Minimizing Movement

ERIK D. DEMAINE

MIT

MOHAMMADTAGHI HAJIAGHAYI

AT&T Labs — Research

HAMID MAHINI

AMIN S. SAYEDI-ROSHKHAR

SHAYAN OVEISGHARAN

and

MORTEZA ZADIMOGHADDAM

Sharif University of Technology

Abstract. We give approximation algorithms and inapproximability results for a class of movement
problems. In general, these problems involve planning the coordinated motion of a large collection
of objects (representing anything from a robot swarm or firefighter team to map labels or network
messages) to achieve a global property of the network while minimizing the maximum or average
movement. In particular, we consider the goals of achieving connectivity (undirected and directed),
achieving connectivity between a given pair of vertices, achieving independence (a dispersion
problem), and achieving a perfect matching (with applications to multicasting). This general
family of movement problems encompass an intriguing range of graph and geometric algorithms,
with several real-world applications and a surprising range of approximability. In some cases, we

obtain tight approximation and inapproximability results using direct techniques (without use of
PCP), assuming just that P # NP.

Categories and Subject Descriptors: F.2.2 [Theory of Computation|: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Motion planning, pebble placement, graphs, Fuclidean plane

A preliminary version of this article appeared in Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, January 2007, pages 258-267. This work was done while
M. Hajiaghayi was at MIT and CMU. E. Demaine and M. Hajiaghayi were supported in part by
NSF under grant number ITR ANI-0205445. M. Hajiaghayi was supported in part by Institute
for Theoretical Physics and Mathematics (IPM) under grant number CS1384-6-01. H. Mahini
was supported in part by Institute for Theoretical Physics and Mathematics (IPM) under grant
number CS1384-2-01.

Author’s addresses: E. Demaine, Computer Science and Artificial Intelligence Laboratory,
MIT, 32 Vassar St., Cambridge, MA 02139, USA, e-mail: edemaine@mit.edu; M. Haji-
aghayi, AT&T Labs — Research, 180 Park Ave., Florham Park, NJ 07932, USA, e-mail:
hajiagha@research.att.com; H. Mahini, A. Sayedi-Roshkhar, S. Oveisgharan, M. Zadimoghad-
dam, Department of Computer Engineering, Sharif University of Technology, Azadi St., Tehran,
Iran, e-mail: {mahini,sayedi,oveisgharan,zadimoghaddam}@ce.sharif.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20?7 ACM 1549-6325/207/0700-100001 $5.00

Transactions on Algorithms, Vol. 7, No. 7, ? 207, Pages 1-31.

2 : E. D. DEMAINE ET AL.

1 Introduction

Consider a group of firefighters surrounding a forest fire. Each firefighter is equipped
with a reliable but short-range radio (walkie-talkie) as well as limited connectivity
to a satellite (or other central location) for triangulating and sharing the approx-
imate positions of firefighters. To form an effective communication network (for
voice or data traffic), the firefighters’ radios must form a connected graph. This
scenario naturally leads to the following problem: given the current locations of the
firefighters, find the minimum distance (time) required for each firefighter to move
to reach a configuration that induces a connected radio network. More precisely, we
wish to minimize the maximum movement of the firefighters such that, in their final
positions, any two firefighters can talk to each other in the reliable radio network,
possibly using multiple hops.

Of course, this playful description of the problem is rhetorical: in reality, the
objects are not firefighters but are, say, autonomous robots with limited wireless
connectivity and limited mobility in the field because of energy and resource con-
straints, so they wish to minimize the use of these resources to form a reliable radio
network. See, for example, Corke et al. [2004a; 2004b] and Bredin et al. [2005] for
descriptions of such practical scenarios.

The problem described above is one example of a natural broader family of prob-
lems, called movement problems, which we study systematically in this article. In
particular, the firefighting problem can be abstracted into a problem called Con-
Max: minimize maximum movement to reach connectivity. This basic connectivity
problem has many variations. For example, ConSum asks to minimize the total
movement, which may be useful for reducing average power consumption; while
ConNum asks to minimize the number of firefighters (robots) that have to move.
In DirConMax, and analogously DirConSum and DirConNum, the radio connectiv-
ity is not necessarily symmetric and forms a directed network, for example, because
different radios have different power levels, and the goal is to ensure that everyone
can receive messages from a fixed root (the captain). In PathMax, PathSum, and
PathNum, the goal is to re-arrange the objects to connect two specified locations."

Many more variations arise from changing the desired property of the final config-
uration. In general, for a specified property P of configurations of objects, the goal
of a movement problem is to minimize the (maximum or total/average) movement
in a motion that ends with a configuration satisfying property P. The objects can
be represented either as points or equivalently bodies that can only be translated,
say in the plane, or as pebbles placed on the vertices of a graph that can move along
edges. Many problems in this family arise naturally in the context of robotics, par-
ticularly in organizing the behavior of swarms of robots (see, e.g., Hsiang et al.
[2003], LaValle [2006], Reif and Wang [1995], Schultz et al. [2003]).

A simple version of the movement problem is collocation, where the goal is to
move all objects to a common location. In this case, we obtain two classic prob-
lems in graph algorithms: when minimizing the maximum movement, we have the
1-center problem; when minimizing the total movement, we have the 1-median

LFor example, the firefighters might want to chain together their water hoses from a fire hydrant
to the fire.

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 3

problem. These problems have well-known polynomial-time exact solutions. In
the geometric plane, minimizing maximum movement becomes smallest enclosing
disk, which is also polynomial, and minimizing total movement becomes the Weber
problem, which can be solved up to error € in time polynomial in n in lg(1/e).

Another interesting version of the movement problem is dispersion, where the goal
is to distribute the objects in order to guarantee a minimum pairwise separation
between the objects. In the context of a radio network, this goal is equivalent to
guaranteeing that the radio network forms an empty graph or an independent set.
Thus, we refer to this problem as IndMax, IndSum, or IndNum, according to the
objective function. This problem effectively asks to spread out the objects (e.g.,
robots) while keeping them as close as possible to their original locations. The
problem also has applications to map labeling [Doddi et al. 1997; Jiang et al. 2004;
Strijk and Wolff 2001; Jiang et al. 2003], where the goal is to find placements of
labels as close as possible to the specified features of the map such that the labels
do not overlap each other (so their centers are sufficiently separated).

Another version of the movement problem that arises in the context of broad-
casting or multicasting is to move the objects into nearby pairs so that these pairs
can exchange information. More precisely, in MatchMax, MatchSum, and Match-
Num, the goal is to minimize the movement of the objects to a position having
a perfect matching of the objects such that each matched pair can communicate
(i.e., the objects are within distance 1 of each other). This problem is essentially
a mobile version of the pseudo-matching problem (also known as path-matching)
considered in the context of broadcasting and multicasting in cut-through routed
networks [Cohen et al. 1998; Cohen 1998; Ghodsi et al. 2002]. The MatchMax prob-
lem is also closely related to one “round” of the freeze-tag problem [Arkin et al.
2002; Arkin et al. 2003; Sztainberg et al. 2004] in which a swarm of mobile robots
must collectively “wake up”, starting from a single awake robot, and moving awake
robots next to sleeping robots to awaken them.

