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Abstract. We propose a new randomized algorithm for maintaining a set of clusters
among moving nodes in the plane. Given a specified cluster radius, our algorithm selects
and maintains a variable subset of the nodes as cluster centers. This subset has the property
that (1) balls of the given radius centered at the chosen nodes cover all the others and
(2) the number of centers selected is a constant-factor approximation of the minimum
possible. As the nodes move, an event-based kinetic data structure updates the clustering as
necessary. This kinetic data structure is shown to be responsive, efficient, local, and compact.
The produced cover is also smooth, in the sense that wholesale cluster re-arrangements
are avoided. This clustering algorithm is distributed in nature and can enable numerous
applications in ad hoc wireless networks, where mobile devices must be interconnected to
perform various tasks collaboratively.

1. Introduction

Collaborating mobile devices are of interest in diverse applications, from wireless net-
working to sensor nets to robot exploration. In these applications there are mobile nodes
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that need to communicate as they move so as to accomplish the task at hand. These tasks
can vary from establishing an ad-hoc multi-hop network infrastructure that allows point-
to-point communication, to aggregating and assimilating data collected by distributed
sensors, to mapping an unknown environment collaboratively. A challenge common to
all these tasks is that communication is usually accomplished using low-power radio
links or other short-range technologies. As a result only nodes sufficiently close to each
other can communicate directly and therefore the communication topology of the net-
work is strongly affected by node motion (as well as obstacle interference, etc.). The
mobile networking community has been especially active in studying such problems in
the context of networking protocols allowing the seamless integration of devices such as
PDAs, mobile PCs, phones, pagers, etc., that can be mobile as well as switch off and on
at arbitrary times. An example of such an effort is the recent Bluetooth specification [12].

A principle that has been discussed a number of times for enabling such collaborative
tasks is the organization of the mobile nodes into clusters [3], [6], [10], [22]. Clustering
allows hierarchical structures to be built on the mobile nodes and enables more efficient
use of scarce resources, such as bandwidth and power. For example, if the cluster size
corresponds roughly with the direct communication range of the nodes, much simpler
protocols can be used for routing and broadcasting within a cluster; furthermore, the same
time or frequency division multiplexing can be re-used across non-overlapping clusters.
Clustering also allows the health of the network to be monitored and misbehaving nodes
to be identified, as some nodes in a cluster can play watchdog roles over other nodes [18].

Motivated by these issues, in this paper we study the problem of maintaining a cluster-
ing for a set of n moving points or nodes in the plane. There is, of course, a huge literature
on clustering, as the problem in many variations has been studied by several different
communities, including operations research, statistics, and computational geometry. In
our setting we assume that all the nodes are identical and each can communicate within
a region around itself, which we take to be an L p ball. For most of the paper we focus on
a ball in the L∞ metric, that is an axis-aligned square whose side is of length r , as this
makes the analysis the simplest. We call two nodes visible to each other if they are within
the communication range of each other. We seek a minimal subset of the n nodes, the
centers, such that every node is visible to at least one of the centers. In the mobile device
setting, unlike the general facilities location context, it is appropriate to insist that the
centers are located at the nodes themselves, as these are the only active elements in the
system; thus we are interested in “discrete center” problems. We survey the literature on
the static version of this problem in Section 2. The problem is known to be NP-complete
and most of the work has focused on approximation algorithms.

Much less is known, however, about maintaining a clustering on mobile nodes. There
have been a few papers in the mobile networking community [3], [6], [10], [22] proposing
and simulating a number of distributed algorithms for cluster maintenance, but to our
knowledge there has been very little prior work on a theoretical analysis of the problem.
In particular, existing algorithms for the static version cannot be adapted to the mobile
case efficiently. Many static algorithms utilize space partition methods, i.e., they partition
space into smaller sub-regions and solve for each region separately. For instance, one
can design a simple constant approximation algorithm by choosing one center out of
every pre-fixed grid square of length r/2. Algorithms of such flavor totally ignore the
underlying topology of the node set and, as a result, suffer from many unnecessary
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solution changes during node motion. For example, if nodes are traveling together with
the same velocity, then in fact there is no need to change the solution. A “good” algorithm
should only undergo solution changes that are necessary. Another desirable property is
that the algorithm can be implemented in a distributed manner on nodes with modest
capabilities, so as to be useful in the mobile ad hoc network setting. As nodes move
around, we need efficient ways of incrementally updating the solution, based on local
information as much as possible. We formalize such properties in our study.

In this paper we present a new randomized clustering algorithm that provides a set
of centers that is an O(1) approximation to the optimal discrete center solution. Our
algorithm uses O(log log n) rounds of a “center nomination” procedure in which each
node nominates another node within a certain region around itself to be a center; a round
of the nomination procedure can be implemented in O(n log n) time. Furthermore, we
show how this approximately optimal clustering can be maintained as the nodes move
continuously. The goal here is to exploit the continuity of the motion of the nodes to
avoid recomputing and updating the clustering as much as possible. We employ the
framework of Kinetic Data Structures (KDS) [4], [11] to provide an analysis of our
method. For this analysis we assume that nodes follow posted flight plans, though they
may change them at any moment by appropriately notifying the data structure. The
correctness of the clustering is certified by a set of conditions, or certificates, whose
predicted failure times are inserted as events into an event queue. At each certificate
failure the KDS certification repair mechanism is invoked to repair the certificate set
and possibly the clustering as well. We show that the proposed structure is responsive,
efficient, local, and compact. Certificate failures and flight-plan updates can be processed
in expected time O(log3.6 n) and O(log n log log n), respectively. Under the assumption
of pseudo-algebraic motions for the nodes, we show that our structure processes at most
O(n2 log log n) events (certificate failures). We also give a construction showing that for
any constant c > 1, there is a configuration of n points moving linearly on the real line
so that any c-approximate set of centers must change !(n2/c2) times. Thus, even though
an approximate clustering is not a canonical structure [1], we can claim efficiency for
our method.

