . , Im of intervals must decrease slower: each

binary interval occurring in it must occur s =
⌈ 2
1−3r

⌉
times. With a careful strategy, Paul discards

contradicting 3-tuples rather than 4-tuples most of the time, which results in the improved bound
1/3. (Only about every sth discarded tuple is a 4-tuple.)

7

4 The Prefix-Bounded Game

Nowwe consider the game where Carole must adhere to the fraction r throughout the game. That
is, during any initial set of i questions, Carolemay lie atmost "ri# times. Aslam andDhagat [AD91]
have considered this problem when Paul may only ask cut questions and shown the following:

Theorem 6 (Aslam, Dhagat) For any r < 1/2, Paul has a winning strategy in the prefix-bounded game
played in {1, · · · ,N} of O(Nlog2(

1
1−r)) cut questions.

Since the exponent of the bound is always smaller than 1 when r < 1/2, the bound is sub-
linear.
Paul’s strategy to achieve this bound is simple: he does a binary search using cut questions,

but with the following modification. He maintains a set of “candidates” for x, and associated with
each candidate is a number of lies that have been told if that candidate is the true value of x. After
q questions have been asked, a candidate is thrown out if the number of lies associated with it is
greater than "rq#. Since each new question of the binary search can be picked so as to divide the
remaining candidates in half, it is asked repeatedly until one or the other half of the candidates
can be thrown out. Then a new question is picked to divide the remaining candidates in half.The
analysis of this strategy to show the above bound can be found in Aslam and Dhagat’s paper
[AD91].
This strategy can easily be extended to work with bit questions. Each successive bit question,

starting with one about the first bit, cuts the pool of candidates by a half. Thus a search which
asks successive bit questions repeatedly until one or the other half of the remaining candidates are
eliminated is essentially following the same strategy as the one above for cut questions. Thus we
can conclude that:

Corollary 1 For any r < 1/2, Paul has a winning strategy in the prefix-bounded game played in {1, · · · ,N}
of O(Nlog2(

1
1−r)) bit questions.

References

[AD91] Javed Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors.
To Appear In STOC, 1991. 1, 1, 1, 4, 4

[Pel89] Andrzej Pelc. Searching wih known error probability. Theoretical Computer Science,
63:185–202, 1989. 1

[RMK+80] R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, and J. Spencer. Coping with
errors in binary search procedures. Journal of Computer and System Sciences, 20:396–404,
1980. 1

[SW90] Joel Spencer and Peter Winkler. Three thresholds for a liar. Preprint, 1990. 1

A Proof of Theorem 5

In the strategies below, a question is an element of the set Q. An answer is marked with a symbol a
to which belongs a pair (Ba, εa) where Ba was the question set, and εa = 1 means that Responder
said x ∈ Ba while εa = −1 means that Responder said x +∈ Ba. We will also speak about positive

8

and negative answers. Let A be the set of all answers during the game. We could identify A with
the set {1, . . . , k} in case there were k questions. The strategy is similar to the case of tree questions
but both interval ends have to be asked now several times. Let

s =
⌈
2

1− 3r

⌉
.

We divide the answers into the set T of trusted and the set D of discarded answers and a possible
extra answer. The set D of discarded answers is the union of a sequence D1,D2, . . . of inconsistent
subsets where each subset contains two, three or four answers.
The consistent set T of trusted answers will give rise to a sequence of nested binary question

intervals I0, . . . , Im. There are s intervals of length N/2, further s intervals of length N/4, etc., and
possibly more intervals of length 1. Let us also define I−1 to be the whole set {0, . . . ,N − 1}. It is
easy to see that Im has length 1 if and only if m > s(n − 1). All trusted answers will be grouped
into pairs P1, . . . , Pm where Pj is the pair of answers associated with the ends of interval Ij. The set
T is the disjoint union of the pairs Pj.
The extra answer, if there is one, refers to either a midpoint or an endpoint of Im. We will

denote it by a0. It is such that it can potentially be added to these trusted answers later. If Im+1
must be smaller than Im then the extra answer refers to the midpoint of Im.
Here is the strategy of Questioner. Depending on what she sees, she asks one or two questions

in a stage. We will see that if m is large enough then there is always only one question per stage.

1 Suppose that Im+1 must be smaller than Im (i.e., either we are at the start, with m = −1, or Im
has length greater than 1 and m ≡ −1 (mod s)).

1.1 Suppose that there is no extra answer. Then we ask the question referring to the mid-
point of Im and the answer becomes the extra answer.

1.2 Suppose that there is an extra answer a0. Without loss of generality, suppose that it says
x is smaller than the midpoint of Im. Then, next we ask a question referring to the left
endpoint of Im. If the answer b1 is consistent with Pm then we remove a0 and add it to
b1 to form Pm+1. If b1 contradicts Pm (this never happens if m = −1) then we remove
Pm from the trusted set and put it, together with b1, as a contradictory 3-tuple, into the
discarded set. The extra answer remains.