Several of the problems considered in this article can be viewed as considering
the extent to which we exploit the mobility of existing resources to achieve desired
global properties of the network such as connectivity. Related to this endeavor is
work that considers how to augment networks (consisting of nonmobile sensors)
by adding additional resources to achieve such global properties; see, for example,
Bredin et al. [2005] and Corke et al. [2004a; 2004b]. In fact, we can view the class
of movement problems as strictly more general than these augmentation problems,
by imagining additional mobile resources initially “at infinity” and the goal is to
minimize the total movement of these resources (and therefore minimize the number
of resources moved).

1.1 MOTION PROBLEMS AND MODEL. Before we describe our specific results,
we formally define the model and the movement problems we consider.

The three general families of problems we consider are minimum mazimum move-
ment to property P, minimum total movement to property P, and minimum number
of movements to property P. In all cases, we are given an (undirected or directed)
graph G = (V, E) with |V| = n vertices, m pebbles, and a property P on “configu-
rations”. A configuration is a function assigning each pebble to a vertex of V'; more
than one pebble can be on a single vertex. We say that each such assigned vertex

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

4 : E. D. DEMAINE ET AL.

is occupied by a pebble. We are given an initial configuration for the pebbles. A
motion assigns a path 7(p) in the graph G for each pebble p, starting at the vertex
specified by the initial configuration and ending at some target vertex, also called
the target position. (Thus, pebbles can move only along edges.) The length |m(p)|
of the path is the movement of p. The mazimum movement of a motion is the
maximum length of any path; the total movement is the total length of all paths;
and the number of movements is the number of paths of nonzero length. The tar-
get vertices of pebbles define the target configuration of the motion. The goal is
to find a motion that minimizes one of these three measures subject to the target
configuration satisfying property P.

This graph-theoretic formulation of the movement problems also captures the
geometric setting. For example, the Fuclidean plane is defined by an infinite graph
whose vertices correspond to points p = (pg,py), and edges connect two distinct
vertices p and ¢ whose Euclidean distance d(p,q) = /(pz — ¢2)% + (py — qy)? is
less than 1. This definition models mobile nodes with unit communication radius.
Because the graph is infinite, there is no notion of “n”, so we define n = m, the
number of pebbles.

We define the following properties P of interest and their associated problems of
minimizing maximum movement. In most cases, we state a property P on graphs,
implicitly referring to the subgraph of G induced by the vertices occupied by pebbles
in the configuration.

(1) Minimum maximum movement to connectivity (ConMax): P is connectivity.

(2) Minimum maximum movement to connectivity in directed graphs (DirCon-
Max): P is directed connectivity from every vertex to some root vertex.

(3) Minimum maximum movement to s-¢ connectivity (PathMax): P is having a
path between two certain vertices s and ¢.

(4) Minimum maximum movement to independence (IndMax): P is that no two
pebbles occupy the same or adjacent vertices.

(5) Minimum maximum movement to perfect matchability (MatchMax): P is the
property that there is a perfect matching in the graph on pebbles in which
two pebbles p and ¢ are adjacent precisely if their distance dg(p, q) in G is at
most 1.

Analogously, we define the problems of minimizing total movement (ConSum,
DirConSum, IndSum, PathSum, and MatchSum) and minimizing the number
of movements (ConNum, DirConNum, IndNum, PathNum, and MatchNum) to
achieve the same properties. To our knowledge, none of these problems have been
considered before in an algorithmic setting.

1.2 Our REsuLTs. We prove several approximation and inapproximability
results for the problems listed above, in many cases obtaining tight bounds (as-
suming just P # NP). The various movement problems show a surprising range of
difficulty, not consistent with the nonmovement (standard) version of each problem.
For example, testing connectivity of a graph is trivial, but DirConMax and Con-
Sum are Q(n'~¢)-inapproximable, while the best approximation so far for ConMax
is O(1 + y/m/OPT) in a graph or in the Euclidean plane, and we give evidence

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 5

Max Sum Num

Con O(1 + /m/OPT) (82.1) | O(min{nlogn,m}) (§5.2) | O(m*®) (86.1)
Q(n'9) (85.1) | Q(logn) (86.1)

Path O(1 + /m/OPT) (62.3) | O(n) (§25) | polynomial ~ (§6.2)
. em 2.4) | open O(m* 6.1
DirCon Q(n'~9) E§2.5§ ' Q((logz) n) (gG.l;
Ind 1+ —= additive in R> ~ (§3) | open PTAS in R (§6.3)
Match | polynomial (84) | polynomial (85.4) | polynomial (§6.4)

r]\. r]\’
'ARER
S S

\[/

T

Fig. 1. Optimally moving the pebbles (drawn as disks) into a connected configuration requires a
global solution (drawn with arrows).

_<

N
R

>_

that even the geometric scenario is difficult. On the other hand, we give an additive
O(1)-approximation for IndMax in the Euclidean plane, even though the nonmove-
ment version (independent set) is very hard for graphs and not known to be solvable
exactly in the Euclidean plane. Yet some movement problems such as MatchMax
turn out to have polynomial-time solutions. Our hardness results are particularly
strong, yet they do not use techniques such as PCP and thus avoid any higher-level
complexity assumptions, making them of independent interest.

We focus primarily on the maximum-movement problems, proving various ap-
proximability and inapproximability results in Sections 2, 3, and 4. We then con-
sider the total-movement versions of the problems in Section 5. Section 6 considers
the number-of-movements versions. Table I summarizes all of our results.

2 Minimum Mazxzimum Movement to Connectivity

We begin with the problem of ConMax, a well-motivated problem as described in
the Introduction. To provide some intuition about the problem, Figure 1 gives an
example of a challenging instance. Here there is a “global” solution using maximum
movement of 1, but any “local” solution (such as all pebbles approaching a common
location) requires maximum movement of Q(n).

It is also not hard to see that the problem is NP-complete in general, even to
approximate better than a factor of 2. We can reduce from the Hamiltonian path
problem as follows. Given a graph G = (V| E), we subdivide each edge in E into
a path of three edges, and attach a new leaf vertex to each vertex in V. We place
two pebbles on each vertex in V' and we place one pebble on each added leaf. Any
solution to this instance of ConMax of maximum movement 1 can move the pebble
on each leaf to its neighboring vertex in V', and must move the two pebbles on each

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

6 . E. D. DEMAINE ET AL.

vertex in V toward neighboring vertices to induce a connected subgraph. Such a
solution corresponds to a connected maximum-degree-2 subgraph in G that visits
every vertex in V, that is, a Hamiltonian path in G.

