
SOME DYNAMIC COMPUTATIONAL

GEOMETRY PROBLEMS

MIKHAIL J. ATALLAH

Department of Computer Sciences. Purdue University. West Lafayette. Indiana 47907. U.S.A

(Recri~~! 6 April 1984)

Communtcated by Ervin Y. Rodin

Abstract-\‘c consider some problems in computattonal geometry when every one of the input points

i\ movmg in a prescribed manner.

1. INTRODUCTION

Geometric objects may represent physical entities that do not have a fixed position in space,

and therefore it is natural to consider the problems of computational geometry in a framework

where every one of the geometric objects considered is moving in a prescribed manner. In this

paper we assume that we are dealing with II points P,, . , P,, such that every coordinate of

every P, is a function of a time variable t. We use the word &namic to refer to the situation

when the points are moving and the word static for the case when they are fixed (these words

are used with a different meaning in other papers, but the context in which we use them should

not cause confusion).

After a few preliminaries in Section 2, Section 3 mainly deals with the problem of deter-

mining the intervals of time during which one of the points belongs to the convex hull of the

collection of points. Section 4 deals with the problem of determining some properties of the

points after a long time has elapsed.

2. PRELIMINARIES

Throughout this paper, we assume that the input consists of a description of the motion

of every one of the points P,, . P,,. Motion is assumed to be in Euclidean d-dimensional

space. We restrict our attention to the case where every coordinate of every point is a polynomial

in the time variable t. and if every such polynomial has degree 5k then we refer to this motion

as k-motion (so the static case is that of O-motion). More specifically, if 0 is the origin of the

coordinate system. then for k-motion we have OP,(t) = C)=&,,t (1 5 i % n), where every C,

is a constant d-dimensional vector (throughout the paper, we use boldface for vectors, so that

AB is the vector from A to B). The motion of P, is entirely described by the vectors Cd0 I 1 5 k),

so that the input for point P, is just a list of those vectors. The initial position of point P, is its

position at f = 0. and the veloci~ of P, is (dldt)OP,(t). Observe that in the case of l-motion

every point is moving on a straight line with a constant velocity. We use d,(t) to denote the

distance between points P, and P, as a function of time.

For convenience. we assume that no two points have the same initial position. On the

other hand, we do not assume that the vectors C,,, . , C,, are distinct (1 I 1 I k). Such an

assumption would be too restrictive since it would even rule out the case when some points are

fixed while others are moving.

The arithmetic operations involved in our algorithms are + , - , x ~ / and, in the algorithms

of Section 3. the V’/‘peration. If additional operations are needed by an algorithm then this

will be explicitly stated. Throughout. we use log* n to denote the smallest integer i for which

exp, (1) > II. where exp, (s) =e’ and exp, (s) = eerp,-@‘. Whenever we refer to k-motion. we

are assuming that k = O(1).

We need to define the following function X(R. s):

1171

1172 M. I. ATALLAH

DEFINITION 2.1

Let C,, = {a,. al. . , a,,} and define L,,,, as the set of strings over the alphabet X,, that

do not contain any ajar as a substring and do not contain any [;,(i # j) as a subsequence. where

.!$ is an alternating string of length s + 2, defined as follows: 51, = ~1,(1,~,. t$’ = E;~!‘-‘u, and
@” = .$‘a,@ 1 1). Then A(n, s) is the maximum length that a string in L,,,, may have. i.e.

Ah, s) = Max (1~1 /u E L,,,,).

For example, h(n, 4) is the maximum length that a string over the alphabet {(I,. . . tr,,} may

have without containing any a,ai as a substring and without containing any U,LZ u LI (I a (i # j) , I I I /
as a subsequence. It is not hard to see that no string in L,,., is longer than sn(iz - I)I? + I.

and therefore h(n, s) is well defined.

The following lemma is due to Davenport and Schinzel[4].

LEMMA 2.2

h(n, 1) = n, and A(n, 2) = 2n - I.

Proof. For a proof, we refer the reader to Ref. [4] (this lemma is Theorem 1 in that

reference). !

Finding the exact value of A(n, s) when s > 2 is still an open problem. However. Szem-

eredi[141 has proved the following.

LEMMA 2.3

A(n, s) < cn log* n, where c depends only on s.

Proof. See Ref. [14]. 8

Throughout, whenever we refer to A(n, s) we are assuming that s is O(1). Therefore

Lemma 2.3 implies that A(n, s) = O(n log* n).

Now, suppose we are given n real-valued functions of time f,. . , f,,, where each f, is

continuous for all values of t and has an O(1) storage description, and we are asked to compute

a description of the pointwise MIN of these n functions, defined by h(t) = MIN,,,,,, {f,(t)}.

Note that h is continuous, and that it is typically made up of “pieces” each of which is a

section of one of the f,‘s (Fig. 1 shows three functions whose pointwise MIN has five pieces).

