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Formany interesting families ofworkloads, there exists a trade-off between storage redundancy and
access overhead. Given a desired access overhead A, there is aminimum redundancy that any indexing
scheme must exhibit. We prove a lower-bound theorem for deriving the minimum redundancy. By
applying this theorem, we show interesting upper and lower bounds and trade-offs between A and r
in the case of multidimensional range queries and set queries.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—access
methods

General Terms: Theory

Additional Key Words and Phrases: Database, index, indexability, lower bounds, multidimensional,
query, redundancy

1. Introduction

Upon its definition, the B-tree promptly proved to be an effective access method
for the primary applications of relational databases [Bayer and McCreight 1972].
The success and ubiquity of the relational data model arguably owes much to the
timely definition of the B-tree. Since then, a major thrust of database research has
been to extend the relational model and relational systems to manage more com-
plex types and more expressive query languages. The B-tree is widely recognized
to be an inadequate data structure in many of the novel contexts, and no single,
general-purpose successor has emerged to enable the diversity of applications and
requirements for contemporary information systems. Therefore, it is important to
develop general methodologies and tools for the design of new indexing meth-
ods, as well as mathematical tools, to evaluate their performance and identify their
limitations, a priori.
A systems approach to the “generalized indexing” problem has been proposed

and implemented [Hellerstein et al. 1995; Kornacker et al. 1997; Aoki 1998;
Kornacker 1999]. The results highlighted the need for theoretical tools to rigor-
ously analyze indexing problems. To aid developers of new indexes in this general
framework, a kind of theory of indexability is required: a mathematical model that
allows the performance and scalability of an indexing scheme to be evaluated much
as complexity theory is used to evaluate algorithms. Where complexity theory con-
siders in-memory data structures, a theory of indexability must consider the impact
of disk-based secondary storage.
Our pragmatic results focus on the multidimensional range search problem, a

commonworkload formany advanced applications. An enormous amount of exper-
imental research has been devoted to this problem: a recent survey cites over 50 dif-
ferent multidimensional data structures [Gaede and Günther 1998]. Many commer-
cial vendors of Object-Relational Database Systems and Geographic Information
Systems use one of these structures, typically some variant of the R-tree [Guttman
1984], the Grid File [Nievergelt et al. 1984], or disk-resident adaptations of the
quad-tree [Samet 1989]. This research is primarily experimental. Analytic research
on these structures has concentrated on probabilistic and empirical studies of their
average-case performance, under various data and query distributions.
At the same period of time that heuristic disk-based indices such as the R-Tree

were introduced, the computational geometry community was studying main-
memory data structures for range searching, paying little attention to secondary
memory. In contrast to most multidimensional indexing research by the database
community, the work in computational geometry is mostly theoretically oriented,
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with an emphasis on worst-case asymptotic performance. We believe that the strik-
ing contrast between these two approaches to the same problem arose from a
fundamental fact: for two-dimensional range searching (and more so for higher
dimensions), optimal query cost cannot be achieved with space proportional to the
data set, but instead requires significant storage redundancy, typically by a mul-
tiplicative factor at least logarithmic to the size of the data set [Chazelle 1990a].
Of course, redundancy has often been used in databases to accelerate performance:
index structures are themselves typically redundant to the data sets they index,
and the addition of logarithmic space is standard for upper levels in search trees.
However, the space cost of redundancy in databases has rarely been as high as a loga-
rithmicmultiple to the size of the data set. This is only reasonable: databases usually
store very big data sets, on top of which a logarithmic factor of redundancy makes
the solution considerablymore expensive in space. Also, high redundancy increases
the I/O cost of online updates, at least proportionally to the redundancy. For these
reasons, low-redundancy access methods are typically used in practice [Kornacker
1999; Kanth et al. 1999].1

Thus, database research concentrated on data structures with low redundancy,
with very bad worst-case behavior, but with the hope of reasonable average-case
behavior for real workloads. Lowering the observed average-case cost has typi-
cally been achieved through problem-specific heuristics, which take into account
the particularities of various data sets and query workloads. For example, access
methods for two-dimensional geographic data have been differentiated from access
methods for temporal queries over one-dimensional data, by a choice of heuris-
tics appropriate to the expected distributions of respective data sets and typical
queries, despite the fact that from a conceptual point of view the two problems
are equivalent.
The two approaches presented above (ad hoc and application-dependent indexing

schemes versus highly redundant computational geometry data structures) are in
a sense extreme: one penalizes worst-case query performance by keeping space
linear, the other strongly favors query performance without regard to the storage
cost becoming prohibitive. The results in this paper strive to reconcile these two
approaches by exposing and studying the fundamental trade-off between I/O time
and space for these problems, and investigating techniques that are parameterized
by the total space or the desired worst-case query cost.

1.1. INDEXING WORKLOADS AND INDEXING SCHEMES. Database access meth-
ods must be evaluated in the context of a particular workload. A workload consists
of an instance of a database (a finite subset of some domain), together with a set
of queries (a given set of subsets of the instance). In one-dimensional indices such
as B-trees, for example, the instance is some totally ordered finite set, and the
most common queries considered are range queries, that is to say, intervals of this
order. Other common workloads include multi-dimensional point sets with range
queries, sets of intervals with stabbing queries, and powersets with intersection or
inclusion queries.