2.1 O(1 + /m/OPT)-APPROXIMATION FOR CONMAX. In this section we
develop an O(1 + 1/m/OPT)-approximation algorithm for ConMax, where m is
the number of pebbles. (Note that m can be much smaller than n.) In particular,
this algorithm is an O(y/n)-approximation algorithm if the initial configuration
places at most one pebble on each vertex. We later show in Section 2.2 how to
convert this approximation algorithm, or indeed any approximation algorithm for
ConMax, to work in the Euclidean plane at a small extra cost.

THEOREM 1. There is an O(1 + y/m/OPT)-approzimation algorithm (and thus
also an O(y/m)-approzimation algorithm) for ConMaz.

Given a subset S of vertices in a graph G, the dth power induced on S, denoted
by G9[9], has vertex set S and has an edge (u,v) between two vertices u,v € S if
and only if there is a path in G between u and v with at most d edges.

LEMMA 2. Consider an instance of the ConMax problem, consisting of a graph
G and an initial configuration of m pebbles, with an optimal solution of mazimum
movement OPT. For any integer k between 0 and m/2, there is a subset S of
vertices of G satisfying the following properties:

(1) Ewvery vertex in S is occupied by a pebble in the initial configuration.

(2) The shortest-path distance between any two distinct vertices in S is greater than
2k +40PT.

(3) The (2k + 60PT + 1)th power of G induced on S is connected.

(4) Ewvery vertex v in S has at least 2k pebbles whose shortest-path distance to v is
at most k + 20PT.

(&) For every vertex w occupied by a pebble in the initial configuration, there is a
vertex u in S whose shortest-path distance to w is at most 3k + 8OPT + 1.

PrOOF. We compute S via a greedy algorithm. Initially, S is the empty set,
which satisfies Properties 1-4. In each step, if there is a vertex whose addition to
S would still satisfy Properties 1-4, we add the vertex to S.

First we prove that the greedy algorithm computes a nonempty set S, that is, at
the first step, there is a vertex we can add to S. Let T be a spanning tree of the
(connected) graph induced by the target configuration in the optimal solution OPT.
Define a center ¢ of T to be a vertex of T that minimizes the maximum distance
from ¢ to any vertex of T. We claim that c¢ is within distance k of at least 2k
target positions of pebbles, and thus the initial position u of any pebble whose final
position is ¢ is within distance k + 20PT of at least 2k initial positions of pebbles,
and therefore S = {u} satisfies Properties 1-4. The proof of this claim divides into
two cases. In Case 1, every vertex of T is within distance k of ¢, and thus the target
positions of all m pebbles are within distance k of ¢, proving the claim. In Case 2,
there is at least one vertex at distance exactly k& + 1 from c. In this case, we claim
by induction on k that there are at least 2k vertices of T" within distance k of c.
Note that we remain in Case 2 even when considering smaller values of k. In the

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement . 7

Fig. 2. Path between w and s.

base case, k = 0 and the claim is vacuous. In the general case k£ > 0, by induction,
there are at least 2k — 2 vertices of T within distance k — 1 of ¢. Because we are
in Case 2, there is at least one vertex v at distance exactly k from ¢, and at least
one vertex w at distance exactly k + 1 from c. If there are at least two vertices at
distance exactly k from ¢, then we have the claim. If vertex v is the only vertex
at distance exactly k£ from ¢, then we argue that ¢ cannot be a center. Moving ¢
one step toward v decreases the distance from ¢ to v, w, and any vertices of T' with
distance at least k, in particular decreasing w’s distance of k+ 1, while the distance
from ¢ to all other vertices (which have distance at most k& — 1) increases by at
most 1 and so the distance remains at most k. Therefore, this move decreases the
maximum distance from ¢ to any vertex of T', contracting centrality of c.

Now consider the maximal set S output by the greedy algorithm, and suppose for
contradiction that some vertex w is not within distance 3k+80OPT +1 of its nearest
vertex s in S. (If there is more than one such vertex s, we choose one arbitrarily.)
For any vertex v, let N D,, denote the distance between v and its nearest vertex in .S.
Thus, ND,, > 3k + 80PT + 1. Let w’ and s’ denote the target positions for some
pebble initially on vertex w and for some pebble initially on vertex s, respectively, in
the optimal solution OPT. Refer to Figure 2. Let P = (w' = vg, v}, v5,...,v; = s')
be a path between w’ and s’ in the (connected) graph induced by the target positions
in OPT. Let v; denote the initial position of some pebble whose target position
is v; in OPT, making choices so that vg = w and v; = s. Thus, the distance
between v; and v is at most OPT. Because v; and v;,, are adjacent in G, the
distance between v; and w;41 is at most 20PT + 1. By the triangle inequality,
ND,, < ND,,_ , +20PT + 1. Because ND,, = ND,, > 3k + 80PT + 1, because
ND,, = NDg = 0, and because ND,, decreases by at most 20PT + 1 each time
we increment ¢, there is an index r such that 2k +40PT < ND,, <2k+60PT+1.

We claim that we can add v, to S while satisfying Properties 1-4, contradicting
the maximal choice of S. By our choice of v,, we satisfy Properties 1-3. By the

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

8 . E. D. DEMAINE ET AL.

triangle inequality, the distance between w and v, is at least ND,, — ND, >
(3k 4+ 80PT + 1) — (2k + 60PT + 1) = k + 20PT. Thus, the distance between w’
and v)., namely r, is at least k + 20PT — 20PT = k. Similarly, by the triangle
inequality, the distance between v, and s is at least ND, — NDg > 2k + 40PT.
Thus, the distance between v]. and s, namely j—r, is at least 2k+40OPT —20PT =
2k+20PT > k. Therefore, v)._;,v]_j 1, Vps v vy Upyp_1, U4y, are 2k+2 vertices
along the path P. The corresponding vertices vy_g, Up—f41, .-« sUpy -« vy Uptk—1, Utk
are occupied by pebbles and have distance at most k + 20PT from v,.. Hence, we

satisfy Property 4. [

LEMMA 3. Given an instance of ConMax problem with m pebbles and with an
optimal solution of maximum movement OPT, for any integer k between 0 and m/2,
there is a polynomial-time algorithm to find a motion with mazximum movement at
most 5k + 140PT + 2 4+ (60PT + 1)m/(2k).

PrOOF. The algorithm proceeds as follows.

(1) Find a subset S of vertices of G with the properties of Lemma 2.
(2) Move each pebble to its nearest vertex in S.

(3) Let H be the (2k + 60PT + 1)th power of G induced on S. By Property 3,
H is connected, so let T' be a spanning tree of H, and root it at an arbitrary
vertex.

(4) For each vertex v in S other than the root, move all but one of the pebbles on
v to occupy some of the vertices on the path in G corresponding to the edge
between v and its parent in the tree T'.

(5) Let T” be the tree in G obtained by combining the paths corresponding to the
edges of T. For every vertex of T’ that is unoccupied by a pebble, move all
pebbles one step in T” toward that vertex.