To summarize, our clustering algorithm has a number of attractive properties:

• We can show that the clustering produced is an O(1) approximation.
• The clustering generated by the algorithm is smooth in the sense that a point’s

movement causes only local clustering changes. This is in contrast to the optimal
clustering solution, which may undergo a complete rearrangement upon small
movements of even a single point.

• In the KDS setting the algorithm also supports dynamic insertion and deletion of
nodes, with the same update bound as for a certificate failure, in addition to the
mentioned properties of our KDS.

• The algorithm can be implemented in a distributed fashion: each node only reasons
about the nodes visible to it in order to carry out the clustering decisions. In fact, the
algorithm can be implemented without any knowledge of the actual positions of the
nodes—only knowledge of distances to a node’s visible neighbors are necessary.

Because of these properties, our algorithm has many applications to ad hoc wireless
networks. We defer the detailed discussion to Section 5.3.
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The remainder of the paper is organized as follows. Section 2 summarizes previous
work on discrete centers and related problems. Section 3 introduces the basic algorithm
and analyzes the approximation factors for the clusterings it produces. Section 4 describes
a hierarchical version of the algorithm and proves the constant approximation bound.
Section 5 shows how this clustering can be maintained kinetically under node motion and
analyzes the performance of the algorithm in both centralized and distributed settings.
Finally Section 6 concludes with some directions for future research.

2. Previous Work

There is little prior work on this specific mobile clustering problem. The static version
of the problem is known to be NP-complete [9] and to admit a PTAS (polynomial time
approximation scheme). It is equivalent to finding the minimum dominating set in the
intersection graph of unit disks. The dominating set problem is defined as follows. Given
a graph G = (V, E), find a minimum size subset V ′ of vertices, such that every vertex
in V \V ′ is adjacent to some node in V ′. For our problem we build a graph G on all the
points and create an edge between two points if a disk of size r centered at one point
contains the other point. The goal is to find the minimum dominating set in G.

The dominating set problem on general graphs is NP-complete and hard to approx-
imate as well. In fact, no algorithm with approximation factor better than (1 − ε) ln n
exists unless NP ⊂ DTIME(|V |log log|V |) [8]. A greedy algorithm can construct a so-
lution of size k∗ log n, where k∗ is the size of the optimal solution (this follows from
a reduction to the set cover problem). For the dominating set in an intersection graph,
Hunt et al. [14] gave a PTAS, providing a solution of size no more than (1 + ε)k∗, for
any constant ε > 0. The basic idea of the PTAS comes from an algorithm by Hochbaum
and Maas [13] for the continuous variant, in which centers can be arbitrary points on the
plane. Roughly speaking, the method in [14] divides the space into strips of a certain
width, and a sub-problem is formed by grouping several consecutive strips together and
proceeding recursively.

The networking community has developed many protocols to deal with changing
network topologies. However, no theoretical bounds have been derived for many of these
heuristics. We note that our basic algorithm is similar to the Lowest-ID Cluster Algorithm
proposed by Ephremides et al. [7]. Experiments show that this scheme works well in
practice. A similar idea leads to the Max-Min D-clustering scheme that was proposed
by Amis et al. [2]. For the connected dominating set problem, Wu and Li proposed a
distributed algorithm that performs badly in the worst case (O(n)-approximation) but
works well in simulation [26].

3. Basic Algorithm

Before presenting the algorithms, we first give some formal definitions. A d-cube with
size r is a d-dimensional axis-aligned cube with side length r . When d = 1 or 2, a d-cube
is also called an interval or a square, respectively. For two points p and q, p is said to
be r-covered by or r-visible from q if p is inside the cube with size r centered at q . For
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a set of n points (nodes) P = {p1, p2, . . . , pn} in the d-dimensional space, a subset of
P is called an r-cover of P if every point in P is r -covered by some point in the subset.
The points in a cover are also called (discrete) centers. A minimum r -cover of P is an
r -cover that uses the minimum number of points. We denote by αP(r) (or α(r) if P is
clear from the context) the number of points in a minimum r -cover of P . An r -cover is
called a c-approximate cover of P if it contains at most c · αP(r) points. When r is not
mentioned, we understand it to be 1. In this paper we are interested in computing and
maintaining O(1)-approximate covers for points moving in the space. For the sake of
presentation, we discuss our algorithms for points in one and two dimensions, but our
techniques generally can be extended to higher dimensions. In the rest of the paper, log
is understood to be log2, and ln to be loge, unless otherwise specified in the context. This
distinction is important because in a few places, log appears in exponents, and we have
to make the base explicit in order to give precise asymptotic bounds.

In the following we first present the algorithms for the static version of the problem
and later describe their implementation for moving points.

3.1. Description of the Basic Algorithm

The algorithm, which is distributed in nature, is the following: we impose a random
numbering (a permutation of 1, 2, . . . , n) onto the n points, so that point pi has an index
Ni . In most situations in practice each mobile node is given a unique identifier (UID)
at set-up time, and these UIDs can be thought of as providing the random numbering
(either directly or via a hash function on the UIDs). Each point pi nominates the largest
indexed point in its visible range to be a center (note that a point can nominate itself if
there is no other point with larger index inside its range). All points nominated are the
centers in our solution. A cluster is formed by a selected center and all the points that
nominated it.

First, we note that randomization is essential for the performance of our scheme. With-
out randomization, the only approximation bound that holds, even in the one-dimensional
case, is the trivial O(n) bound. For example, consider the one-dimensional case in which
n points are equally spaced along a unit interval, with their indices increasing mono-
tonically from left to right. Each point in the left half of the set has a different center,
which is the rightmost point within distance 1

2 of it. Thus the number of centers pro-
duced by the algorithm is n/2, even though the optimal covering uses only a single
center.