More formally, a piece of h is the portion of a function f, in an interval of time [t,, tl] such

that (i) h is identical to f, in that interval of time, and (ii) h is not identical to any f,(I i j 5 n)

over an interval which properly contains [t,, tz]. The storage representation of such a piece

consists of the index i together with the interval [f,, t:] (so a piece has an 0(1) storage

description). (Detail: If fj and f, are identical over the interval [t,, tz] then we break the tie by

taking min (i, j).) The desired description of h is a list of the descriptions of the successive

pieces that make it up. The next lemma bounds the number of pieces that make up h if no two

distinct functions f, and f, intersect more than s times (f, and f, intersect p times iff the equation

f,(t) = f,(t) has p real solutions).

LEMMA 2.4

Let f,, . . , f,, be real-valued functions of time, each of which is continuous. If no two

distinct functions f, and f, intersect more than s times, thep h(t) = MIN,,,,,, {f,(r)} is made

up of no more than A(n, s) pieces, and this bound is the best possible.

Pro@, Scan (left to right) the pieces of h, creating as you go along a string u over the

alphabet {a,, . , u,,}, in the obvious way: If the piece you are currently looking at belongs

to f, then do cr := VU, (for example, Fig. I would result in (T = u,a,u,u,u,). The number of

Fig. I

SO~C dynamic computational geometry problems 1173

pieces that make up h is equal to lo/. It is easy to see that u E f.,,,,. To prove that the bound

is tight. it suffices to show that for every string cr E f.,,,, there exist II functions which satisfy

the conditions of the lemma and whose associated string u belongs to f.,,,,. This can be proved

by induction on II. and is omitted for the sake of conciseness (the details can be found

in II]). !

LEMMA 2.5

Let .f,, . f,, and h be as in Lemma 2.4 and, in addition, assume that (i) every f, has

an O(1) storage description and can be evaluated at any t in 0(1) time, and (ii) for every two

distinct functions ,f, and .f;. the (at most s) real solutions to the equation f,(t) = ,f,(r) can be

computed in O(I) time. Then h has O(IZ log* n) pieces and its description can be computed

in time O(n log II log”’ n). Ifs - < 2 then h has O(n) pieces and can be computed in time O(n

log 17) .

P r-oaf . The bounds on the number of pieces of h are an immediate consequence of Lemmas

7 7 and 2.3. To compute the description of h. we recursively compute the description of the _._

pointwise MIN of .t’,. . , f,, 2 and that of the pointwise MIN of f.!:+,, . , fil. Each of

these two descriptions has at most h(r1/2. .s) 5 h(n, s) pieces, and they can be combined to

give the description of / I in time ch(n. s), in a manner reminiscent of the way two sorted

sequences are merged. This implies that. if T(n) is the time this procedure takes, then we have

T(/Z) 5 2T(n/2) + ch(n, S).

The time bound follows from the above recurrence and Lemmas 2.2 and 2.3 !

Not all the functions whose pointwise MIN we want to compute are continuous for all t.

We noti’ give lemmas similar to 2.4 and 2.5 for the pointwise MIN (call it h) of functions

h’,. . g,, which have discontinuities and are not defined for all t. It is understood that h(r)

is the smallest of only those g,‘s that are actually defined at time t (if they are all undefined at

time t then h is also undefined at t). Our formal definition of a piece of h is the same as that

we gave earlier (note that in this case a piece of h may have discontinuities in its interval of

time and may be undefined over portions of that interval).

Let g be a function of time. We say that g has a transition at time to if, at time to, it

switches between being defined and undefined (i.e. if it is undefined just before to and defined

just after t,,. or if it is defined just before z,, and undefined just after to). Figure 2 shows a

function which has two transitions (at t, and t?) and two jump discontinuities (at t3 and tJ.

LEMMA 2.6

Let g,. . g,, be real-valued functions of time, such that (i) every gi is continuous

except for at most p jump discontinuities and 4 transitions, has an O(1) storage description

and can be evaluated at any t in its domain in time O(l), and (ii) no two distinct functions gi

and g, intersect more than s times and these s intersections can be computed in time O(1).

Then the pointwise MIN of the g,‘s is made up of h(n, s + 2p + 2q) = O(n log* n) pieces

and its description can be computed in time O(IZ log 17 log* n).