By Property 5, Step 2 moves each pebble at most 3k + 8OPT + 1 steps. By
Properties 2 and 4 of Lemma 2, for every vertex s in S, there are at least 2k
pebbles that are closer to s than to any other vertex in S. Thus, after Step 2
of the algorithm, every vertex s in S is occupied by at least 2k + 1 pebbles. By
Property 3, Step 4 moves each pebble at most 2k +60PT + 1 steps. After Step 4, at
most 60PT + 1 vertices of each path corresponding to an edge of T' lack a pebble.
Thus the tree 77 in G has at most |S|(60PT + 1) vertices that lack a pebble. Each
iteration of the loop in Step 5 removes at least one of these vertices at a cost of 1.
Thus Step 5 moves each pebble by at most |S|(60PT + 1) steps. But |S] is at
most m/(2k), because we assign at least 2k pebbles to each vertex in S and the
total number of pebbles is m. Therefore the total cost is (3k +80PT + 1) + (2k +
60PT + 1) + (60PT + 1)m/(2k) = 5k + 140PT + 2 4+ (60PT + 1)m/(2k), proving
the lemma. O

To prove Theorem 1, we first check whether OPT is zero, that is, whether the
pebbles already induce a connected graph. Otherwise, we apply Lemma 3 with
k = /mz where z is a guessed value of OPT. With & = v/m OPT (or with the
best guess of x), we obtain an approximation ratio of O(1 + \/m/OPT).

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 9

Finally, it is worth mentioning that ConMax can be solved exactly on special
classes of graphs. The following solution for the case of trees interestingly uses
bipartite matching as its main tool, not the usual dynamic programming on trees.

THEOREM 4. Given a tree T and a configuration of k pebbles on T, ConMax can
be solved in polynomial time.

PROOF. First we guess a vertex v of T that is occupied by a pebble in the target
configuration. Second we guess the maximum movement k, 0 < k < n, required by
the optimal solution.

We compute a subset of vertices of T that must be occupied by pebbles in the
target configuration. For each pebble in the initial configuration, consider moving
it toward v by up to k steps (stopping if it reaches v). This vertex « is the closest
the pebble could get to v in any solution with a maximum movement of k. Thus,
every vertex along the path from z to v (including the endpoints) must be occupied
by a pebble in the target configuration. We call these vertices forced.

To determine whether all forced vertices can indeed be occupied by pebbles (and
thus whether this guess of v and k is valid), we use bipartite matching. Define the
bipartite graph H = (W7, Wa, F') where W is the set of pebbles, Wy is the set
of forced vertices, and edges in F' connect a pebble to every forced vertex that is
within distance k in G. A maximum-cardinality matching of this graph H covers
every vertex in Ws if and only if the pebbles can be moved to occupy the forced
vertices.

Any extra pebbles not used in the matching can be moved to an arbitrary forced
vertex: every pebble can be moved to some forced vertex, namely x. The forced
vertices induce a connected subgraph of GG, so we obtain a solution to ConMax with
maximum movement k if this is possible. O

2.2 CoNMAX IN THE EUCLIDEAN PLANE. In this section, we introduce a
method for converting algorithms for movement problems in graphs to movement
problems in the Euclidean plane, applied in particular to the ConMax problem.
This method works for other properties but not for Path problems, because in path
problems there may exist a solution while using this method yields a “no solution”
answer.

THEOREM 5. If we have a k-approximation algorithm for ConMax in graphs,
then we have an k(1 + €)-approzimation algorithm for ConMaz in the Fuclidean
plane, for any € > 0.

PROOF. We partition the plane into squares of side length d. We define the
graph G = (V, E) where V is the set of the vertices of squares used for partitioning
and edges in E connect two vertices if their Euclidean distance is not more than
d. Next we show that a connected configuration of the ConMax problem on the
Euclidean plane could be modified to a connected configuration on graph G defined
above.

For a connected configuration of pebbles on the plane, we have to move them
to the vertices of graph G such that they remain connected. We pick an arbitrary
pebble r and move it to one of the four vertices of the square around it. Thus r
moves at most dv/2. For the pebbles which were adjacent to r, first we move them

Transactions on Algorithms, Vol. ?, No. 7, ? 207.

10 . E. D. DEMAINE ET AL.

exactly the same as r to keep them adjacent, next we move each one to one of the
four vertices of the square around it. Note that if we choose the nearest to r, among
the four vertices around a pebble, the pebble remains adjacent to r. In this way
the pebbles which were adjacent to 7 move at most 2dv/2.

For the pebbles which have distance ¢ from 7, first move them the same as the
pebbles which have distance ¢ — 1 from 7 and then move them to one of the four
vertices of the square around them to keep them connected to r. In this way the
vertices with distance i from r move at most (i + 1)dv/2 to reach one vertex of
G and remain connected to r. Since the farthest pebble from r has distance at
most m — 1 from it, all pebbles move less than or equal to mdy/2 where m is the
number of pebbles. Thus if we have a connected configuration with cost OPT in
the Euclidean plane, the best configuration in graph G has cost less than or equal
to OPT + mdv/2.

For an initial configuration of the pebbles, first we move each pebble to one of
the four vertices around it which needs movement at most dv/2. Then we solve
the problem on graph G. The solution of ConMax on graph G is also a valid
configuration for ConMax in the Euclidean plane. Since the solution of ConMax in
graph G has cost less than or equal to OPT 4 md+/2, a k-approximation algorithm
for ConMax in graphs yields to an algorithm with approximation factor k(1 +
mdv/2) +dv/2 < k(14d[(m+1)v/2]). Therefore we have an k(14 ¢)-approximation
algorithm for ConMax in the Euclidean plane by setting d = ¢/[(m + 1)v/2]. O

2.3 O(1+4 +/m/OPT)-APPROXIMATION FOR PATHMAX. Our techniques can
be extended to obtain the same approximation factor for connectivity between just
two fixed vertices s and t. The previous approach does not apply directly to this
problem because not all of the pebbles need to be involved in the solution; we
can select an arbitrary subset of pebbles to use for our path. First we prove that
PathMax is NP-hard via a reduction from the Hamiltonian path problem.

THEOREM 6. The PathMazx problem is NP-Hard.

PRrROOF. Duplicate the vertices of a graph G into n = |V(G)] levels, for a total of
n? vertices, and adding edges between every pair of adjacent levels corresponding
to edges of G, for a total of 2|E(G)|(n — 1) edges. For each vertex v of G, add a
path of length n from each copy of v to a common new vertex v, at which we place
a single pebble. Finally, connect the source s to every vertex in the first level, and
connect the sink ¢ to every vertex in the last level; and attach to each of s and ¢ a
path of length n, the end of which has a single pebble. G has a Hamiltonian path
if and only if we can move each pebble to an instance of its corresponding vertex
with a maximum movement of n, and construct a path from s to t.