In the following we are able to show that for any configuration, if the ordering is
assigned randomly, the basic algorithm yields a sub-linear approximation (log n in one
dimension, and

√
n in higher dimensions) with high probability.

3.2. Analysis for the Basic Algorithm

3.2.1. Analysis for the One-Dimensional Case. As a warm-up, we first present the
analysis for this algorithm in the one-dimensional case, where points lie along the real
line and the unit square corresponds to the unit interval.
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Fig. 1. Visible range in one dimension.

Lemma 3.1. If V ′ is a subset of the points that are mutually visible to each other, then
there is at most one point in V ′ nominated by points in V ′.

Let the optimal centers be Oi , i = 1, 2, . . . , k. We partition each unit interval Ui

centered at Oi into two sub-intervals with Oi as the dividing point. We define the vis-
ible range of an interval to be all the points on the line that are visible to at least one
of the nodes in the interval and call nodes in the visible range the visible set for that
interval.

Theorem 3.2. The basic algorithm has an approximation factor of 4 ln n + 2 in expec-
tation.

Proof. It suffices to show that, for each sub-interval S, the number of centers nominated
by points in S is at most 2 ln n + 1. The visible range of S is contained in an interval of
size 3

2 as shown in Fig. 1. We use S$ to denote the portion of the interval to the left of S
and Sr for the right portion. Note that the points in S are mutually visible. Lemma 3.1
shows that all the points in S nominate at most one center in S.

Now we calculate the expected number of centers in Sr that are nominated by points
in S. Let x = |S| and y = |Sr| be the number of nodes in the respective sub-intervals.
Scan all points from left to right in Sr. The i th point in Sr can be nominated by a point in
S only if it has the largest index compared with all points to its left in S ∪ Sr. Therefore,
the expected number of centers in Sr is no more than

∑y
i=1(1/(x + i)) < ln n. A similar

argument works for S$, and we can conclude that all points in S nominate at most 2 ln n+1
centers.

We remark that the approximation bound is asymptotically tight. Consider the follow-
ing situation in Fig. 2: the unit interval centered at p is divided into two sub-intervals S$

and Sr. S$ contains
√

n evenly distributed points, each of which can see
√

n more points
in Sr from left to right. In this configuration, with probability 1/2, the leftmost point q
in S$ nominates a point in the first group of

√
n points in Sr. This is because q sees 2

√
n

points (
√

n in S$ and another
√

n in Sr). Under a random numbering, the point with the

1 2 3 4

Fig. 2. Lower bound for the one-dimensional case.
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maximum rank falls in Sr with probability 1/2. In general, a point in the i th group of Sr

is nominated by the i th point in S$ with probability 1/(i +1). Thus the expected number
of centers (in Sr alone) is

∑

√
n

i=1(1/(i + 1)) = !(log n). However, a single center at p
covers all the points.

We can also prove that the O(log n) upper bound holds with high probability. This
fact is useful in our hierarchical algorithm, which achieves a constant approximation
factor, and in our kinetic maintenance algorithms.

Theorem 3.3. The probability that the basic algorithm selects more than ck∗ ln n cen-
ters is O(1/n%(c2)), where k∗ is the optimal number of centers.

Proof. We divide the optimal intervals in the same way as in the proof of Theorem 3.2.
Consider a sub-interval S and its right portion Sr. We look for the fraction of random
numberings such that points in S nominate not too many centers in Sr. We sort all points
in S ∪ Sr according to their coordinates from left to right into a sequence of m points. The
sequence of their indices can be viewed as a random permutation on numbers 1, 2, . . . , m.
Each center in Sr must have a bigger index than all the other points to its left. Thus, to
guarantee that points in S nominate no more than s centers in Sr, it suffices to ensure
that the total number of left-to-right maximal indices in the sequence is no more than s.
The number of permutations with s left-to-right maxima is known as the Stirling number
C(m, s), which is asymptotically equal to m! e−θ2/2/

√
2π , for s = ln m + θ

√
ln m, as

m → ∞ and θ/m → 0 [24]. Let x be the random variable of the number of left-to-right
maxima in this permutation. Then we have

Prob(x ≥ s) =
∫ ∞

s
P(l) dl ≤

∫ ∞

s

C(m, l)
m!

dl.

If we set s = c ln n, this formula becomes

Prob(x ≥ c ln n) ≤
∫ ∞

(c−1)
√

ln n

e−θ2/2

√
2π

√
ln m dθ

≤
√

ln m
π

∫ ∞

(c−1)(
√

ln n/
√

2)

e−x2
dx

≤ n−(c−1)2/2

√
2π(c − 1)

≤ n−%(c2).

For O(k∗) sub-intervals, since each needs to be considered only twice for its left and right
points, the probability that there are more than ck∗ ln n centers is less than %(n) n−%(c2),
which is O(n−%(c2)).

3.2.2. Analysis for the Two-Dimensional Case. Unfortunately Theorem 3.3 does not
extend to higher dimensions. We will show that in two (and higher) dimensions, the
method above produces a %(

√
n log n) approximate cover with high probability. The

analysis is similar to the one-dimensional case. Again, we consider the sub-squares with
side length 1

2 . For such a square S, suppose that L is the visible range of S. Clearly, L
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Fig. 3. Visible range in two dimensions.

is a square of side length 3
2 and can be partitioned into nine sub-squares where S is the

center one (Fig. 3). Now, we have the following lemma:

Lemma 3.4. Suppose that |L| ≤ m. Then the number of centers nominated inside
S is O(

√
m) in expectation. Furthermore, the probability that S contains more than

8
√

m ln m + 1 centers is bounded by O(1/m ln m).