2 Suppose that Im+1 must be equal to Im (i.e., m > s(n− 1) or m +≡ −1 (mod s)). Then there is at
least one pair, Pm of trusted answers referring to the endpoints of Im and we have to add yet
another pair.

2.1 Suppose that there is no extra answer. Then we ask one of the endpoints and get an
answer b1. If b1 is consistent with Pm then it becomes the extra answer. Otherwise,
we remove Pm, and with b1, form a contradictory triple which will be added to the
discarded set.

2.2 Suppose that there is an extra answer a0. Without loss of generality, suppose that it
implies that the left half of Im contains x (it refers then to either to the midpoint or the
right endpoint). Then we ask the left endpoint. The answer is b1.

2.2.1 If b1 is consistent with Pm and a0 refers to the right end of Im then b1 and a0 form
Pm+1.

9

2.2.2 If b1 is consistent with Pm and a0 refers to the midpoint of Im then we ask the right
end. This is the only case when there are two questions in a stage. If the answer b2
is consistent with Pm then b1 and b2 form Pm+1. Otherwise, b2 contradicts a0 and we
move the pair formed from b2 and a0 to the discarded set and turn b1 into the extra
answer.

2.2.3 If b1 contradicts Pm and either s does not dividem or a0 refers to the right endpoint
then we move the contradictory triple formed from Pm and b1 to the discarded set.

2.2.4 If b1 contradicts Pm and s divides m, and further a0 refers to the midpoint then we
move the contradictory 4-tuple formed from Pm, b1 and a0 to the discarded set.

Notice that the last case can occur only after at least s − 1 steps in which it did not occur.
Indeed, it is a case in which there is an extra answer a0 referring to the midpoint of Im and there is
only one pair Pm referring to the endpoints of Im. The answer a0 could arise only when there were
s pairs in T referring to the endpoints of Im. There had to be at least s− 1 stages eating up s− 1 of
these pairs before we come to this last case. This implies the following observation about the sets
D1,D2,

If Di contains four answers then Di−1,Di−2, . . . ,Di−s+1 will all contain at most three
answers.

Let d1 be the number of contradictory 4-tuples Dj and d2 the number of contradictory 2- and 3-
tuples together. Then, due to the above observation, these numbers satisfy the following inequal-
ities:

d1 ≤ d2/(s− 1),
|D| ≤ 4d1 + 3d2.

Under these conditions, the minimum value of d1 + d2 is |D|
3(1+1/s) . There are therefore at least this

many lies.
Let k = Kcut(r,N) be the number of questions asked. Let us take counts at the end of the game.

Let
t =

2
1− 3r > 2,

then s =)t* ≥ 3. Hence the number of false answers is at least

|D|/3λ

where λ = 1 + 1/t < 2 since t > 2. Hence |D| ≤ 3dλ ≤ 3rλk, hence k ≤ |T| + |D| + 1 ≤
|T| + 3rkλ + 1, hence

|T| ≥ k(1− 3rλ) − 1.

By definition the number k of questions is
⌈

8n
(1−3r)2

⌉
. Let us bring this to a more convenient form.

We have 2 ≥ 1+ 3r and 1 ≤ 2− 3r, therefore

4
(1− 3r)2 ≥ 2(1+ 3r)

(1− 3r)2(2− 3r) .

Simple verification shows that the latter expression is equal to t+1
1−3rλ . It follows that

k ≥ 2(t+ 1)n
1− 3rλ .

10

Using the above lower bound on |T|, we find that

|T| ≥ 2(t+ 1)n− 1 = 2(t+ 1)(n− 1) + 2t+ 1 > 2s(n− 1) + 2t.

It follows that Im has length 1 and

u = |T|/2− s(n− 1) ≥ t

is the number of pairs Pj with Ij = 1. Let us show that x is in Im. Suppose it is not. Then one of
the endpoints of Im is false. But then at least u+ d answers are false: d in the discarded set and u
in the last u trusted pairs. We have,

2(t+ 1)n+
6rλ(t+ 1)n
1− 3rλ =

2(t+ 1)n
1− 3rλ

≤ k ≤ |T| + |D| + 1 ≤ 2s(n− 1) + 2u+ 3dλ + 1
< 2sn+ 3(u+ d)λ − u− 2s+ 1
≤ 2(t+ 1)n+ 3(u+ d)λ − 3t+ 1.

(we used λ > 1 and u ≥ t). Hence

2r(t+ 1)n
1− 3rλ +

3t− 1
3λ

≤ u+ d ≤ rk ≤ 2r(t+ 1)n
1− 3rλ + r.

This is a contradiction since r < 1/3, λ < 2, t > 2, and it proves that x is in In.

11