THEOREM 7. Given an instance of the PathMax problem with m pebbles and with
an optimum solution of mazimum movement OPT, for any integer k greater than
20PT, there is a polynomial-time algorithm for finding a motion with mazimum
movement at most 6k + (5 + 4m/k)OPT.

PROOF. Because OPT is an integer between 1 and n, we can guess its value at
the cost of a linear factor in running time.

Next we identify vertices that cannot be on our final path between s and ¢. Let
dy, denote the distance between vertex v and v through marked vertices. Initially,

Transactions on Algorithms, Vol. 7, No. ?, 7 207.

Minimizing Movement . 11

we mark all vertices. Then we run the following step for unmarking vertices, until
no more vertices can be unmarked.

—Unmark v if there is an ¢ < min{d, ,,d; .} and there are less than 2i + 1 pebbles
within distance i + OPT of v.

It is clear that all vertices on the path between s and ¢ in an optimum solution, say
Q, are still marked.

Delete each pebble for which the minimum distance between its initial posi-
tion and any marked vertices is more than OPT and move each remaining peb-
ble to its nearest marked vertex with maximum movement at most OPT. Let
P = (s = wo,v1,...,vp| =t) be a shortest path between s and ¢ that goes through
marked vertices and assume |P| = (2k 4+ 1)r; + 12, 0 < 79 < 2k + 1. Call ver-
tices vk, Usk+1, Usk+2, - - - s U(2k+1)(r—1)+k cCenter vertices. Thus we have r; center
vertices.

—For every center vertex ¢, move to ¢ all pebbles within distance k of c.

It is clear that no pebble is within distance k of two center vertices. We prove that
there will be at least 2(k — 20PT) + 1 pebbles on ¢. We know that ¢ is a marked
vertex. Thus there are at least 2(k — 20PT) + 1 pebbles whose distance between
their initial position and ¢ is at most k — OPT. Because we move each pebble to a
marked vertex with maximum movement OPT, there are at least 2(k —20PT) + 1
pebbles within distance k£ of c¢. In the next phase, distribute all pebbles on center
vertices along the path P to a vertex with no pebble on P. In this phase, we move
each pebble at most k.

An empty vertex is a vertex of P with no pebble in this configuration. Suppose
we have M empty vertices. It is clear that M < 40PTr; 4+ ro and each pebble has
moved at most 2k + OPT up to now.

A good pebble is a pebble that participates in constructing the path between s
and t in the optimum solution and it is now on P. A pebble whose target position
is either s and ¢ in the optimum solution is also a good pebble. A bad pebble is a
pebble that participates in constructing the path between s and t in the optimum
solution but it is not currently on P. Because the length of the path between s and
t in the optimum solution is at least |P|, we have at least M bad pebbles. Each
bad pebble has moved at most OPT up to now. Consider a bad pebble p, and a
good pebble p, whose target positions are ¢, and ¢, in the optimum solution. Let
Hy, p, be the distance between t, and ¢, on the path Q. The distance between
the initial position of p, and its target position in the optimum solution is at most
OPT. Also, the distance between the initial position of p, and its recent position
is at most OPT. We also know that the distance between the initial position of
pg and its target position in the optimum solution is at most OPT. Furthermore,
the distance between the initial position of p, and its recent position is at most
2k + OPT, Therefore the distance between the recent positions of p, and py is at
most 2k +40PT + Hy, ,, . Let Hy, = min, {Hp, p, }.

—VFor every bad pebble with H,, < M, we move p, to place on a good pebble and
then shift all pebbles between p, and the nearest empty vertex of P to a pebble
on an empty vertex of P.

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

12 : E. D. DEMAINE ET AL.

We move each pebble along one edge in each shift. It is clear that we have at
least M bad pebbles p, with H,, < M. Therefore we have at least M pebbles
that can be present on path P with maximum movement at most 2k +40PT + M.
We need to move each pebble at most M to fill empty vertices. We can fill all
empty vertices with this strategy. The maximum movement in our algorithm is
at most OPT + max{2k,2k + 4OPT + M} + M < 2k + 50PT + 2M. Because
M < 4.0PT - |P|/(2k) + 2k and |P| is at most m, the maximum movement is at
most 6k + (54 4m/k)OPT. [

COROLLARY 8. There is an O(1 + /m/OPT)-approxzimation algorithm (and
thus also an O(y/m)-approzimation algorithm) for PathMaz.

PRrROOF. If the optimum solution cost is greater than m/4, then we obtain a 3-
approximation algorithm by placing pebbles on the shortest path between s and t.
It is clear that the length of the shortest path between s and ¢ is at most m. We can
construct a solution by finding the minimum-weight matching between the initial
position of the pebbles and the vertices of the shortest path. If we had moved the
pebbles to the optimum solution, we could then move them to the vertices of the
shortest path by at most m/2 additional moves, so there is always a matching of
weight at most OPT +m /2. Thus we obtain a 3-approximation algorithm because
OPT > m/4 so OPT + m/2 < 30PT. On the other hand, if the optimal solution
cost is at most m/4, then we can use Theorem 7 with k = v/m OPT, and obtain
an O(1 + y/m/OPT)-approximation algorithm for PathMax. O

2.4 em-APPROXIMATION FOR DIRCONMAX. Next we consider the directed
version of ConMax, DirConMax, where we obtain nearly tight results: an em-
approximation and m'~¢ inapproximability assuming P # NP. Our approximabil-
ity result is based on another extension of our techniques from ConMax. As before,
G?[S] denotes the dth power of a graph G induced on the subset S of vertices,
where distances are measured along shortest directed paths.

LEMMA 9. Consider a directed tree T with m vertices in which every edge is
directed toward the root r. For any integer k between 0 and m — 1, there is a set S
of vertices of T satisfying the following properties:

(1) The root r isin S.

(2) The size of S is at most k + 1.

(3) Every vertex in T/ *I+1[S] has a directed path to r.
(4)

To every vertex v of S we can assign a set Match(v) of vertices of T such that
(a) if v #r, |[Match(v)| >| m/k] + 1;

(b) the distance from any vertex w in Match(v) to v is at most |m/k|; and
(¢) every vertex of T belongs to exactly one of the Match sets.

ProOOF. The algorithm for constructing S proceeds as follows:

(1) Set S — {r}.
(2) While there remain vertices of depth more than |m/k|:

(a) Let u be a vertex of maximum depth in T'.
(b) Let v be the |m/k]|th ancestor of w.

Transactions on Algorithms, Vol. 7, No. ?, 7 207.

Minimizing Movement : 13

(c) Set S «— SuU{v}.
(d) Let Match(v) be the set of descendants of v, including v itself.
(e) Delete vertices in Match(v) from 7.

(3) Set Match(r) to the set of remaining vertices in 7.