Proof. We need to consider only those points inside L . It suffices to bound the number
of centers nominated by points in each sub-square S′ of L . If S′ = S, since all the points
are mutually visible in S, there can be at most one point nominated. For S′ += S, suppose
that x = |S|, y = |S′|. A point p ∈ S can be nominated by a point q ∈ S′ if q finds that
p has the largest index in its visible range. Since q sees all points in S′, p must have
rank higher than all the points in S′. Thus, the probability that p can be nominated is
at most 1/(1 + y). Thus, in expectation, there are at most x/(1 + y) points nominated.
On the other hand, since there are only y points in S′, there can be at most y centers
nominated by points in S′. The expected total number of centers is therefore no more
than min(y, x/(1 + y)) ≤

√
x + y + 1 − 1 <

√
m.

Furthermore, if y <
√

m ln m, then we know that S′ cannot nominate more than√
m ln m points. Otherwise, S′ contains y >

√
m ln m points. In order to nominate s

points in S, S must contain at least s points with higher ranks than all the points in S′.
That is, S must contain the s highest ranked points in S ∪ S′.

The probability for this to happen is
(

x
s

) /(

x + y
s

)

= x! (x + y − s)!
(x + y)! (x − s)!

<

(

x
x + y

)s

<
(

1 − y
m

)s
<

(

1 −
√

m ln m
m

)s

.

Thus, if s >
√

m ln m, we have

Prob(x ≥ s) <

(

1 − ln m√
m

)

√
m ln m

<

(

1
e

)ln2 m

= O
(

1
m ln m

)

.

Summing over all the nine sub-squares, we see that the expected number of centers
nominated in S is bounded by O(

√
m), and, with high probability, the number of centers

nominated is bounded by O(
√

m ln m).
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1 2 3 4

Fig. 4. Lower bound for the two-dimensional case.

By Lemma 3.4, it is easy to obtain

Theorem 3.5. For points in the plane, the algorithm has an approximation factor of
O(

√
n) in expectation. Further, the probability that there are more than

√
n ln n · k

centers is O(1/nln n−1), where k is the optimal number of centers.

Proof. Consider an optimal covering Ui , 1 ≤ i ≤ k. We partition each Ui in the optimal
solution into four quadrant sub-squares and apply Lemma 3.4 to each sub-square. Since
there are at most O(n) sub-squares, the high probability result also holds.

Again, this bound is asymptotically tight. Consider the configuration in Fig. 4: the
upper left sub-square S1 has

√
n points, each of which can see a distinct set of

√
n

points in the lower right sub-square S2. Each point in S1 will nominate a point in S2 with
probability 1/2. Thus the expected number of centers in S2 is !(

√
n). We remark that in

this analysis, the use of the unit square and the dimensionality is not essential. It is easy
to extend the analysis to any centrally symmetric covering shape in any dimension; the
constant factors, however, depend on the covering shape and the dimensionality.

Note also that the worst-case examples in Theorems 3.2 and 3.5 require a significantly
non-uniform distribution of the points. The distributions encountered in practice are
much less skewed, and the basic algorithm returns much better results, as experiments
show [10].

4. Hierarchical Algorithms for Clustering

The basic algorithm is simple, but it achieves only an O(
√

n) approximation for points
in the plane. To obtain a constant-factor approximation, we use a hierarchical algorithm
that proceeds in a number of rounds. At each round we apply the basic algorithm to
the centers produced by the previous round, using a larger covering cube. Suppose that
δi = 2i/log n, for i > 0. Initially, set P0 to be P , the input set of points. At the i th step, for
1 ≤ i < log log n, we apply the basic algorithm using squares with side length δi to the
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set Pi−1 and let Pi be the output. The final output of the algorithm is P ′ = Plog log n−1. (To
make our analysis fully rigorous, we would need to use -log n. and -log log n. instead
of log n and log log n; however, in the interest of readability, we omit the floor functions
from this paper.) We claim that:

Lemma 4.1. P ′ is a 1-cover of P .

Proof. We actually prove a stronger statement: Pi is a (2i+1/log n)-cover of P .
We proceed by induction. The assertion is clearly true when i = 0. Suppose that it

is true for i , i.e., every point p ∈ P can be covered by a size 2i+1/log n square centered
at a point q ∈ Pi . If q is also in Pi+1, then p is covered. Otherwise, there must be a q ′

so that q nominates q ′ at the (i + 1)th step. Thus, p is covered by q ′ with a square with
side length 2i+1/log n + δi+1 = 2i+2/log n. That is, Pi+1 is a (2i+2/log n)-cover of P .

In the following we bound the approximation factor for P ′. To explain the intuition,
we first consider the situation when P admits a single center, i.e., there is a unit square
that covers all the points in P . Recall that α(x) denotes the number of centers of an
optimal covering of P by using squares with side length x . First, we observe that

Lemma 4.2. α(x) ≤ 4/x2.

Proof. We uniformly divide the unit square into 4/x2 small squares of size x/2. We
then pick one point from each non-empty small square, which gives an x-cover with at
most 4/x2 centers.

According to Theorem 3.5, the expected size of Pi+1 is at most c
√

|Pi |α(δi+1), for
some constant c > 0. Denote by ni the size of Pi . We have the following recursive
relation:

n0 = n, ni+1 ≤ c
√

niα(δi+1) ≤ c
√

ni
4 log2 n

22i+2
.

By induction, it is easy to verify that

ni ≤ (c2 log4 n)n1/2i

42i−4
.