Proof. Let 17 be the pointwise MIN of the g,‘s, and let cr be the string obtained from h in

the manner outlined in the proof of Lemma 2.4. That u does not contain any aja, as a substring

follows from the fact that no two consecutive pieces of h belong to the same g,. We now show

that u does not contain any t,‘,-’ * /’ “‘(i # j) as a subsequence. We may assume that g, and g,

are distinct since otherwise the symbol a,,, (,,,) does not appear at all in u (because of the tie-

breaking rule previously mentioned). Let m,, be the number of times one of the following takes

,
‘i ' 2 '3 '4

Fig. 2

1174 M. J. ATALLAH

place: (i) an intersection between x, and R,, (ii) a transition or a jump of gI. (iii) a trwsition or

a jump of g,. Note that by hypothesis we have fn,, i s + 7 _p + 2y. Now. observe that if. for

fI < t?, we have h(t,) = g,(t,) and h(r,) = g,(t?) then in the interval of time [t,. t:] at least

one of events (i)-(iii) must have taken place. This implies the following: If LI,U, is a subsequence

of a then m, 2 1: if aia,ai is a subsequence of cr then m,, 2 2: : if c;,-“‘*” is a subsequence

of u then mi, 2 s + 2~ + 29 + 1, a contradiction. Therefore u E L,,.,_zi,_l,,. which implies

that Icrl 5 X(n, s + 2p + 2q) = O(n log* n). The time bound on computing the description

of h follows from the divide-and-conquer approach outlined in the proof of Lemma 2.5. a

It is clear that Lemmas 2.4-2.6 still hold if the word MIN is replaced by MAX.

3. KEEPING TRACK OF CHANGES OVER TIME

In this section we consider how some properties of the points vary as I increases from

t = 0 to t =x. If g(t) is a polynomial in t of degree (Y = O(l). none of whose coefficients

depends on n, then we count the time needed to find its roots as being O(I) (we make this

assumption with the understanding that its practicality may be questionable for a 2 5).

3.1 The convex hull

Throughout this subsection, we assume k-motion in the plane. Let 0,,(t) be the angle that

P,?, makes with the x axis at time t (by convention, we have -T < O,,(r) 5 +n). Define

yii(t) to be equal to e,(t) when e,(t) 2 0 and to be undefined otherwise, and define p,,(t) to

be equal to 8,(t) when co(t) < 0 and to be undefined otherwise.

The functions Ai, Bj, C,, D; are defined as follows:

A,(t) = MIN {r,,(t)>,
pi

C,(r) = MN {P,,(t)),
J”

D;(t) = MAX {Pi,(r)>~
I”

where the MINs and MAXs at time t only involve the functions that are defined at r. If at time

r every yi,(1 5 j 5 n, j # i) is undefined then A, and B, are both undefined at r. Similarly. if

at time t every pij(1 5 j 5 n, j # i) is undefined then C, and D, are undefined at t.

LEMMA 3.1

Each of the functions A,, Bi, C, and Di has O(n) transitions and jump discontinuities.

Proof. Note that every y;, is continuous and has at most k transitions, so that the total

number of transitions of the n - 1 functions y,,(l 5 j 5 II, ,j # i) is 0(/z). Since a transition

or jump of any of A;, B,, C,, Dj coincides with a transition of one of the y,,‘s. the lemma

follows. !

LEMMA 3.2

Each of the functions A,, Bi, C,, and D, has O(n log* n) pieces.

Proof. We give a proof for Ai (the proofs for B,, C,, D, are similarj. Because of Lemma

2.3, it suffices to show that A, has no more than h(n. 4k) pieces. Recall that A,(t) is simply

the MIN of those yi,‘s that are defined at time t. Now observe that two distinct functions y),

and y,, intersect at most 2k times, because 8,, and 0,, intersect at most 2k times (verify this).

In addition, every y,, is continuous and can have at most k transitions. Therefore it follows

from Lemma 2.6 that Ai is made up of no more than h(n, 4k) pieces. !

Let f and g be real-valued functions of t. We agree that the function f - s is defined at

t iff both S and x are defined at t. In this case the value of f - s at t is simply .f(t) - :;(r).

LEMM.& 3.3

Some dynamic computational gcomctry problcm~ I175

At time t. point I’, belongs to the convex hull iff one of the following conditions is true:

(i) A,(t) - D,(r) 2 7~.

(ii) B,(t) - C,(t) i 7r,

(iii) A, and B, are undefined at t,

(iv) C, and D, are undefined at t.

(The proof of the above lemma is left to the reader.)

THEOREM 3.4

A point P, changes between “belonging to the convex hull” and “not belonging to the

convex hull” 007 log* 17) times.

PIYK#‘. Lemma 3. I implies that conditions (iii) and (iv) of Lemma 3.3 switch between

being true and false O(n) times. We now bound the number of times that condition (i) of

Lemma 3.3 switches between true and false (a similar argument holds for condition (ii) of that

lemma). Let p, y, I’ be (respectively) the number of jumps, transitions and local minima of

A - D,. It is easy to see that the number of times A, - D, switches between being <n and

2~ is O(p -!- C/ -t I’). That p + q = O(n) follows from Lemma 3.1. Lemma 3.2 implies

that A, - D, has 007 log* n) pieces. Since every one of these pieces has O(1) local minima.

it follows that r = O(n log* n). !