It remains to prove that the resulting set S and the Match sets satisfy the required
properties. Property 1 follows from Step 1. Property 2 follows from Property 4.
Property 3 follows from Property 4 because the parent of any vertex v added to
S must be in another Match set. Property 4(a) follows because Match(v) includes
the path from u to v. Property 4(b) follows because, in each round, u is the vertex
of maximum depth in 7" and thus the vertex of maximum depth within Match(v).
Property 4(c) follows because every vertex in T is either deleted because it is in
Match(v) (and a vertex can be deleted only once) or it belongs to Match(r). O

Now we use Lemma 9 to compress OPT into a small, guessable form:

THEOREM 10. For any integer constant k, there is an n*TOW) algorithm that,

given an instance of DirConMax with m pebbles and root r, finds a motion with
mazimum movement at most OPT + 2|m/k|. (In particular, this algorithm is a
2|m/k]-approzimation.)

PROOF. First we guess the maximum movement [, 0 < I < n, required by the op-
timal solution OPT. Second we guess the set Sopr obtained by applying Lemma 9
to a spanning tree of OPT. We guess the size i of Sopr, 1 < i < k+ 1. Then
we guess a subset S of |S| = i vertices, including r, such that every vertex in
GLm/kI+1]8] has a directed path to the root r. The number of choices for these
guesses is O(kn**1), which is polynomial for fixed k.

To determine whether all pebbles can move to the vertices of S by at most
I + |m/k] movement, we use the version of maximum flow with minimum and
maximum capacities on the edges, which can be solved in polynomial time; see
West [2001, pages 186-187]. Define a bipartite graph H = (W, Wa, F) where W,
is the set of pebbles, W5 is the set of vertices of S, and edges in F' connect a pebble
to a vertex u of S if the pebble can move to u by at most [+ |m/k| movements.
These edges have a minimum and maximum capacity of 1. Add a source vertex s
connected to all vertices of Wy, and add a sink vertex ¢ connected from all vertices
of W5. The edges incident to s have a minimum and maximum capacity of 1, and
the edges incident to ¢ have a minimum capacity of |m/k| and a maximum capacity
of m. If the maximum flow “matches” every pebble to a vertex of S, then we obtain
the desired Match sets; otherwise, S is invalid.

When we find a subset S and the Match sets with the properties of Lemma 9,
we can construct a solution as follows. We move each pebble to its matched vertex
in S, which leaves at least [m/k] + 1 pebbles on each vertex of S. Then, for each
vertex u in S other than the root r, we move |m/k| of the pebbles from u to occupy
the vertices along a shortest path in G from w to its parent in a spanning tree of
Glm/kI+1[G]. Thus each pebble moves at most [+ 2|m/k|, as desired. [J

2.5 Q(n'~%) INAPPROXIMABILITY FOR DIRCONMAX. Next we prove that the
en-approximation algorithm from the previous section is essentially tight, assuming
only that P # NP without the use of PCP-type arguments:

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

14 : E. D. DEMAINE ET AL.

wm® ©@ ©@ © © @ ©@ @ ©@ ® @u,

w0 Q QA Q Q QA Q Qun
P = e Sz
o - A
. u:-’”‘-.ﬁ.m..... D,
$9 uﬁ.«.m.‘... D Us 9
#=or On 0 O O on
&5 0 0 0 O 0
&0 O o‘o‘o)
R
!ﬁy

1
;
{7

Fig. 3. Reduction from set cover in Theorem 11.

THEOREM 11. For every constant €, 0 < e< 1, it is NP-hard to approximate
DirConMaz within an n'—¢ factor.

PrOOF. We prove that, if DirConMax can be approximated within n'~¢, then
set cover can be solved in polynomial time. Let S = (E, C, k) be an instance of set
cover, where E = {e1,ea,...,en,} is the universe of elements, C' = {c1,ca,...,¢s}
is the set of subsets of E, and k is an integer. Without loss of generality, assume
that m > s; otherwise, we can place s — m dummy elements e,,41,...,es in every
subset in C.

We convert the set-cover instance S into a graph G as follows; refer to Figure 3.
Let L be m?/c. We start with a root vertex r in G and then, for every subset
c; € C, we add a vertex v; to G. Then, for each v;, we add a directed path P;
of length L + 1 from v; to r. Label the vertices along path P; from source to
destination as v, 1, Ui 2,...,u;,L,7. For each j, 1 < j < L, we add a vertex s;
and we add an edge from s; to wu;; for each ¢, 1 < i < s. We also add a vertex
so and we add an edge from sy to v; for each ¢, 1 < ¢ < s. For every element
e; € E, we add two vertices w; and w} to G, and we add an edge from w] to w;.
Finally, we add an edge from w; to v; precisely when e; € ¢;. This graph has
n=1+(s+1)(L+1)+2m = O(m?=*1) vertices. In our instance of DirConMax,
we place one pebble on each w] and one pebble on r. We also place k pebbles on

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 15

each s;, 0 <i < L.

If S has a set cover C' = {c,,,¢p,, ..., Cp,, } Of size kK’ < k, then we can connect
the pebbles in G using a maximum movement of 1. Namely, we move k' pebbles
from each s;, 1 <i < L, t0 up, i, Up, i, - - -, Up,, i~ Then we move the pebble from w
to w; for each j, 1 < j < m, and we move &’ pebbles from sg to vy, ,Vp,, ..., Vp,,-

Now we prove that, if S has no set cover of size at most k, then the maximum
movement of any solution to this instance of DirConMax is at least m?/¢~'. Con-
sider a solution with maximum movement less than m?/¢~1 and let L' be m?/¢~1.
Because the pebble at r can never move, the final positions of the pebbles must
form a directed tree 1" rooted at . We call a path P; semicompleted if u; 1+ is in T'.
Let P' = {P;,,P,,,...,P;,,} be the set of semicompleted P;’s. We assert that the
set C" = {ci,, iy, ..., Ci,, } I8 a set cover of size k' for the instance S. Let f; be
the final position of the pebble starting on w;. This vertex f; cannot be u, ; for
any 7 and j with 1 <4’ < s and L’ < j < L. So the directed path from f; to the
root r must visit some vertex u;; ;/ along a semicompleted path P; for some j,
1 <j <k'. Thus, e; € ¢;;, and this property holds for all i, 1 <7 < m, so C" is
indeed a set cover of size k' for S. Now we prove that k' < k, contradicting that
S has no such set cover. For each j, 1 < j < k/, we need at least L — L’ pebbles
to occupy the vertices u;, j, L' < j° < L. The total number of pebbles that can
have a final position of u; j, where 1 < i < s and L' < j < L, is less than kL. Thus
K'(L—L") < kL, that is, 1 —1/m < k/k’. Because k' <s<m, 1—-1/k' <1—1/m,
and therefore 1 — 1/k" < k/K', that is, k' < k.