1A notable exception to this rule is the inverted index technique widely used for text retrieval (see,
e.g., Witten et al. [1999]), in which each document identifier is replicated in the index about as many
times as terms in the document. This replication means that online, concurrent updates to text indexes
are not widely supported in practice in text retrieval systems.
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In what we term indexability theory, the workload plays a role similar to the
role a partially recursive language plays in complexity or decidability theory: it is
the unit whose complexity must be characterized.2 For each workload, we have a
space of possible indexing schemes; the analog of algorithms that partially decide
the language. Such an indexing scheme is a collection of B-subsets of the instance,
which we call blocks. The block size B is assumed fixed and very large (usually
in the hundreds). The union of the blocks exhausts the instance. Each query is
answered by retrieving a set of blocks, whose union is a superset of the query.
Our approach suppresses important aspects of indexing, such as the algorithms

for determining the partition of the instance into blocks (possibly with repetitions),
as well as the algorithms for determining, given a query, the blocks in the indexing
scheme that cover it (e.g., the cost of traversing a tree to its leaf level). Furthermore,
we also ignore the storage and retrieval costs necessary to support such algorithms,
for example, auxiliary information such as “directories” or “internal nodes.” These
omissions are justified in threeways: first, we aremostly interested in lower bounds,
and therefore we are free to disregard aspects of the complexity of the problem.
Second, in practice, these aspects do not appear to be the source of design difficulties
or of complexity—it appears that good assignment of data items to blocks tends
to suggest efficient traversal algorithms, and to have low storage overhead. Third,
secondary storage techniques such as buffer management mask and absorb many
of these auxiliary cost components. However, our model also ignores the dynamic
aspect of the problem, that is, the cost of insertion and deletion. Its consideration
could be a source of added complexity, and in a more general model the source of
more powerful lower bounds.
In this article, we propose a model for the indexing of a data set with respect

to a given workload, and explore in its light the fundamental properties and trade-
offs of indexing, with an emphasis on lower bounds. In particular, we introduce
a lower-bound theorem that is applicable to arbitrary workloads—although it is
not guaranteed to always yield tight bounds. We also analyze within this model
a number of interesting families of workloads, including multidimensional point
sets with range queries, and powersets with subsumption queries. Besides revealing
some interesting laws, our results indicate positive prospects for the use of limited
redundancy. For example, for two-dimensional range queries, even a small amount
of redundancy can significantly decrease the worst-case query cost.

2. Related Work

This work was initially motivated by the work of Hellerstein, Naughton and Pfeffer
on the Generalized Search Tree (or GiST ) [Hellerstein et al. 1995]. The GiST is
an extensible template indexing structure, organized as a balanced search tree. In
their discussion of indexing issues, the authors stated the need for a “theory of
indexability,” a formal framework that would “describe whether or not trying to
index a given data set is practical for a given set of queries.”
The research into external data structures has largely been experimental. Theoret-

ical work on the B-tree and its variants, as well as on external hashing, concentrated

2 More accurately, the analog of a language is a family of workloads, one for each cardinality of the
instance. Such growing families of workloads allow us to focus on asymptotic analysis and ignore
additive constants.
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mainly on probabilistic analysis of performance, under various distributions of the
indexed data. For these problems, the worst-case asymptotic performance has been
known for a long time.
Previous work on index data structures concentrated on the study of special-

ized problems. In the area of multidimensional indexing, data structures are often
classified into two categories: those that partition the data set, such as R-trees and
their variants, and those that partition the search space, such as quad-trees and their
variants. In both categories, most of the proposed algorithms are based on heuris-
tics, and all have relatively bad worst-case asymptotic performance. It is not clear
whether this classification has any definitive bearing on performance, and no clear
winner has emerged among the many proposals, even for well-understood families
of workloads. A comprehensive exposition of the relevant work can be found in the
survey of spatial access methods of Gaede and Günther [1998] and the survey of
temporal access methods of Salzberg and Tsotras [1999].
This situation has been changing in the past few years, mostly due to the

work of Kanellakis, Vitter, and their collaborators. In Kanellakis et al. [1993],
it was shown that multidimensional range search generalizes indexing problems
in new database paradigms such as constraint databases and class hierarchies. In
subsequent publications [Ramaswamy and Subramanian 1994; Ramaswamy and
Kanellakis 1995; Subramanian and Ramaswamy 1995; Vengroff and Vitter 1996],
asymptotically efficient dynamic algorithms are presented for two-sided and three-
sided range queries, and for interval stabbing queries. An optimal solution to the
interval management problem has recently been found by Arge and Vitter [1996].
Most of this work involves upper bounds and is therefore mainly concerned with
the analysis of the searching aspect of the problem. There are two exceptions:
First, in Kanellakis et al. [1996], there is an argument (proof of Lemma 2.7) that
anticipates our Theorem 4.1, namely, that the access overhead must be

√
B in

the special case in which the blocks are restricted to be rectangular. Second, in
the last section of Subramanian and Ramaswamy [1995], there is an interesting
lower bound, where it is shown (by extending a result by Chazelle [1990a]
to the case of block accesses) that storage redundancy !(log n/log logB n) is
necessary if additive (as opposed to our multiplicative) access overhead is to
remain polynomial in logB n. Also related are the results in Nodine et al. [1993],
who use cost metrics similar to ours, to characterize the locality in external
graph searching.
The question of lower bounds in multidimensional searching has been addressed

in Mehlhorn [1984], without, however, our emphasis on block accesses. Similar
work is presented in Smid and Overmars [1990], where lower bounds are derived
in a model involving binary trees with certain further restrictions; the block size
is considered in that paper as a function of n, the number of points. Finally, in the
database literature there has been extensive analysis (worst case, expected case,
or empirical/experimental) of many access methods for multidimensional search-
ing (see, e.g., Pagel et al. [1993], Faloutsos and Kamel [1994], and Belussi and
Faloutsos [1995]). More recently, the ideas presented here have been used in a more
rigorous framework for empirically analyzing and tuning indexing performance
[Shah et al. 1999].
The concept of a space/time tradeoff in main-memory range searching has been

studied thoroughly [Fredman 1980, 1981; Yao 1982; Vaidya 1989; Chazelle 1990a,
1990b, 1995]. All these works consider variants of either the RAMmachine, or the
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pointer machine. These memory models are fundamentally different from block-
structured secondary memory.
The cell probemodel, originally introducedbyYao [1981], is a general framework