It is not hard to find a l-motion example in which a point switches between belonging

and not belonging (to the hull) n - 1 times.

COROLLARY 3.5

The sequence of hulls has O(n’ log* n) elements.

THEOREM 3.6

The intervals of time during which a given point belongs to the convex hull can be computed

in time 0(/z log 17 log* n).

Prmf. Note that solving B,,(f) = 0,(t) amounts to finding the instants of time at which

P,P, and P,P, are parallel. which can be considered to take O(1) time in view of the assumption

stated before the theorem. This observation and Lemmas 2.3 and 2.6 imply that the represen-

tation of each of A,, B,, C,. D, can be computed in time O(n log n log* n). Getting the

representations of A, - D, and B, - C, takes an additional O(n log* n) time, and getting the

instants of time at which each of the conditions of Lemma 3.3 is satisfied also takes O(n log*

11) time. since solving an equation like 0,,(t) - 0,,(t) = 7~ amounts to finding the instants of

time at which P,P, and P,P, are antiparallel. The theorem follows. !

3.2 Other problems

In this subsection we briefly make a few observations about the problem of keeping track,

over time, of some other properties of the points. We assume k-motion in d-dimensional space.

Let S denote the sequence of points that are closest to some selected point, say P,. The

elements of S are listed in the chronological order in which they occur, so that the first element

of S is the point closest to P, at time r = 0. and the last element of S is the point closest to

P, at time t = x. W denotes the sequence of pairs of points that are closest (again, the elements

of W are listed in the order in which they occur). S’ and W’ denote the sequences obtained by

replacing the word “closest” by “farthest” in the definitions of S and W, respectively.

OBSERVATION 3.7
Each of S and S’ has a length of O(n log* II) and can be computed in time O(n log n

log*’ n). If k 5 2 then their length is O(n) and they can be computed in time O(n log n).

OBSERL’ATION 3.8

Each of W and W’ has a length of O(r7’ log* n), and can be computed in time O(n’ log

II log* 17). If k 5 2 then their length is O(r7?) and they can be computed in time O(n? log n).

Proqf of Ob.~er\lations 3.7 and 3.8. Simply observe that in the case of k-motion every

1176 M. J. ATALL .AH

d; (t) is a polynomial of degree 2k in t, and that such functions satisfv the conditions of

Lemma 2.5. !

OBSERVATION 3.9

Computing S requires R(n log n) time in the worst case.

Proof. We show that an algorithm that computes S can be used to sort n arbitrary numbers

with O(n) time additional work. Let _r?, . I,,+, be arbitrary numbers to be sorted. Let

XI = Min {x2, . . . , x,,+ ,} - I, and let the input to the algorithm that computes S be the points

p,, . . 3 p,,+, such that every P, is initially on the .r axis, at position x,, and such that point

P, has zero velocity, while all the other points are movin, 0 leftward on the .r axis with the same

constant velocity. S then consists of the numbers .vZ, , x,,_, in increasing order. !

OBSERVATION 3.10

Computing W requires fi(n’) time in the worst case.

Proof. Consider l-motion along the x axis. The trajectory of a point in the t - s plane

is a straight line. The n straight lines corresponding to the 17 points can certainly be chosen so

that (i) they have n(n - 1)/2 distinct points of intersection. and (ii) those 17(17 - I) /2 inter-

sections have distinct projections on the t axis. Since in this case one intersection corresponds

to one element of W, the length of W is at least 417 - 1) / l . !

Suppose that we want to compute the list I whose elements are the intervals of time during

which the points can be enclosed within a rectilinear hyperbox of given dimensions.

OBSERVATION 3.11

I can be computed in time O(n log n log* n) (O(n log n) if k 5 2).

(The proof uses Lemma 2.5 and is left to the reader.)

let 6, be the length of the side of the smallest rectilinear hypercube that can enclose the

points at time t, and let 6 = Min, 6,.

OBSERVATION 3.12

6 can be computed in time O(n log n log* n) if k > 2, in time O(n log 17) if k = 2. and

in time O(n) if k = I.

(The proof fork h 2 follows from Lemma 2.5. that fork = 1 follows from the technique

described in Ref. [lo], and both are left to the reader.)

4. STEADY-STATE COMPUTATIONS

We use the words steady state to refer to conditions at time t = r. For example, the

steady-state closest pair is the closest pair at t = x, i.e. it is the last element of W. In this

section we give algorithms for computing steady-state properties of the moving points. The

only arithmetic operations needed by these algorithms are + . - , x , and !.