Thus |P ′| = nlog log n−1 ≤ c2214 = O(1).
We cannot apply this argument directly to the general case because α(x) can be

as large as %(n). In order to establish a similar recursive relation, we consider points
restricted to lie in squares of a certain size. For any square S with side length δi , let mi (S)

denote the expected value of |Pi ∩ S|. Further, let mi denote the maximum of mi (S) over
all the squares S with size δi . We then have the following relation between mi ’s.

Lemma 4.3. mi+1 ≤ c
√

mi , for some constant c > 0 and any 0 ≤ i < log log n − 1.
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Proof. Consider a square S of side length δi+1. Its visible region L , with respect to side
length δi+1, is a square with side length 2δi+1 = 4δi . Thus L can be covered by 42 = 16
squares with side length δi . That is, |Pi ∩ L| ≤ 16mi in expectation. By Lemma 3.4, we
know that the expected number of points inside S that survive after the (i + 1)th step
of the algorithm is O(

√
|Pi ∩ L|) = O(

√
mi ). Thus, we have mi+1 ≤ c

√
mi , for some

constant c > 0.

Now, we can prove that

Theorem 4.4. P ′ is a constant approximation to the optimal covering of P with unit
squares in expectation.

Proof. Clearly, m0 ≤ n. Solving the recursive relation in Lemma 4.3, we find that
mi ≤ O(c2n1/2i

). Setting i = log log n − 1, we have m log log n−1 = O(1), i.e., for
a square S with side length 1

2 , the expected number of points of P ′ inside S
is O(1).

Now, suppose that an optimal cover uses k unit squares. We can then cover all the
points by 4k squares with side length 1

2 . Since each of these squares contains O(1) points
in P ′ in expectation, the total number of points in P ′ is bounded by O(k).

In addition, we have:

Corollary 4.5. For a modified version of the hierarchical algorithm, i.e., we stop the
center election process as soon as mi drops below log n, then the number of centers
generated is an O(log3 n) approximation to the optimal cover of P , with probability
1 − o(1).

Proof. From Lemma 3.4, at round i , mi+1 ≤ 8
√

mi ln mi + 1, with probability 1 −
O(1/m ln mi

i ). So mi+1 ≤ c′m1/(2−δ)
i for some constant c′ and 0 < δ < 1. In this corollary

we change the base of the log function from 2 to 2 − δ, so mi ≤ c′(2−δ)/(1−δ)n1/(2−δ)i
.

To obtain an O(log3 n) approximation, we could stop the center election process as
soon as mi drops below log n. For a square of side length 1, the total number of cen-
ters inside is O(log3 n), because the size of squares at level i is at least 1/log n. We
achieve this bound with probability bigger than (1 − O(1/(log n)ln log n))log log n−1 ≥
1 − o(1).

5. Kinetic Discrete Clustering

To kinetize the algorithm, we place a half-size square centered over each point. If two
such squares intersect, we know the corresponding points are mutually visible. In this
section when we say “squares,” we refer to these half-size squares.
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5.1. Standard KDS Implementation

The intersection relation between two squares can change only at discrete times. If
two squares of the same size intersect with each other, one square must have a cor-
ner inside the other square. Therefore, we can maintain the left and right extrema of
squares in x-sorted order and the top and bottom extrema of squares in y-sorted or-
der. The certificates of the KDS are the ordering certificates for the x- and y-sorted
lists of square extrema. We maintain the lists containing the extrema of active squares
for each level of the hierarchy. An event is a certificate failure. When an event hap-
pens, we first check whether it is a “real” event, i.e., whether it causes two squares
to start/stop intersecting. When two squares S1, S2 start intersecting, we will need to
check the square with the lower rank, say S1, to see if its nomination has a lower rank
than S2. If so, we need to change S1 to point to S2. If S1, S2 stop intersecting, we need
to check if S1 nominated S2. If so, we need to find another overlapping square with
the highest rank. To answer this query efficiently, we maintain a standard range search
tree [19] for the n points. For our purpose, the internal nodes of the second-level bi-
nary trees in the range tree are augmented with the maximum index of the points stored
at descendants of each node. This will let us find the points within a query square
that are larger than some query index in O(log2 n) time. To maintain the range search
trees kinetically, we keep sorted lists of the x- and y-coordinates of the points them-
selves, in addition to the sorted lists containing the extrema of the squares on each
level. A range tree can be updated by deleting a point and re-inserting it in the right
place [5].

For the hierarchical algorithm, we need to maintain these structures for each level. In
addition, we also need to insert or delete a point to or from a level, as a consequence of
an event happening at a lower level. This requires the sorted lists and range search
trees used in the basic algorithm above to be dynamic. These requirements can be
easily satisfied by maintaining balanced binary search trees and dynamic range search
trees.

5.2. Kinetic Properties

This KDS has most of the properties of a good KDS [4]. We assume the points have
bounded-degree algebraic motion in the following arguments.

To analyze the efficiency, i.e., the number of events, of our algorithms, we first give
some lower bound constructions.

Lemma 5.1. The number of changes of the optimal cover for n points in motion is
%(n3) in the worst case.

Proof. Consider the graph G in which each vertex represents a point and each edge
joins a visible pair of points. Clearly, the minimum discrete covering of the points is
exactly the same as the minimum dominating set of the graph. The graph can change
only when two points become or cease to be visible to each other. For bounded degree
algebraic motions, this can happen only O(n2) times. For each such event, the change to
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Fig. 5. Lower bound for optimal coverings.

the minimum covering is at most O(n). Thus, in the worst case, the number of changes
is O(n3).