for dealing with data structure problems, especially valuable for proving lower
bounds, and space-time trade-offs in particular. Let f be any mapping from query
Q ∈ {0, 1}q and dataset d ∈ {0, 1}n to the answer f (Q, d) of query Q over d. The
cell probe model assumes the existence of a memory of s cells, each cell of b bits.
Let t be the maximum, over all Q and d , of the least number of cells that must be
accessed in order to compute f (Q, d).We are interested in trade-offs between s and
t , with b a parameter of the model. Miltersen et al. [1995] proposed some general
lower bounds techniques, employing asymmetric communication complexity, and
applied them to certain data structure problems related to set membership.
The cell probe model is more general than the indexability model in this paper,

because in it memory can be organized in an arbitrary way, whereas in indexability
we assume that the memory contains explicit representations of the records. The
cell probe model has been used in the past to derive lower bounds in geometric
problems; for example, Chakrabarti et al. [1999] and Barkol and Rabani [2000]
applied this model to the nearest neighbor problem, a pure search problem for
which indexability yields trivial results. However, to date the cell probe model has
not been applied to range reporting problems, which is the class of problems with
which indexability is concerned.By“reportingproblems”wemean, informally, data
structure problems in which the output of the algorithm must be a set of records
(think of them as strings or pointers), and the algorithm is not allowed to look
inside these records. Reporting problems are an appropriate framework for database
storage problems, as they reflect the data independence present in databases. For
reporting problems, it makes sense to restrict the data structure solutions so that
each memory location holds a record, as we do in the indexability framework,
forfeiting the generality of the cell probe model. As one of the referees pointed out
to us, by restricting the records stored to be single bits, the cell probe model can
be adapted to prove certain lower bounds similar to our bounds for set workload
reporting problems (Section 7), starting from the communication complexity results
of Miltersen et al. [1995]. These bounds are quantitatively weaker than ours, but
hold in a more general model (albeit a model the generality of which is inaccessible
to the database problems of interest here). It would be interesting to find such cell
probe lower bounds for range search workloads (our main concern in this article).

3. Definitions

In this section, we set out a simple framework for defining an indexing problem,
and for measuring the efficiency of a particular indexing scheme for the problem.

3.1. INDEXING WORKLOADS. Indexing schemes must be evaluated in the con-
text of a particular workload, consisting of a finite subset of some domain together
with a set of queries. More formally, we have the following definition:

Definition 3.1. A workload W is a tuple W = (D, I,Q), where D is a non-
empty set (the domain), I ⊆ D is a nonempty finite set (the instance), and Q is a
set of subsets of I (the query set).
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A workload we consider extensively is the set of two-dimensional range queries.
This workload consists of the domain R2, the instance I = {(i, j) : 1 ≤ i, j, ≤ n},
and the family of “range queries” Q[a, b, c, d] = {(i, j) : a ≤ i ≤ b, c ≤ j ≤ d},
one for each quadruple (a, b, c, d) with 1 ≤ a ≤ b ≤ n, 1 ≤ c ≤ d ≤ n.
Notice that this is a family of workloads, with instances of increasing cardinality,
one for each n ≥ 0. Another family of workloads (the set inclusion queries) has
as its domain, for each n, all subsets of {1, 2, . . . , n}, and for each subset I of
the domain, the set of queries Q = {QS : S ⊆ {1, 2, . . . , n}}, where QS =
{T ∈ I : T ⊆ S}.
In the terminology of combinatorics, W is a simple hypergraph, where I is

the vertex set, and Q is the edge set. The hypergraph abstraction has been used
in related work to measure the quality of existing indexing schemes on particular
workloads [Shah et al. 1999].We do not use this terminology here, choosing instead
to define terms more natural for databases. There is no analog of the domain D
in hypergraphs. We could have dropped it from our definition, but it is suggestive
of a parameterization of workloads. For example, all two-dimensional range-query
workloads have the same domain.

3.2. INDEXING SCHEMES

Definition 3.2. An indexing scheme S = (W,B) consists of a workload
W = (D, I,Q), and for some positive integer B a set B of B-subsets of I , such
that B covers I .

We refer to the elements of B as blocks, and to B as the set of blocks. We refer
to B as the block size, and K stands for the total number of blocks |B|. Notice that
an indexing scheme is a simple, B-regular hypergraph with vertex set I .
As a convention in this article, we use lower-case letters from the end of the

alphabet, x, y, z to represent elements of I , letter Q, possibly with subscripts, to
denote queries, and letter b, possibly with subscripts, to denote blocks. Also, we
typically use U to represent sets of blocks.

3.3. PERFORMANCE MEASURES. We now define two performance measures on
indexing schemes, redundancy and access overhead, evaluating the performance
of the scheme in terms of space and I/O, respectively. In particular, redundancy
measures the amount of space needed by the indexing scheme, while access over-
head measures the amount of I/O required by queries. In both cases, the measures
are normalized by the ideal performance (linear space and size of the query, re-
spectively). In the following definitions, let S = (W,B) be an indexing scheme of
block size B on workload W = (D, I,Q), and let N = |I |.

3.3.1. Storage Redundancy

Definition 3.3. The redundancy r (x) of x ∈ I is the number of blocks that
contain x :

r (x) = |{b ∈ B : x ∈ b}|.
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The redundancy r of S is then defined as the average of r (x) over all objects:

r = 1

N

∑

x∈I
r (x).

It is easy to see that the number of blocks is K = r N/B.
We also define the maximum redundancy r̂ in S , as r̂ = maxx∈I r (x).

3.3.2. Access Overhead

Definition 3.4. A set of blocks,U ⊆ B, covers a queryQ ∈ Q, iffQ ⊆
⋃

b∈U b.