First we need to introduce some additional terminology. For k-motion and 0 I s 5 k. we

define the point P,, as being such that OP,,,(t) = C;=,,C,,t (recall that 0 is the origin of coor-

dinates). Note that P ,k = P,, and that P,,) is the initial position of P,. We also define the (static)

point V,, as being such that OV,,, = C,,. The points V,,, . , V,,, need not be distinct (we

already noted that assuming them to be distinct is too restrictive). and by eliminating duplicates

from among them we obtain q,(I 5 qr % n) distinct points which we call Q,$, , Q,,.,. We

use N: to denote the set {P, 1 OV,,, = OQ,,,}. Observe that N;. , N:,, form a partition of

{P,, , P,}, and that Nj’ = {PO (since we assumed the initial positions to be distinct).

4. I Closest and jbrthest points

We now consider the problem of finding the steady-state closest pair(s). We need to take

Some dynamic computational geometry problem5 I177

a closer look at d,,(r). We have

A-l A-I

4(f) = IIC,, - c,w + xc,, - Cd) . 2 K,” - C,,V’” + II c cc,, - C&q?
I, =,, u =,I

A-I A-I

= IIV!IV,W” + 2V,AV,I . c V,,,V,,,t”” + II c V,uV,afUl12 C”)
0 =o ,1=0

where . stands for the scalar product between vectors and II I/ is the euclidean length of a vector.

Note that, for large t. the dominant term in (*) is the first one, and therefore the steady-state

closest pair(s) (P,. P,) must have smallest]]V,lV,l]]. If V,IV,I # 0 for every i # j then the

problem can be solved by enumerating in time O(rr log n)[3] the static (at most O(n)) closest

pairs among V,A. . . V,,, and then breaking the tie between the candidate pairs thus obtained

in time U(n) by using a brute-force way which is based on the observation that the coefficients

of d;‘,(r) and d:,(r) indicate which one is smaller at t = = (such a “comparison” between d;(x)

and d:,(x) takes constant time). Note that we are using the expression “break the tie” somewhat

loosely. since even after the tie is broken there may be more than one winner (it is possible

that d:(r) and d,,(r) have exactly the same coefficients). But if the points V,L, . . . , V,,A are not

distinct then there may be O(n’) pairs (P,, P,) which have V,,V,, = 0, and we cannot afford

to use a brute-force way for breaking the tie between them. Instead. we note that for every

such candidate pair. the first two terms of (2:) are zero, and that minimizing the third term in

(*) is just a steady-state closest pair problem for k - l-motion. This leads to the follow-

ing recursive algorithm. which returns the steady-state closest pair(s) among n input points

P,. . , P,, having X.-motion in d-dimensional space.

Srep I. If the points V,,, , V,,i are not distinct (i.e. if V,k = V,, for some i # j) then

po to step 2. Otherwise there are O(n) pairs (P,. P,) with smallest]]VZLV,J and therefore we

can enumerate them in time O(rr log 12)[3] and then break the tie in time O(n) (using the brute-

force way already mentioned) and return the surviving pair(s).

Comment: Note that if li = 0 then we do not go to step 2, since we assumed that the P,‘s

have distinct initial positions.

Step 2. Compute N:. , Na;, and for every Nl which contains more than one point do

the following: After assigning to every P, E Nt the motion of P,,L _ , , recursively find the steady-

state closest pair(s) among the points in N: (which now have a k - l-motion). Let H, be the

set of pairs returned by this recursive call. The union of the H,‘s thus obtained is the set of

candidates for the closest-pair position: Break the tie between these candidates in time O(XilHil)

and return the surviving pair(s).

Comment: It is easy to prove by induction on k that IH,I = O(lN:l). This implies that

E,lH,j = O(n).

Correctness of the above algorithm follows from the discussion preceeding it. If T(u. k)

is its running time. then

T(rz, A-) 5 2 T(II,. k - 1) + CI? log n,

where E:n, 5 II. and T(n. 0) 5 ~‘II log !I. It easily follows that T(n. k) = O(n log n), which

is optimal since it is well known that 0(/r log n) time is a lower bound for this problem in the

static case1 l-31. This completes the proof of the following.

THEOREhl 4. i

For k-motion in &dimensional space. the steady-state closest pair(s) can be found in time

O(rr log 11). and this is optimal.

We now consider the steady-state farthest-pair(s) problem. We restrict motion to be in the

plane. If 1’,, # \I,, for every i # ,i then the problem is easy: There are O(n) pairs (P,. P,) with

largest]lV,,V,,]/ and therefore we can enumerate them in time O(n log I?)[121 and then break

the tie in time O(H) using the brute-force method already mentioned. But if V,I. . , V,,, are

1178 MM. J. ATALLAH

not distinct then there may be 0(/r’) pairs (P,. P,) having largest ijV,,VJ. We want to break

the tie between these candidates without having to enumerate them. We now show how this

can be done for the case of l-motion. In this case (*:) becomes

d:(t) = IIv,,v,,lI’~2 + 2V!lV,, . v,,v,r + /lv,,lv,,,/I’. (9

Let v, w be such that IIQ,,QI,,,II is largest, and let D,,,. be an axis parallel to Q!.,Q,<,. Since

all pairs (P,, P,) in N,! X N! have the same V,,V,,(= Q,,Q,,,). the second term in (**) implies

that the “best” pair in Nf. x Nf,. (i.e. the one with largest d,,(x)) must be such that the “shadow”

of V,OV,o on D,.,,. is largest, i.e. P, E N/. must be such that V,, has smallest projection on D,,,.

and P, E N! must be such that V, has largest projection on D,.,, (i.e. smallest projection on

D,$,.). We use this observation for choosing the “best” pair in N,’ x NI,.