We now construct an example in which any optimal cover must change %(n3) times.
The construction uses 6m + 6 static points along the perimeter of a rectangle [0, R] ×
[0, 1.6], where R = 0.4(3m + 1). The left and right sides of the rectangle have three
points apiece, located at (0, 0.4i) and (R, 0.4i) for i = 1, 2, 3. The top and bottom
sides of the rectangle have 3m points apiece, located at (0.4i, 0) and (0.4i, 1.6), for
i = 1, . . . , 3m. We label the points counterclockwise from 0 to 6m + 5 as shown in
Fig. 5. In this configuration, each point i can see the points i − 1, i + 1 (modulo 6m + 6)
and no other points. Thus, an optimal cover contains 2m + 2 centers and can be realized
in one of three ways by using points 3i , 3i + 1, or 3i + 2, respectively, which we call
types 0, 1, and 2, respectively. Clearly, to change from one type to another, we need to
make %(m) changes to the cover.

Now consider what happens when a single point p moves linearly along the x-axis.
For any i , suppose that qj is the middle point between the pair 3i + j, 3i + j + 1, for
0 ≤ j ≤ 2. When p is located at qj , the only points p can see are 3i + j and 3i + j + 1.
Thus, an optimal cover has to use either 3i + j or 3i + j + 1 as a center. In other words,
an optimal cover has to be of type j or j +1. It is easily verified that when p moves from
q0 to q2, an optimal cover has to change its type. Therefore, an optimal cover undergoes
%(m) changes when p moves from q0 to q2. When p moves from (0, 0) to (R, 0), the
number of changes is %(m2). We repeat this procedure by sending m points along the
x-axis, passing through the interval [0, R] one at a time. This causes a total of %(m3)

changes to optimal covers. The total number of points is n = 7m +6, so the total number
of center changes is %(n3).

While the optimal cover in this construction changes !(n3) times, a 2-approximate
cover does not change at all—we can simply use an optimal cover for the static points
and assign each moving point to be a center. However, in the following, we will show
that for any constant c, there is a set of moving points that forces any c-approximate
cover to change !(n2/c2) times.

Theorem 5.2. For any constant c > 1, there exists a configuration of n points moving
linearly on the real line so that any c-approximate cover undergoes !(n2/c2) changes.
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Fig. 6. Lower bound approximate coverings.

Proof. In the following we assume that c is an integer and n = 2cm, where m > 2c is
an integer. We group n points into m groups, each containing 2c points. We label each
point by (i, j) where 0 ≤ i < m is the group number, and 0 ≤ j < 2c is the numbering
within each group. Initially, all the points in the i th group are located at i · 2m, and the
speed of the point (i, j) is j · 2m. To summarize, we consider points p(i, j, t) defined
as p(i, j, t) = (i + j t) · 2m, for 0 ≤ i < m, 0 ≤ j < 2c, and t ≥ 0.

Whenever t = k + 1/m, for some integer k < m, p(i, j, t) = (i + jk + j/m) · 2m =
2(i + jk)m + 2 j . For any two distinct points (i, j) and (i ′, j ′), if i + jk += i ′ + j ′k, then
|p(i, j, t) − p(i ′, j ′, t)| > 2m − 4c ≥ 2; if i + jk = i ′ + j ′k, since (i, j) and (i ′, j ′)
are distinct, j ′ += j and |p(i, j, t) − p(i ′, j ′, t)| ≥ 2. Thus, at time t , no two points are
within distance 1. In other words, any covering has to have n centers (Fig. 6).

On the other hand, at time t = k for an integer k < m, since p(i, j, k) = (i + jk) · 2m
where 0 ≤ i < m, 0 ≤ j < 2c, and k < m, each point has position 2sm for some
0 ≤ s < m + 2ck. That is, at t = k, the minimum covering has at most m + 2ck centers
(Fig. 6). Thus, a c-approximate cover may have at most c(m + 2ck) centers. Therefore,
between times k and k +1/m, there are at least n −c(m +2ck) = n/2−2c2k changes to
any c-approximate covering. In total, for all 0 ≤ t < K , the number of changes is at least
∑

0≤k<K (n/2 − 2c2k) > K n/2 − c2 K 2. Setting K = n/4c2 < m, we have established
that the total number of changes is !(n2/c2).

Lemma 5.3. The number of events in our basic algorithm is O(n2).

Proof. An event is the failure of an ordering certificate in an x- or y-sorted list of square
side coordinates or point coordinates. Since the points have bounded-degree algebraic
motion, each pair of points can cause O(1) certificate failures.

Theorem 5.4. The number of events processed by our hierarchical KDS is at most
O(n2 log log n), and hence the KDS is efficient.

Proof. We maintain x- and y-ordering certificates on each of log log n levels. As in
Lemma 5.3, each pair of points can cause O(1) certificate failures on each level. In
addition, in the hierarchical KDS, we need to consider the events for maintaining the
range search tree. Those events can happen when two points swap their x- or y-ordering.
Such an exchange requires possible updates of the range trees on all levels where the
exchanging pair is present. Again, there are O(n2) exchange events at each level.
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We now proceed to examine the cost of processing the kinetic events.

Theorem 5.5. The expected update cost for one event is O(log3.6 n). Hence the KDS
is responsive in an expected sense.

Proof. When two points exchange in x- or y-order, only the relevant range search trees
need to be updated. We need O(log2 n) time to update each of log log n range trees.

When two points pi , pj start/stop being mutually visible at any level of the hierarchy,
we can update the centers involved with pi , pj in O(log2 n) time, since we may need to
search for a replacement center in the range tree. One new center may appear and one
old center may disappear; these changes bubble up the hierarchy.

On hierarchy levels above the bottom, we divide the changes into two kinds, those
caused by the motion of the points in that level and those caused by insertion or deletion
of points bubbled up from lower levels. The number of changes of the first kind per event
is a constant.