Definition 3.5. A cover set, CQ ⊆ B, for query Q ∈ Q is a minimum-size set
of blocks that covers Q.

Notice that a query may have multiple cover sets.

Definition 3.6. The access overhead A(Q) of query Q ∈ Q is defined as

A(Q) = |CQ|
'|Q|/B(

where CQ ⊆ B is a cover set for Q.
It is easy to see that 1 ≤ A(Q) ≤ B, since any query Q will be covered by at most
|Q| blocks.
Informally, A(Q) models the observed cost of query Q normalized by its ideal

cost, in terms of block accesses. For a given query Q, '|Q|/B( is the minimum
number of blocks required. A(Q) is the multiplicative overhead associated with Q
for a particular indexing scheme.
We now define the access overhead A of indexing scheme S, to be the maximum

of A(Q) over all queries.

Definition 3.7. The access overhead A for indexing scheme S is
A = max

Q∈Q
A(Q)

Notice that, although the redundancy is defined as an average (over all data items),
the access overhead is a maximum (over all queries). This is less arbitrary than it
may seem at first. By averaging over all data items we capture the true (worst-
case) space performance of the indexing scheme, while averaging I/O performance
over all queries would be much less defensible since queries are generally not
equiprobable, and guarantees, and thus worst-case analysis, are desirable in the
context of query response time.

3.4. SOME TRIVIAL BOUNDS AND TRADE-OFFS. Based on standard properties
of databases and disks, we assume that the number of objects N is always much
greater than the block size B, although B is not limited in any concrete way.
For some indexing scheme S , the minimum possible redundancy is 1, when B

is a partition of I , and the maximum redundancy is ( N−1
B−1 ), when B = ( I

B
).3 For

S having maximum redundancy, A is exactly 1, which is minimum; in that case,
every query Q can be covered by a set of disjoint blocks whose union contains Q.

3For set S and n ≥ 0, ( S
n
) denotes the set of all n-subsets of S.
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Also, for r = 1 it is easy to devise a problem where A = B, which is maximum
(e.g., Q = ( I

B
)).

4. Trade-Offs for a Two-Dimensional Workload

Given this framework for indexability, we proceed to examine some families of
workloads that have received significant attention in the indexing literature. Our
main goal is to expose the trade-offs in lower bounds of r and A for theseworkloads,
delimiting the potential efficiency of indexes for these workloads. We start with
some simple positive results (upper bounds) that are useful in two ways. First,
they illustrate the framework of indexing schemes. And second, they allow us to
conclude later that the lower bounds of this article are tight.
Our main lower bound results are driven by the Redundancy Theorem that we

develop in Section 5. However, we do not need the Redundancy Theorem to obtain
our first interesting lower bound, which is presented in the second part of section.

4.1. TWO-DIMENSIONAL QUERIES. We shall consider here workloads over the
two-dimensional domain R2, with I = {(i, j) : 1 ≤ i, j, ≤ n}, and 2-d range
queries over this instance. We are interested in determining the minimum possible
access overhead when the redundancy r is fixed.

PROPOSITION 1. For each integer r, there is an indexing scheme Sr with redun-
dancy r and access overhead 2B1/2r + 2.

PROOF. Themain idea for the indexing scheme Sr is that each query Q of x× y
points will be covered by disjoint blocks of Sr that have “almost” the same aspect
ratio y/x with Q. The ideal situation is to have blocks with aspect ratio y/x , so that
the query Q is tiled nicely by these blocks; compare this with the worst case when
the query Q is “long and narrow” and it is covered by “short and wide” blocks.
Because of the restriction on the redundancy r of the indexing scheme Sr , it is not
possible to have blocks for each aspect ratio. However, we can choose blocks so
that any aspect ratio can be approximated.
More precisely, for each i = 1, 2, . . . , r , our indexing scheme Sr contains all

B(2i−1)/2r × B(2r−2i+1)/2r blocks that partition I . The aspect ratios B(r−2i+1)/r , for
i = 1, 2, . . . , r , of these blocks are evenly distributed. It is immediate that Sr has
redundancy r (maximum as well as average). To see that Sr has access overhead
at most 2B1/2r + 2, consider the set of B j/r × B(r− j)/r queries, j = 0, 1, . . . , r .
Clearly, the best coverage of such a query is by blocks that have almost the same
aspect ratio, that is, blocks of size B(2 j−1)/2r × B(2r−2 j+1)/2r or blocks of size
B(2 j+1)/2r × B(2r−2 j−1)/2r . In both cases, when the query is “aligned” with the
blocks, it requires B1/2r blocks (either one row of B1/2r blocks or one column of
B1/2r blocks). For non-aligned queries the ratio can be as high as 2B1/2r +2; to see
this, consider the case where an aligned query is satisfied by a row of B1/2r blocks.
If we shift this query out of horizontal and vertical alignment, we need two rows of
blocks instead of one, and at one of the ends we need an additional column of two
blocks as well. On the other hand, it is not difficult to see that these are the worst
queries for this indexing scheme.

If the access ratio is A, the above scheme has both average and maximum redun-
dancy r = !(log B/log A). We show that this is the best possible relation between
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r and A. Indeed, in the remainder of this section, we prove that this is the case when
the maximum redundancy is one. We defer the study of the general case after we
introduce our lower-bound theorem.

4.2. A LOWERBOUND FOR REDUNDANCY r = 1. We show that up to a constant
factor the above indexing scheme is optimal when r = 1. InKanellakis et al. [1993],
the result below was shown for the special case when the blocks are restricted to
be rectangular.

THEOREM 4.1. Any indexing scheme for 2-dimensional range queries with re-
dundancy r = 1 has access overhead at least A = B1/2. For the d-dimensional
case, the lower bound is A = B1−(1/d).