The following algorithm computes the steady-state farthest pair(s) for l-motion in the

plane.

Step I. Find QII, . . . , Qy,, and partition the P,‘s into sets IV,!. , N:,.

Step 2. Find the set F of O(n) farthest pairs among Q,,, . , Qy,,. If there exists some

(Q,,, Q,J E F such that INI. > 1 or INI, / > 1 then go to step 3. Otherwise the set

U N 6 x NI, (where the union is over all (Q,.,, Q,,,,) E F) consists of IFI (= O(n)) candidate

pairs. Break the tie between the candidate pairs, and then output the surviving pair(s) and halt.

Step 3. For every (Q,.,, Qw,) E F, let D,,,. and D,,,. be axes that are parallel to Q,.,Q,,, and

Q,v,Q,.,, respectively. Let DIR be the set of all such axes, and note that IDIRl = 2/Fl. Now.

for every QU, which appears in some pair of F, let DIR, = {D,.,, / D,,, E DIR}. and then find

for every direction in DIR,, the point in N(. which corresponds to it, where a point of NI is said

to correspond to direction D,.,,. iff no other point in N/ has a V,, with a smaller projection on

D,.,,. (we have assumed that to a given D,, corresponds only one point of N:, but the algorithm

can easily be modified to handle the general case).

Step 4. Let F’ = {(P,, P,) E NI. X Ni,j(Q,.,, Q..,) E F; P, corresponds to D,,,, P, corre-

sponds to D,,.,.} (note that IF’1 = O(n)). Break the tie among the pairs in F’ and then output

the surviving pair(s) and halt.

THEOREM 4.2

For l-motion in the plane, the above algorithm finds the steady-state farthest pair(s) in

time O(n log n).

Proof. Correctness of the algorithm follows from the discussion preceeding it. The only

step of the algorithm where it is not obvious that the time needed is O(n log n) is that part of

step 3 which has to do with computing the correspondance between points of NI and directions

in DIR,.. Lemma 4.3 (which follows) implies that this can be done in O(lN,1I log lN:l +

/DIR,./ log /DIR,.~), and since C,.IN(.I = n and C,./DIR,.I = 0(/t) it follows that the time for step

3 is O(n log n). !

LEMMA 4.3

Let A be a set of (static) points, and DR be a set of oriented axes (IAl = m, IDR/ = 6).

For every D E DR, let

S,, = {P E A I P has smallest projection on D}

All the So’s can be computed in time O(m log m + 6 log 6).

Proof Let HA = (A,, . , A,,) (y I m) be the points of the convex hull of A listed in

counterclockwise cyclic order, and let SDR = (D,, , D,) be the axes of DR listed by

increasing value of their slope. HA can be found in time O(m log m). and SDR in time O(6

log 6). We now show that we can find SD,, . , SD, with an additional O(y + 6) time. For

the rest of this proof, by “checking A, against D,” we mean comparing the projections of A, _ , .

A, and A,+, on D; in order to find out whether A, E S,,, or not (it is clear that knowledge of

these three projections is all we need to make such a decision). For D,, find in time O(y) a

point of HA that belongs to So,; say it is A,. From this point on. we proceed in the manner

which we outline next (and which is reminescent of the way two sorted sequences are merged).

Some dynamic computational geometry problems I179

We check A, against D2. D,, . until we hit a D, to which it does not correspond (possibly

j = 2). in which case we move to AZ and check it against D,_,, D,. . . until we find a D, to

which it does not correspond (possibly I = j - I). in which case we move to A3 etc. In

this way we “scan” each of HA and SDR only once, and this implies that we spent time

O(y + 6) doing so. Correctness is an immediate consequence of the following two observations:

(i) The D,‘s to whose SD a given A, belongs are consecutive in SDR (with the convention that

D, and D;, are consecutive). and (ii) A, and A,,, have at most one D, to whose SD! they both

belong. and in this case A, & S[,,*, and A,,, k?L S,,# ,. !