On the other hand, if there is a set cover of size at most k, then there is a solution
with maximum movement 1. Thus any solution to DirConMax with maximum
movement at least L' has an approximation ratio at least L' = m2/¢~!, which is
asymptotically larger than m?/c+1-2-¢ = (m2/st1)1=¢ = ©(n'~¢). Therefore, we
can decide whether there is a set cover of size at most k by testing whether an
O(n'~¢)-approximation algorithm for ConSum produces a solution of maximum
movement less than m?/c~1. [

3 Minimum Mazimum Movement to Independence

It is NP-hard to decide whether IndMax even has a valid solution: an instance has
a solution precisely if the graph has an independent set of size m, the number of
pebbles. Thus, to obtain any approximability result, we must restrict our attention
to special family of graphs.

In this section we focus on a particularly useful case of the Fuclidean plane.
This scenario has applications in the fields of map labeling and sensor networks, as
described in the introduction. Recall that in this case we define n = m. We use
the notation d for a more general notion of Euclidean distance: for a point p and a
finite set @ of points, d(p, Q) denotes the minimum distance mingcg d(p, q).

THEOREM 12. There is a polynomial-time algorithm solving IndMax in the Eu-
clidean plane using mazimum movement at most the optimal plus 1 + %

The heart of our approximation algorithm is the triangular lattice, illustrated in
Figure 4, in which every two distinct vertices have distance at least 1. Thus, these

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

16 . E. D. DEMAINE ET AL.

—-1,v/3 0,V3 1,v/3 2,V/3 3,V3

0,0 1,0 2,0

Fig. 4. Decomposition of the plane into equilateral triangles.

vertices induce an independent set of the plane. The vertex set is given by
A={0,3v3), G+ 5, 3v3+P) | ijez}.

Let C denote the decomposition of the plane into equilateral triangles with side
length 1 induced by this lattice.

For a finite set R of points, we define two additional concepts. Let Neighbor(R)
denote the set of points in A whose distance to R is at most 1 + % Let Circle(R)

denote the union of disks centered at points in R with radius % In particular, if

every two distinct points in R have distance at least 1, then Circle(R) has area
|R|-Z.

LEMMA 13. The optimal solution has mazimum movement at most 2n — 2.

PROOF. Suppose for contradiction that there is a pebble x with initial position
p and with target position ¢ in the optimal solution, yet d(p, ¢) > 2n—2. We define
n points ro,71, ..., ,—1 on the line segment from p to ¢ according to d(p,r;) = 2i.
The distance between any two of these points 7; and r;, ¢ # j, is at least 2, so any
point can have distance less than 1 with at most one of these points rg,71,...,7p_1.
By the Pigeonhole Principle, there is at least one point r; that is not within distance
1 of the target position of any pebble other than x. Thus we can change the target
position of pebble x to r; and obtain a valid solution in which the movement of
x is at most 2n — 2. By induction, we can reduce the movement of every pebble
to at most 2n — 2, giving us a solution with maximum movement at most 2n — 2,
contradicting optimality of the original solution.? [

LEMMA 14. The number of points in A within distance at most 2n — 2 from an
arbitrary point p in the plane is at most a polynomial function of n.

ProOOF. Consider the square S centered at p and with side length 4n — 4. All
points of A within distance 2n — 2 from p are in this square. Consider a decom-
position of S into a grid of subsquares of side length % Because the distance

2This argument can be improved to obtain a bound of O(y/n) on the maximum motion, but it
does not affect our main result.

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement . 17

D

Fig. 5. Intersection of the circles C4 and Cp.

between each pair of points in such a subsquare is at most 1/v/2 < 1, at most
one point of A can be in each subsquare. Thus the number of subsquares is an
upper bound on the number of points of A in S, which is an upper bound on the

number of points of A within distance 2n — 2 from p. The number of subsquares is
(A4n—4)?/3)?=0(n?). O

LEMMA 15. Let C4 and Cp be two disks of radius 1/\/§ centered at points A
and B, respectively. Let d = d(A, B) be the distance between A and B. The area of

intersection of the two disks Ca and Cp is 3 arccos(dv/3/2) — dy/ 1 — 1d2.

ProoF. In Figure 5, we have AC = BC = AD = BD = 1/V/3, AB = d,
/BAC = a. Thus, cosa = AH/AC = (d/2)/(1/V3) = dV3/2, so a =
arccos(dv/3/2). Hence, the area of the pie wedge of C'4 given by the angle ZDAC is
2"‘ .5 = %a = é arccos(df/?) By symmetry, the area of the pie wedge of C'p given
by the angle ZC' BD is the same. These pie wedges overlap at precisely the intersec-
tion of C4 and Cg. Their union is the quadrangle ABCD. Thus, the desired area

of intersection is the sum of the areas of the pie wedges, 2 arccos(dv/3/2), minus the
area of the quadrangle ABCD. Now CH = Ac” - (AB/2)? = /% — 1d?, so the
area of the quadrangle ABCD is 1AB CD = AB-CH = d, /% %d Therefore,

the desired area of intersection of C4 and Cjp is % arccos(dv/3/2) —d/ 5 — 1d?, as
desired. O

Now we are ready to prove the main theorem.

PROOF OF THEOREM 12. For ¢ € {1,2,...,n}, let p; and ¢; be the initial and
target position of pebble i in the optimal solution OPT. Because OPT is a solution
to IndMax, we have d(g;,q;) > 1 for all distinct 4,5 € {1,2,...,n}. Furthermore,
the optimal solution minimizes OPT = max;<;<n d(p;, ¢;) subject to this constraint.
First we prove that there is a polynomial-time algorithm to move every pebble
to a point of A such that no two pebbles move to the same point, and subject
to minimizing the maximum movement M. Then we prove that we can move
the pebbles from their target positions in OPT to points of A so that no two

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

18 . E. D. DEMAINE ET AL.

pebbles move to the same point and each pebble moves at most 1+ % Thus, our
approximate solution of maximum movement M satisfies M < OPT + 1 + %

The algorithm constructs a complete weighted bipartite graph H = (X,Y, E).
Fori € {1,2,...,n}, we place a vertex z; in X representing pebble ¢. By Lemma 13,
OPT < 2n — 2. By the second part of the proof, the optimal movement M to
points of A satisfies M < OPT + 1 + % <2n—-2+1+ % Thus, in M, no
pebble moves more than 2n. For each point p of A within distance 2n — 2 from the
set {p1,Dp2,...,pn} of initial positions, we place a vertex in Y,,. By Lemma 14, the
number of these points is polynomial in n, so the graph H has polynomial size. For
each z € X and y € Y, we set the weight w(z,y) = d(z,y). The algorithm finds
a perfect matching in H of minimum maximum weight. For each edge (z;,y,) in
the matching, we move the ith pebble to point p of A. In this way, we move the
pebbles to points of A such that no two pebbles move to the same point using the
minimum maximum movement.

Now we reach the heart of the proof: we prove that we can transform OPT
by moving each target position by at most 1 + % such that every new target
position is a point of A and no two target positions are the same. We prove that
there is a perfect matching from the set @ = {q1,¢2,...,¢n} of target positions
in OPT to the points of A such that the distance between matched points is at
most 1+ % By Hall’s Theorem, it suffices to show that, for each subset R C @,
|R| <| Neighbor(R)|.