PROOF. We consider first the 2-dimensional case, the general case being a
straightforward generalization. For simplicity, we assume that n is a multiple of B.
For the lower bound, we consider only queries of size 1 × B and B × 1. The

queries of size 1× B partition the instance and so do the queries of size B× 1. The
total number of queries is 2n2/B.
Now fix a block b ∈ B that intersects x1 horizontal lines and x2 vertical lines

(by a “line” we mean a set of data points of the form {(1, j), (2, j), . . . , (n, j)} or
{(i, 1), (i, 2), . . . , (i, n)}). Since every block has B points, we must have x1x2 ≥ B;
hence x1+ x2 is at least 2B

1/2. Therefore, every block intersects at least 2B1/2 of the
above queries. Taking into account that the number of queries is twice the number
of blocks, we can conclude that, on the average, every query of the above collection
is intersected by B1/2 blocks at least. (To see this in detail, consider the number
of pairs of intersecting blocks and queries; it is no less than 2B1/2 times the total
number of blocks, which is 2B1/2n2/B; since there are 2n2/B queries in total in the
collection, the average number of intersecting blocks per query is B1/2.) When the
redundancy is r = 1, all these blocks are needed to cover the query.
Notice that we showed not only that there exists a query with access overhead

B1/2, but that this is the expected access overhead for a random query from the
above set.
The generalization to the d-dimensional case is straightforward (for example we

now have x1 + · · · + xd ≥ dB1/d which gives access overhead at least B1−(1/d)).

5. The Redundancy Theorem

We now turn our attention to a workload-independent analysis of the indexability
model that culminates with the Redundancy Theorem.
We first state and prove a set-theoretic result that is of central importance to

our work. Note that this theorem is not specific to indexing schemes; it arises in
extremal set theory. The reader is warned that the notation does not correspond to
indexing schemes.

THEOREM 5.1. Let S1, S2, . . . , Sa (a ≥ 1) be nonempty finite sets, S = S1 ∪
S2 ∪ · · · ∪ Sa be their union, and L ≤ |S| be a positive integer. Let k denote the
maximum integer such that there exist k pair-wise disjoint sets P1, P2, . . . , Pk , so
that for all i, 1 ≤ i ≤ k,

(1) |Pi | = L , and

(2) Pi ⊆ Sj for some j , 1 ≤ j ≤ a.
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or k = 0 if no such sets exist. Then,

k ≥ |S|
L

− a. (1)

PROOF. Let P1, . . . , Pk be sets that satisfy the properties of the theorem and
let P be their union, P = P1 ∪ P2 ∪ · · · ∪ Pk . The maximality of k guarantees that
P contains all but atmost L elements fromevery Si , i = 1, . . . , a. That is, |Si\P| < L
(otherwise, we can add any subset of L elements of Si \ P to the collection of Pi ’s).
We can now estimate |S\P| = |(

⋃
Si )\P| = |

⋃
(Si \P)| ≤

∑a
i=1 |Si \P| < aL.

Since every Pj has cardinality L we conclude that kL = |P| > |S| − aL which
implies the desired k > |S|/L − a.

To apply the above theorem to the domain of indexing schemes, we define a
convenient concept, flakes, to capture the overlap of queries and blocks.

Definition 5.2. Let S = (W,B) be an indexing scheme on workload W =
(D, I,Q). A flake is any set of objects F ⊆ I such that for some query Q and some
block b, F ⊆ Q ∩ b.

Note that a flake is a subset (potentially a proper subset) of the intersection
of a block and a query. The flexibility to deal with proper subsets will allow
us to consider flakes of a fixed size, allowing us to apply certain combinatorial
results below.
We now have the following lemma on flakes:

LEMMA 5.1 (FLAKING LEMMA). Let S be an indexing scheme, A be its access
overhead, and ϑ be a real number in the interval [2, B/A] such that B/ϑA is an
integer. Then, any query Q with |Q| ≥ B/2 will contain at least (ϑ − 2)A|Q|/B
pair-wise disjoint flakes of size B/ϑA.

PROOF. The parameter ϑ exists only to guarantee that B/ϑA is integer.
Choose a cover set for Q, say CQ = {b1, . . . , ba}, of size a. Let S1, . . . , Sa be

flakes defined by Si = Q ∩ bi for 1 ≤ i ≤ a. We have

a = A(Q)

⌈ |Q|
B

⌉
≤ A

⌈ |Q|
B

⌉
≤ 2A

|Q|
B

(because |Q| ≥ B/2). We apply Theorem 5.1 on Si for L = B/ϑ A, and conclude
that the number k of flakes of size B/ϑ A is at least

k ≥ |Q|
B/ϑ A

− a

≥ ϑ A
|Q|
B

− 2A
|Q|
B

= (ϑ − 2)A
|Q|
B

. !

We proceed to prove a second technical tool from extremal set theory. In coding
theory, under a slightly different statement, this result is known as Johnson’s bound
[Johnson 1962]. Again, the notation does not correspond to indexing schemes.
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THEOREM 5.3 (JOHNSON’S BOUND). Let S be a finite set, and S1, S2, . . . , Sk
be subsets of S, each of size at least α|S|, such that the intersection of any two of
them is of size at most β|S|. If β < α2/(2− α) the number of subsets k is at most
α/β.

PROOF. Since S1, S2, . . . , St , t ≤ k, are subsets of S, their union S1∪S2∪· · ·∪St
is also a subset of S and therefore

∣∣∣∣∣

t⋃

j=1
Sj

∣∣∣∣∣ ≤ |S|.

It follows that

t∑

j=1
|Sj | −

t∑

j=1

t∑

l= j+1
|Sj ∩ Sl | ≤| S|.