The steady-state farthest-pair algorithm for l-motion can be generalized to k-motion. The

details are cumbersome. but the main idea is essentially the same as that for i-motion: First

we find the set F of farthest pairs among QI1, . . . , Q,, 1 and then for every pair (Q,.l, Q,,.l) E F

ue try to find the “best” pair (P,. P,) E Nt x Nf$. We use the coefficient of t?“-’ in (*) to

decide which pair in Nt X Nf5 is best and, if there is still ambiguity, we use successively the
coefi‘icients of t?” 2 t” _ ’ . . . etc (the details, which we omit. involve repeated use of Lemma

4.3 in order to maintain the time O(n log n) performance).

THEOREM 4.4

For k-motion in the plane, the steady-state farthest pair(s) can be found in time O(n

log 12).

4.2 The conves hull

Let CH be the steady-state convex hull of the P,‘s.

THEOREM 4.5

For k-motion in &dimensional space (d 5 3), CH can be computed in time O(n log n),

and this is optimal.

PI-&‘. We give a proof only for the case d = 2 (it il!ustrates the main idea). The rep-

resentation we use for CH is a list of those P,‘s that belong to the hull at t = X, in counter-

clockwise cyclic order.

If k = 0 then use Graham’s algorithm(81 to find CH in time O(n log n). Otherwise, find

(in time O(n log II)) Q,l. . , QyLk and N:, . , Nt,. Then, compute the (static) convex

hull HQ of Qli. . Qyii (this also takes time O(n log n)[8]). Now, for every Q,, E HQ,

recursively compute the steady-state convex hull (call it K,.) of the points {P,,r-, 1 P, E N:},

and then from K, get the steady-state hull (call it H,) of the points in Nt. Getting H,. from K,

takes time O(lNtl) since it suffices to replace every P,.,_, by P, in the list representing K,.. A

point P, E N: belongs to CH iff (i) Qli E HQ. (ii) P, E H,., and (iii) there is a line L passing

through Qti and a line L’ passing through P, such that L and L’ are parallel, L is a supporting

line of HQ and L’ is a supporting line of H,, and if HQ is to the right (left) of L then H, is to

the right (left) of L’. These observations imply that, once we have HQ and the H,‘s, CH can

be computed in time O(t1). in a manner which we now outline. Scan the elements of the list

representing HQ and for every such element (say, QJ, go through the corresponding H, and

for every P, on H, check in time O(l) whether it belongs to CH or not, as follows: Let Q,.,

and Q,,, be (respectively) the predecessor and successor of Ql.k in HQ, and let P, and P,, be

(respectively) the predecessor and successor of P, in H,.. Compute (in time O(1)) the steady-

state direction of the vector P,P, and let OD,, be parallel to that direction. Similarly. OD,, is

parallel to the steady-state direction of P,P,. Let OE,,, and OE,,, be parallel to QVkQltI and

QtiQ\>h. respectively. Now. P, E CH iff 0 is not inside the convex hull of the four points D,,,

D,,. E,:,. E,,. . which can easily be verified in time O(1). This implies that the time needed to

compute CH after computing HQ and the H,‘s is 0(X, IN:/) = O(IZ). If T(n, k) is the running

time of this algorithm. then

T(n. k) 5 2 T(n,, k - 1) + cn log II,

where \-,/I, = II. and T(u. 0) = C’II log II. It easily follows that T(n. k) = O(n log n). This

is opti& because there is a well-known fYUn log n) lower bound for this problem in the static

1180 M. J. ATALL; \H

case[7,12,15]. We omit the proof for the case d = 3 (the main idea for 11 = 3 is quite similar

to the one for d = 2, and uses the results in[111.) 8

4.3 Other problems

THEOREM 4.6

For k-motion in the plane, a steady-state euclidean minimum spanning tree can be found

in time O(n log n), and this is optimal.

(The proof, which we omit, uses techniques similar in flavor to those we used for Theorems

4.1 and 4.2, and depends on the fact that a static euclidean minimum spanning tree in the plane

can be found in time O(n log n)[131.)

THEOREM 4.7

For k-motion in the plane, the (two or three) points which determine the steady-state

smallest enclosing circle can be found in time O(n).

(The proof, which we omit, makes use of the O(n) time algorithm for finding such a circle

in the static case[lo].)

5. OPEN PROBLEMS

1. Do remarks similar to 3.7 and 3.8 hold if. in the definitions of S. W. S’. W’ the words

“closest” and “farthest” are replaced by (respectively) “plh closest” and “plh farthest”? This

leads to the question of how many pieces make up the pointwise MINP of II functions, where

the MIW off,, . . , f,, at time t is the plh smallest number among f,(t), , f,,(r).

2. Do remarks similar to 3.9 and 3.10 hold for S’ and W’. or can one compute S’ and W’

faster than S and W?

3. When do steady-state conditions settle in’? Assume that k = I, that CH is the steady-

state hull of the moving points, and let t’ be the smallest instant of time such that CH is the

hull of the points for all time t 1 t’. Is there an o(n’) algorithm for computing t”? Similar

questions can be asked for the closest- and farthest-pair problems. the minimum spanning tree

problem, etc.