Let us consider the insertion of point p. The only points that may change their
centers are those in p’s visible range S. We divide S into four quadrants Si , each with
ki (i = 1, 2, 3, 4) points. If there is some point in Si that nominates p to be its center,
the index of p must be bigger than the indices of all the ki points. The probability of this
occurring is 1/(ki + 1). Therefore, the expected number of point-center changes caused
by the appearance of p is at most

k1

k1 + 1
+ k2

k2 + 1
+ k3

k3 + 1
+ k4

k4 + 1
+ 1 ≤ 5.

Assuming that p becomes a center, how many centers does it replace? For a given
quadrant Si , suppose the number of centers its points nominate is mi ≤ ki . At most one
of these centers is inside Si . If m ′ points are outside Si , the probability that p replaces
j of them is at most 1/(m ′ + 1). Hence the expected number of centers replaced in a
single quadrant is upper bounded by either

1
ki + 1

(

1 + 1 + · · · + mi − 1
mi

)

= mi + 1
2(ki + 1)

≤ 1
2
,

if one of the centers is inside Si , or by

1
ki + 1

(

1 + · · · + mi

mi + 1

)

= mi

2(ki + 1)
≤ 1

2

if none of the centers is inside Si . Each replaced center may stop being a center at this
level of the hierarchy if it is nominated by no points outside S. Thus the expected number
of centers created/destroyed in this level (inserted/deleted at higher levels) due to the
appearance of p is at most 4 × 1

2 + 1 = 3.

We can make a similar argument for the disappearance of a point. So the expected
total number of point-center changes at all levels of the hierarchy per event is at most

5 × (3log log n + 3log log n−1 + · · · + 1)

which is O(3log log n) = O(log1.6 n).
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Since insertion or deletion in a range search tree costs O(log2 n), the total expected
update cost is O(log3.6 n).

Theorem 5.6. The KDS uses O(n log n log log n) storage. Each point participates in
at most O(log log n) ordering certificates. Therefore, the KDS is compact and local.

Proof. Range trees take O(n log n) space per level. All other data structures use less
space. Each point participates in at most O(1) ordering certificates in each level.

5.3. Distributed Implementation

The KDS implementation requires a central node to collect all the information and per-
form the hierarchical clustering algorithm. For wireless mobile ad hoc networks [23],
all the wireless nodes are homogeneous and a central node is not available most of
the time. Furthermore, the cost of communicating all the data to such a node can be
prohibitive. Our hierarchical algorithm can be implemented in a distributed manner,
making it appropriate for mobile networking scenarios. Specifically, the nodes in ad
hoc wireless networks use omnidirectional antennas with a broadcast nature, i.e., a
single transmission can be received by all the nodes within a certain neighborhood.
In the most popular power-attenuation model [20], a node can send out some mes-
sages whose signal power drops as 1/rα where r is the distance from the transmit-
ter antenna and α is a constant between 2 and 4. We assume each node can adjust
its transmitting power so that only the nodes within a certain range can receive the
messages.

To implement the hierarchical clustering algorithm, we first describe how to obtain
range information about internode distances. Each node broadcasts a “who is there”
message and waits for replies. Each node that hears the request responds. The hierarchy
can be implemented by having nodes broadcast with different power for each level or by
other local positioning mechanisms. When the nodes move around, each node broadcasts
these “Hello” beacons periodically, with a time interval dependent on its moving speed.
Therefore, each point keeps track of its neighborhood within different size ranges. When
a neighbor enters or leaves any of the log log n ranges of a node, each node involved
checks whether it needs to update its center. When it nominates a center that is not
nominated by any other node, the center will also be added to a higher level and may
cause updates in that level. If a node ceases to be pointed to by any node, then it also has
to be deleted from higher levels in the hierarchy. Clearly, all of these operations can be
done locally without centralized control.

Notice that by the power-attenuation model, the energy consumed at each node is kept
low, since each node transmits only within a small neighborhood. We emphasize here
that range information (inter-node distances) is sufficient for each node to select a center
for each level. This information can often be obtained using the node radios themselves
or acoustic range-finding ultrasonic devices [25]. No global positioning information is
needed to implement our clustering algorithm.

This contrasts with many algorithms proposed for mobile ad hoc networks [16], [15],
[17], which require that the exact location of each wireless node be known. Obtaining
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global position information is expensive—a GPS receiver per node is a costly addition.
Providing only a modest number of nodes with GPS and computing the positions of the
others by multi-lateration techniques [21] is possible for static nodes, but quickly breaks
down when most nodes are moving, as the convergence of the method is slow. A final
drawback of GPS is that it does not work for indoor situations.

In the distributed implementation described above, the total storage needed is O(sn),
where s is the maximum number of nodes inside a node’s range. In the worst case, this
can be %(n2), but in practice, s is often small. Furthermore, we can restrict the storage
of each node to be nε, where 0 < ε < 1, and still get a constant approximation. If we
let each node keep up to O(nε) neighbors and select a center among them, then we have
the following:

Lemma 5.7. In two-dimensional space, the number of centers nominated inside a
unit-size square S by the space-restricted one-level algorithm is O(nmax(1−ε,1/2)) in
expectation.

Proof. We use the same notation as Lemma 3.4. Suppose L is the visible range of S.
L can be divided into nine sub-squares of size 1

2 . Consider any such sub-square S′, and
suppose m = |L|, x = |S|, y = |S′|. For points in S′ such that the number of neighbors
is ≤ nε, from Lemma 3.4, the expected number of centers in S that are nominated by
those nodes in S′ is bounded by

√
m ≤

√
n. The rest of the points in S′ store only nε

neighbors. A point p in S can be nominated by those points only if p has the largest index
among nε points. So the probability is at most 1/nε. The expected number of centers in
S nominated by points in S′ is no more than x/nε ≤ n1−ε.

Let cε denote max(1 − ε, 1
2 ).