By the assumptions about the sizes of the subsets and their pairwise intersection,
the last inequality implies that

tα|S| −
(
t

2

)
β|S| ≤| S|.

Therefore, every t ≤ kmust satisfy the inequality αt−β( t
2
)−1 ≤ 0. It immediately

follows that if a positive integer t does not satisfy this inequality, then the number k
of subsets must be less than t . So, in order to upper bound the number k of subsets,
we need to guarantee that the above inequality is not satisfied by at least one positive
integer. This can be easily done if we require that the two roots of the polynomial
αt − β( t

2
)− 1 differ by more than 1. Since the roots of the polynomial are

α + β/2±
√
(α + β/2)2 − 2β

β
,

it is easy to verify that they differ by more than 1 when β < α2/(2− α).
But then, the number of subsets is at most equal to the minimum root of the

above polynomial. Thus

k ≤ α + β/2−
√
(α + β/2)2 − 2β

β
.

This last inequality implies that k ≤ α/β.

Note that the hypotheses of the above lemma cannot be improved by a factor of
more than 2, because when β ≥ α2, the number of possible subsets is unbounded,
that is, it is an increasing function of |S|.
We are now ready to state and prove our main result.

THEOREM 5.4. Let S be an indexing scheme, and let Q1, Q2, . . . , QM be
queries, such that for every i , 1 ≤ i ≤ M :

(1) |Qi | ≥ B/2, and

(2) |Qi ∩ Q j | ≤ B/2(ϑ A)2 for all j -= i , 1 ≤ j ≤ M.
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Then, the redundancy is bounded by

r ≥ ϑ − 2

2ϑ

1

N

M∑

i=1
|Qi |,

where ϑ is any real number in the interval [2, B/A] such that B/ϑ A is integer.

PROOF. We prove the lower bound in two steps. First, we compute theminimum
number of flakes contained in queries Q1, Q2, . . . , QM . Let this number be f1. Then
we will compute the maximum number of flakes contained in each block. Let this
number be f2. Clearly, there will be at least f1/ f2 blocks in B.
Step 1. Consider any query Qi . By the flaking lemma, this query contains at

least (ϑ −2)A|Qi |/B disjoint flakes of size B/ϑ A. Let F be such a flake. F cannot
be contained in some other query Q j , j -= i , because if it were, then it would be
a subset of Q j as well as of Qi , and thus |Qi ∩ Q j | ≥ B/ϑ A > B/2(ϑ A)2. We
conclude that

f1 =
M∑

i=1
(ϑ − 2)A

|Qi |
B

= (ϑ − 2)A
M∑

i=1

|Qi |
B

.

Step 2. Consider any block b, and let F1, F2, . . . , Fk be the flakes contained
in this block. Since all these flakes are subsets of b, we upper bound the number
of flakes k, using Johnson’s bound. Each flake Fi is of size B/ϑ A. Also, for two
distinct flakes Fi and Fj , i -= j , |Fi ∩Fj | ≤ B/2(ϑ A)2, by the following argument:
If the flakes are contained in the same query, then they are disjoint. If the flakes are
contained in different queries, then their intersection is bounded by the intersection
of these queries. Thus, Johnson’s bound is applicable with α = 1/ϑ A, and β =
1/2(ϑ A)2. It can easily be checked that β < α2/(2− α). Thus, we conclude that

f2 = α

β
= 2ϑ A.

Substituting, we get

f1

f2
= ϑ − 2

2ϑ

M∑

i=1

|Qi |
B

.

The proof is complete, by the inequality K = r N/B ≥ f1/ f2 which simplifies to

r ≥ ϑ − 2

2ϑ

1

N

M∑

i=1
|Qi |.

Notice that the theorem is useful only for access overhead A = O(
√
B): either all

queries are disjoint (implying access overhead 1), or for nondisjoint queries Qi and
Q j , the second premise in the statement of the theorem implies that B/2(ϑ A)2 ≥ 1.
We now simplify the theorem by removing the parameter ϑ .

THEOREM 5.5 (REDUNDANCY THEOREM). Let S be an indexing scheme with

access overhead A ≤
√
B/4, and let Q1, Q2, . . . , QM be queries, such that for
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every i , 1 ≤ i ≤ M :

(1) |Qi | ≥ B/2, and

(2) |Qi ∩ Q j | ≤ B/16A2 for all j -= i , 1 ≤ j ≤ M.

Then, the redundancy is bounded by

r ≥ 1

12N

M∑

i=1
|Qi |.

PROOF. Let ϑ1 = 12/5 and ϑ2 = 2
√
2. We first show that there exists ϑ ∈

[ϑ1, ϑ2] such that B/ϑ A is integer. This follows from

B

ϑ1A
− B

ϑ2A
=

(
1

ϑ1
− 1

ϑ2

)
B

A
≥

(
1

ϑ1
− 1

ϑ2

)
B

A2
≥

(
1

ϑ1
− 1

ϑ2

)
16 > 1.

Using such a ϑ in Theorem 5.4, the second premise becomes

|Qi ∩ Q j | ≤ B

16A2
= B

2(ϑ2A)2
≤ B

2(ϑ A)2

and the factor (ϑ − 2)/2ϑ of the conclusion becomes

ϑ − 2

2ϑ
≥ ϑ1 − 2

2ϑ1
= 1

12
.

Observe that given any set of queries M = {Q1, . . . , QM}, we can construct
blocks for each query independently, for a total of

TM =
M∑

i=1

⌈ |Qi |
B

⌉

blocks, achieving a perfect access overhead of one, with redundancy r = TM
B
N

≥∑
M
i=1|Qi |/N . The Redundancy Theorem states that when the queries intersect

pairwise in at most B/16A2 elements for some A, increasing the access overhead
to A does not yield an improvement in space by more than a constant factor of TM.