4. Given n red points and m blue points having l-motion in the plane. is there a “fast”

algorithm for deciding whether there is an instant of time at which the red and blue points are

separable? (The obvious brute-force approach gives an O(mn(m + II) log (m + II)) time so-

lution.)

5. Given n red points and m blue points having l-motion in the plane. is there an o(mn)

time algorithm for deciding whether there will ever be a collision between a red point and a

blue point‘? If all blue points are moving on the same line. starting from the same initial position.

then an O(max (m, n) log min (m, n)) time solution is quite easy: Compute the median velocity

of the blue points and let B, be the set of blue points whose velocity is less than the median.

& those whose velocity is more. Let P be the blue point having median velocity. If P collides

with a red point then we are done; otherwise let A, be the red points that are “too fast” for a

collision with P, A? those that are “too slow,” and observe that no point in B, can collide with

one in A,, and that no point in & can collide with one in A?. This observation leads to a recursive

algorithm whose running time T(m, n) satisfies the recurrence

T(m, n) 5 Max {T(m/2. a) + T(mi2, f3)} + cm + C.‘II.
CY+p=,,

with T(I, n) = c’n. From this recurrence it easily follows that T(m. II) 4 (~11 log II + (.‘Iz log

172.

6. Let ST be the sequence of euclidean minimum-cost spanning trees of the moving points.

A crude upper bound on the number of elements in ST is O(n’) (this follows from the fact that

every change in the minimum spanning tree is the result of one edge becoming cheaper than

another edge). Can this bound be improved? (Similar questions can be asked for many other

problems.)

Some dynamic computattonal geometry problems

6. SUMMARY

11x1

We considered some problems in computational geometry when every coordinate of every

point is a polynomial of constant degree in a time variable t. The problems we considered fall

into two categories: (i) those dealing with the changes undergone by some properties of the

points as t continuously increases from 0 to x, and (ii) those having to do with where some

properties of the points will eventually “stabilize” and stop changing (i.e. the steady-state

condition of the points).

A~,knoM,/rdK~nle,tts-The author is grateful to Micha Sharir for pointing out Refs. 141. (51 and [141. and to Rao Kosaraju

for many helpful comments.

REFERENCES

I. M. J. Atallah. Dynamic computational geometry. TR-450. Computer Sctence Dept., Purdue University. West-

Lafayette, IN.

2. M. Ben-Or. Lower bounds for algebraic computation trees. in Proc. r?f /51/t Amud Symposium on Th~orv O/

Computing. 1983. pp. 80-86. ACM. New York. 1983.

3. J. L. Bentley and M. 1. Shames. Divide-and-conquer in multidimensional space. in Proc. Xth Annual Svmposium

cm Thror~ of‘ Computirt~. 1976. pp. 220-230. ACM. New York, 1976.

4 H. Davenport and A. Schinzel. A combinatorial problem connected with differential equations. Amrr. J. Math.

87. 684-694 f 196.5).

5. H. Davenport. A combinatorial problem connected with differenttal equations. Acta Arirh. 17. 363-372 (1965).

6. D. P. Dobkin and R. L. Lipton. On the complexity of computations under varying sets of primitives. J. Compur.

Sxsrem SC;. 18. 86-91 (1979).

7. P. V. Emde Boas. “On the IItrr log n) lower bound for convex hull and maximal vector determination. Info. Proc.

Letrwx 10. 132-136 (1980).

8. R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Infb. Proc. Lerrcrs

1. 131-133 (1972).

9. H. T. Kung. F. Luccio and F. P. Preparata. On findins the maxima of a set of vectors. J. ACM 22. 469-476

(19751.

IO. N. Mepiddo. Linear-time algorithms for linear programming in R’ and related problems. in Proc. 23rd Amtual

Sw~posium on Thcwn ofCompurin,q. 1982, pp. 329-338. ACM. New York. 1982.

1 I. F. P. Preparata and S. J. Honb. Convex hulis’of finite sets of points in two and three dimensions. Co,nrn. ACM

20. 87-93 (1977).

I?. M. I. Shamos. Geometric complexity. in Proc. 7th Amud Svmposium on T~cw-\- c?fCompurir?g. 1975. pp. 224-

133. ACM. New York. 1975.

13. M. I. Shamos and D. Hoey. Closest-point problems. in Proc. /61/l Annual Symposium on Fowddon.s of’Cmputcr

Scrrrtw. 197.5. pp. 151-162. IEEE, New York, 1975.

14. E. Szemeredi. On a problem of Davenport and Schinzel. Acra Arith. 25. 313-224 (1974).

IS. A. C. Yao. A lower bound to finding convex hulls. J. ACM 28. 780-787 (I981).