Theorem 5.8. The expected number of centers generated by the space-restricted hier-
archical algorithm is a constant-factor approximation to the optimum.

Proof. Recall the notations in Section 4. From the previous lemma we established the
recurrence m ′

i+1 ≤ cmcε

i . So mi ≤ c1/(1−cε)nci
ε . We simply change the base of the log

function from 2 to 1/cε in the proof of Theorem 4.4. After log log n −1 rounds, we again
obtain a constant approximation.

6. Summary and Future Work

Our randomized hierarchical algorithm can be extended to the case in which the ranges
are any congruent convex shape and to higher dimensions. Most of the analysis for the
two-dimensional case works for any dimension d , except that the constant approximation
factor depends exponentially on d. Our algorithms also support efficient insertion or
deletion of nodes.

This work also raises several open problems. In the standard KDS setting, where we
have nearly linear space, our center updating algorithm exploits the fact that the ranges
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are aligned congruent squares. Can we find a similar algorithm in a standard KDS setting
with congruent disk ranges instead? Finally, our algorithm is randomized and it would
be interesting to find a deterministic algorithm for the mobile centers problem.

We note that our algorithm clusters are based solely on the positions of the mobile
nodes. It would be interesting to develop clustering strategies that utilize additional
information about the node motions, say both position and velocity. Such clusterings
may be far more stable under motion, although they may require more clusters. In fact,
a trade-off between the quality and stability of a clustering needs to be investigated.
Besides clustering, numerous other problems for ad hoc networks can be studied in the
same style as the clustering problem, including network connectivity, route maintenance,
node misbehavior detection, etc. We should also note that the constant approximation
ratio in our analysis is quite large. That is partly because our analysis applies in the worst
case. In practice, we can expect much better performance.

We believe that kinetic clustering is a fundamental problem for the organization of
mobile devices and deserves further study. Motion models and quality measures for
different application areas need to be studied and developed further.

Acknowledgments

The authors wish to thank Michael Segal and Samir Khuller for useful discussions. The
authors also thank an anonymous referee for some useful comments.

References

1. P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger. Lower bounds for kinetic planar
subdivisions. In Proceedings of the 15th ACM Symposium on Computational Geometry, pages 247–254,
1999.

2. A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh. Max-Min D-cluster formation in wireless ad
hoc networks. In Proceedings of the 19th IEEE INFOCOM, pages 32–41, March 1999.

3. S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of the ’99 International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN ’99), pages 310–315, June 1999.

4. J. Basch, L. Guibas, and J. Hershberger. Data structures for mobile data. Journal of Algebra, 31(1):1–28,
1999.

5. J. Basch, L. J. Guibas, and L. Zhang. Proximity problems on moving points. In Proceedings of the 13th
Annual ACM Symposium on Computational Geometry, pages 344–351, 1997.

6. C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop, mobile wireless networks with
fading channel. In Proceedings of IEEE SICON ’97, pages 197–211, April 1997.

7. A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design concept for reliable mobile radio networks
with frequency hopping signaling. Proceedings of IEEE, 75(1):56–73, Jan. 1987.

8. U. Feige. A threshold of ln n for approximating set cover. In Proceedings of the ACM Symposium on
Theory of Computing, pages 634–652, 1996.

9. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane are NP-
complete. Information Processing Letters, 12(3):133–137, 1981.

10. M. Gerla and J. Tsai. Multicluster, mobile, multimedia radio network. ACM–Baltzer Journal of Wireless
Networks, 1(3):255–265, 1995.

11. L. J. Guibas. Kinetic data structures—a state of the art report. In P. K. Agarwal, L. E. Kavraki, and
M. Mason, editors, Proceedings of the Workshop on Algorithmic Foundations of Robotics, pages 191–
209. Peters, Wellesley, MA, 1998.



Discrete Mobile Centers 63

12. J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen. Bluetooth: vision, goals, and archi-
tecture. Mobile Computing and Communications Review, 2(4):38–45, Oct. 1998.

13. D. S. Hochbaum and W. Maas. Approximation schemes for covering and packing problems in image
processing and VLSI. Journal of the ACM, 32:130–136, 1985.

14. H. B. Hunt, H. Marathe, V. Radhakrishnan, S. Ravi, D. Rosenkrantz, and R. Stearns. NC-approximation
schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms, 26(2):238–274,
1998.

15. R. Jain, A. Puri, and R. Sengupta. Geographical routing using partial information for wireless ad hoc
networks. IEEE Personal Communications, 8(1):48–57, Feb. 2001.

16. B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings
of the ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages
243–254, 2000.

17. W.-H. Liao, J.-P. Sheu, and Y.-C. Tseng. GRID: a fully location-aware routing protocol for mobile ad hoc
networks. Telecommunication Systems, 18(1–3):37–60, 2001.

18. S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile ad hoc networks.
In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pages
255–265, 2000.

19. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York,
1985.

20. T. Rappaport. Wireless Communications: Principles and Practice. Prentice-Hall, Englewood Cliffs, NJ,
1996.

21. A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks
of sensors. In Proceedings of the 7th ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), pages 166–179, 2001.

22. J. Sharony. An architecture for mobile radio networks with dynamically changing topology using virtual
subnets. ACM–Baltzer Mobile Networks and Applications Journal, 1(1):75–86, 1996.

23. C.-K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice-Hall, Englewood Cliffs,
NJ, 2002.

24. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press, Cambridge,
1992.

25. A. Ward, A. Jones, and A. Hopper. A new location technique for the active office. IEEE Personnel
Communications, 4(5):42–47, Oct. 1997.

26. J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad hoc wireless
networks. In Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for
Mobile Computing & Communications, pages 7–14, 1999.

Received June 15, 2001, and in revised form January 22, 2003. Online publication May 7, 2003.