6. Lower Bounds for Multidimensional Range Queries

We now apply the Redundancy Theorem to d-dimensional range queries. First,
we examine the case for 2-dimensional range queries, and then we generalize to
d dimensions.
For any d ≥ 1, we define the d-dimensional range query workload, Rd

n , whose

domain is Rd , with instance I = [1 : n]d and query set

Q = {[a1 : b1]× · · · × [ad : bd] | 1 ≤ ai ≤ bi ≤ n}.
For this workload, N = nd .

6.1. 2-D RANGEQUERIES. In order to apply the Redundancy Theorem, wemust
identify queries Q1, Q2, . . . , QM , each of size at least B/2, and with pairwise
intersections at most B/16A2. We consider only queries of size c j × B/c j , for
j = 0, 1, . . . , logc B. For each aspect ratio, we partition the n× n grid, obtaining a
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FIG. 1. Two rectangles of sizes c j × B/c j and c j
′ × B/c j

′
, j < j ′, intersecting in at most

B/c j
′− j points.

total of M = n2/B(1+ logc B) queries of size B each. Before we apply the theorem,
we compute the parameter c.
Let j and j ′ be integers 0 ≤ j < j ′ ≤ logc B, and Q j and Q j ′ be queries of

dimensions c j × B/c j and c j
′ × B/c j

′
, respectively. Figure 1 depicts the setup. It is

easy to see that for any j and j ′, |Q j ∩ Q j ′ | ≤ B/c j
′− j ≤ B/c. Thus, we take

c = 16A2.
We are now ready to apply the Redundancy Theorem. From the theorem,

r ≥ 1

12

MB

n2

= 1

12

1

n2

(
B
n2

B
(1+ logc B)

)

= 1

12
(1+ logc B)

≥ 1

12
logc B

= 1

12

log B

log(16A2)

and thus we have

r = !

(
log B

log A

)
.
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6.2. d-DIMENSIONAL QUERIES. We can generalize the above technique to
d-dimensional queries. We consider queries of size B, with dimensions c j1 × c j2 ×
· · · × c jd , for all nonnegative integer j1, j2, . . . , jd , such that

∑
d
k=1 jk = logc B.

For each sequence j1, j2, . . . , jd , we partition the d-dimensional cube into n
d/B

(hyper)rectangles, of dimensions c j1 × c j2 × · · · × c jd .
In order to select the appropriate value for c, we consider the size of pairwise

intersections of rectangles with different dimensions. It is easy to see that c= 16A2
is applicable in this case also, guaranteeing that the intersection of any two rectan-
gles will have size at most B/16A2.
We also use the well-known fact that the number of distinct sequences of d

nonnegative integers, whose sum is n, is given by
(
n + d − 1

d − 1

)

(cf. Bose–Einstein distribution).
Thus, the total number of queries (each of size B) will be

M = nd

B

(
logc B + d − 1

d − 1

)
= nd

B

(
log B

log(16A2)
+ d − 1

d − 1

)

and for the redundancy we have

r ≥ 1

12

(
log B

log(16A2)
+ d − 1

d − 1

)

.

For d a constant, the above quantity is a polynomial of degree d−1. Thus, we have
shown the following theorem:

THEOREM 6.1. For workloadRd
n , the storage redundancy is bound by

r =
(

!
(
log B
log A

)
+ d − 1

d − 1

)

= !

((
log B

log A

)d−1
)

.

6.3. FIBONACCI WORKLOAD. So far, our trade-offs have depended only on the
block size B, but not on the size of the instance. Unfortunately, this is not always
the case. In this section, we study a family of workloads for two-dimensional range
queries that exhibits much worse performance.
Using our framework of indexing schemes, it was shown in Koutsoupias and

Taylor [1998] that there exist simple 2-dimensional workloads with trade-offs that
depend on the instance size. In particular, they studied range queries of the Fibonacci
lattice (to be defined shortly) and showed that any indexing schemewith redundancy
less than %(log n) has the worst possible overhead A = B. The bound %(log n) is
tight up to a constant factor. They later extended the results to random sets of points
and higher dimensions Koutsoupias and Taylor [1999].
Herewe illustrate the power of the Redundancy Theorem by extending the results

for the Fibonacci lattice when the access overhead is small, A = O(
√
B). Fur-

thermore, we give the precise trade-off between redundancy and access overhead.
We now define the Fibonacci lattice, which is the regular lattice rotated appro-

priately. Let n = fk be the kth Fibonacci number. The Fibonacci lattice Fn is the
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set of points defined by:

Fn = {(i, i fk−1 mod n) : i = 0, 1, . . . , n − 1} for n = fk .

The Fibonacci workload over domain R2 is defined by taking the Fibonacci lattice
as the instance I , and all rectangular queries as Q.
We only need the following property of the Fibonacci lattice, from Fiat and

Shamir [1989]:

PROPOSITION 2. For the Fibonacci lattice Fn of n points, and for t ≥ 0, any
rectangle with area t ·n contains between /t/c10 and 't/c2( points, where c1 ≈ 1.9
and c2 ≈ 0.45.

Now we apply the Redundancy Theorem to the Fibonacci workload. We have to
define an appropriate set of queries Q1, . . . , QM , each of cardinality at least B/2.
We consider rectangles of area a = c1Bn/2. By Proposition 2, each such rect-

angle will contain at least B/2 points. Let c be a parameter to be specified later. We
consider rectangles of dimensions ci × a/ci , for appropriate values of i . For each
such aspect ratio, we partition the Fibonacci lattice into non-overlapping rectangles,
in a tiling fashion. Each of these rectangles will define a query.
Because no rectangle can have a side longer than n, we must constrain i to obey

ci ≤ n and
a

ci
≤ n.

From these, we compute that i must range between logc (c1B/2) and logc n, that is,
approximately logc 2n/c1B aspect ratios. Since, for each i , we cover the whole set
of points, the Redundancy Theorem gives

r ≥ 1

12
logc

2n

c1B
= !

(
log (n/B)

log c

)
.

Now we specify an appropriate value of parameter c that satisfies the second
premise of theRedundancyTheorem—which states that no twoqueries can intersect
by more than B/16A2 points. We observe that rectangles of the same aspect ratio
do not intersect, and rectangles of different aspect ratios have intersections of area
at most a/c. Again by Proposition 2, it suffices to have

⌈
a/c

c2n

⌉
≤ B

16A2
,

which is satisfied by

c ≈ 8
c1

c2
A2.

Thus, we have the following theorem:

THEOREM 6.2. For the Fibonacci workload, any indexing scheme with the ac-

cess overhead A ≤
√
B/4 must have redundancy

r = !

(
log(n/B)

log A

)
.

The Fibonacci lattice is only one of many low-discrepancy [Matousek 1999],
planar point sets we could have used. For example, we could have used the point
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set used by Chazelle [1990a], in his proof of a lower bound for range search in
the pointer machine model. Matousek [1999] discusses the discrepancy properties
of the Fibonacci lattice, and many other point sets. However, none of these will
improve the trade-off of Theorem 6.2 by more than a small constant factor.

7. Set Workloads

We now turn our attention to the problem of indexing for arbitrary sets. An inter-
esting workload is the λ-set workload Kn,λ, whose instance is the set {1, . . . , n}
and whose query set is the set of all λ-subsets of the instance. We show that these
workloads are far worse than 2-dimensional queries.
Our Redundancy Theorem is applicable only when λ > B/2. In practice, we are

also interested in workloads with small values for λ. To analyze these workloads,
we prove a corollary of the following famous theorem by Turán [Turán 1941;
van Lint and Wilson 1992]:

THEOREM 7.1 (TURÁN’S THEOREM). If a simple graph of n vertices has more
than

(p − 2)n2

2(p − 1)
− r (p − 1− r )

2(p − 1)
(r = n mod p)

edges, then it contains a complete graph of p vertices (a p-clique).

For a given graph, an independent set is a subset of its vertices such that there is
no edge between any pair of these vertices.

COROLLARY 1. In a simple graph G(V, E), with |V | = n, if

|E | ≤ n2 − n(p − 1)

2(p − 1)
,

then G has an independent set of size p.

PROOF. Let G̃(V, Ẽ) be the graph with

Ẽ =
{
(v1, v2) ∈

(
V

2

) ∣∣∣ (v1, v2) -∈ E

}
.

Then,

|Ẽ | =
(
n

2

)
− |E | >

(p − 2)n2

2(p − 1)
,

and thus by Turán’s Theorem G̃ has a p-clique. The vertices of the clique form an
independent set in G.

We now show a lower bound for set workloads.

THEOREM 7.2. For workload Kn,λ(I,Q), B ≥ λ, any indexing scheme with
redundancy

r <
n − λ + 1

(λ − 1)(B − 1)

has the worst possible access overhead A = λ.
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PROOF. Construct a graph G(I, E) where (x1, x2) ∈ E iff there exists a block
containing both x1 and x2. This graph will have at most

r
n

B

(
B

2

)
<
n2 − n(λ − 1)

2(λ − 1)

edges. By Corollary 1, it has an independent set of size λ. This set, taken as a query,
will require exactly λ distinct blocks to be covered (by the construction of G).

The last theorem states thatKn,λ requires space at least quadratic in n/B to avoid
the worst possible access overhead. We show that within a factor of 2, the bound
of the theorem is tight.

THEOREM 7.3. For workloadKn,λ and B ≥ λ, there exists an indexing scheme
of access overhead A = λ − 1 and redundancy

r = 2n

(λ − 1)B
− 1.

PROOF. We arbitrarily partition the instance into λ − 1 sets of roughly equal
size, S1, . . . , Sλ−1. For each set Si , we construct suitable blocks so that for any
x, x ′ ∈ Si there is a single block containing both. Then, for every query Q, some
elements x1 and x2 will belong to the same set Si , and thus will be covered by a
single block, and so A(Q) ≤ λ − 1.
To construct blocks for set Si , we arbitrarily partition the set Si into k =

2n/(λ − 1)B sets t j , j = 1, . . . , k of size B/2 each. For each pair of these sets, we
construct a block containing their union. Thus, for any pair of elements of Si , there
exists a block containing both.

For each of the λ − 1 sets Si , we constructed (
k

2
) blocks. The total number of

blocks constructed thus is

(λ − 1)

(
2n

(λ−1)B

2

)

= n

B

(
2n

(λ − 1)B
− 1

)

which yields the required redundancy.

8. Conclusions

We have presented a new framework for the modeling and study of indexing in
external memory. Our cost model is minimalistic, in that it ignores important pa-
rameters of external memory and indexing. This is not by accident but rather by
design. There exist more precise (and more complex) cost models that are more
accurate in predicting space and/or I/O indexing costs, for example, models that
include the search aspects of indexing, or models that describe hard disk perfor-
mance more accurately. In our view, however, a successful model is not one that
represents reality faithfully, but rather one that manages to capture the essence of a
facet of the real world in a way that allows for deeper study and understanding of
this facet.
Having argued in favor of the minimalistic aspects of indexability, we should

stress that we expect indexability results to often carry over to more detailedmodels
straight-forwardly, and also to the implementation domain. Recent results by Arge
et al. [1999] indicate that it may be possible to employ indexability techniques
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as subroutines in external data structures, as part of a systematic approach to the
“externalization” ofmainmemory data structures. Shah et al. [1999] have developed
an index analysis tool called amdb; among its features is a test for unit redundancy
indexability, which serves as a concrete performance target for index developers.
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