Consider a subset R = {ry,72,...,7m} C @, and the region W = Circle(R).
Because the distance between every two points in R is at least 1, Circle(R) has area
|R|-F. Consider the set Neighbor(R) C A, and the region V' = Circle(Neighbor(R)).
Again V' has area | Neighbor(R)|- §. We prove that the area of Circle(R) is at most
the area of Circle(Neighbor(R)), which implies |R| < |Neighbor(R)|, completing
the proof.

Consider a disk of radius % centered at each point of R. Define the region S
to consist of the equilateral triangles of the decomposition C' that intersect at least
one of these disks. The vertices of the triangles in S are the points of Neighbor(R),
because these vertices are the points of A within distance 1 + % from the points
of R.

Next we prove that Area(Circle(Neighbor(R))) > Area(S) - ﬁ For each trian-
gle T in S, there are only three circles of Circle(Neighbor(R)) that intersect with
it, those whose centers are placed on the vertices of T'; see Figure 6. These cir-

cles have area g in common with 7. Therefore, the ratio of this common area

to the area of T'is T/ @ = 5.5 Because this ratio is the same for every trian-
gle in S, so is the ratio Area(Circle(Neighbor(R)) N S)/ Area(S) = 375 There-
fore, Area(Circle(Neighbor(R)))/ Area(S) > % or Area(Circle(Neighbor(R))) >
Area(S) - PNE

Next we prove that Area(sS) - % > Area(Circle(R)), which would prove the
theorem. For each point r in R, we assign a region Region(r) contained in S of

%

~—

area at least @ such that every two regions Region(r) and Region(s), r # s, are
disjoint. Because these regions pack a subset of S, we obtain Area(S) > |R| - @

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 19

Fig. 6.

omitted from Region(r) omitted from Region(s)

Fig. 7. The omitted region from the disks.

Therefore, Area(S) - 75 2 |R] - § N |R| - & = Area(Circle(R)).
It remains to assign to each point r of R a region Region(r). We do so according
to the following algorithm:

(1) For each point r in R, initially set Region(r) to the disk Regiony(r) of radius

% centered at r. (Thus, Region,(r) has area %)

(2) For two arbitrary points r and s in R, if Region,(r) intersects Region(s), omit
half of their intersection from Region(r) and omit the other half from Region(s)
according to the perpendicular bisector of r and s, as shown in the Figure 7.

Obviously, the resulting regions are pairwise disjoint and each region is contained

in S.

We prove that the sum of the areas omitted from Region(r) is at most § — ?,
for each point r in R; thus, Region(r) keeps an area of at least @ as desired. Let
e(r,s) = & Area(Region,(r) NRegiony(s)) be the area of Region(r) omitted because
of Region(s). (This definition actually overestimates the omitted area if multiple
overlapping regions are omitted.) Thus, our goal is to prove that AreR e(r,s) <

T - @ For a fixed point r in R, consider the points s of R that have a nonzero

value e(r, s). Sort these points according to the angle of the ray from r to s with

respect to the x axis, resulting in a sequence s1, Sa, ..., 5.
We prove that e(r, s;) + e(r, si11) < (% - g—f) Zsirsit1. Let a = d(r,s;), b =

d(r,si+1), and ¢ = d(s;, s;+1). Because r, s;, and s;y1 are points of R, we have
a,b,c > 1, and in particular, ¢> > 1. Because e(r,s;),e(r,si11) # 0, we have
a,b < % By the Law of Cosines, we have ¢? = a? + b? — 2abcos(£/s;rs;11), and

az—l-b2 —1
2ab

2 2
thus cos(Zs;rs;r1) < , SO £8;TS;j4+1 > arccos (a +b _1). By Lemma 15, we

2ab

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

20 . E. D. DEMAINE ET AL.

have

e(r,s;) =% (% arccos(av/3/2) — ay /% — %a2>

and
1(2 1 1
e(r, siy1) = 5 (3 arccos(bv/3/2) — b 3~ 462> .

We can check algebraically that

i (% arccos(av/3/2) — ay /% — 1a% + % arccos(bv/3/2) — by /3 — ib2>

2412
< 1.3 arccos [T 1Y) 1)
3 27 2ab

(For the interested reader, a proof is in Appendix A.) Thus, e(r,s;) + e(r, s;41) <
(% — 2—@) £8iTSiy1.
By summing the previous inequality, we obtain

S

e(r,s1) +e(r,s2) < (% - 25’) /51789

S

e(r,s2) +e(r,s3) < (% - 27?) /89783

e(r,s1) +e(r,s1) <

VAN
ol

— 2—@) /8181

I
N
(]
2
=
&
VAN
~—
ol
o

—ﬁ)27r

Therefore, 22:1 e(r,s;) < (% - @) as desired.
In summary, for each R C @, we have |R| < | Neighbor(R)|, so there is a perfect

matching from @ to Neighbor(Q); thus, we can move each pebble to a unique point
in A such that the maximum movement is at most 1 + % O

4 Minimum Maximum Movement to Perfect Matchability

In contrast to the difficult problems of ConMax and IndMax, we show that mini-
mizing movement does not make perfect matching much harder in graphs: there is
a polynomial-time algorithm for MatchMax.

LEMMA 16. For a given graph G, if two pebbles p and q are within distance
1 in the target configuration, then |m(p)| + |7(¢)] > da(p,q) — 1, and thus

max {|7(p)|, |7(g)[} > {%—‘ '

Proor. Each step in the motion path of p or ¢ may decrease dg(p,q) by at
most 1. Therefore the sum of the movements of p and g must be at least their
original distance dg(p,¢) minus their target distance of 0 or 1. [

THEOREM 17. There is a polynomial-time algorithm solving MatchMaz.

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement . 21

PrROOF. We assume that the number of pebbles in each connected component
of G is even; otherwise, no solution exists. We can also consider each connected
component separately, so we assume without loss of generality that G is connected.
Let p1,po,...,p2, denote the pebbles.

Define the weighted complete undirected graph H as follows. For each pebble
pi we make a vertex v; in graph H. For each edge e = {v;,v;} in H, we set its
weight w(e) to [%] Define the mazimum weight w(M) = maxecps w(e)
of a perfect matching M of H to be the maximum weight of its edges.

Our algorithm computes a perfect matching M in H of minimum maximum
weight w(M) (in polynomial time), and converts this matching into a motion as

{7%(“’2”)_1—‘ steps
’Vdc (Piypj)—l-‘
2

follows. For each edge {v;,v;} in the matching M, we move p; by
toward p; along a shortest path from p; to p; in G, and we move p; by

steps toward p; along the same shortest path. (Note that {%_‘ > 0.) Thus,
after the motion, p; and p; are at distance at most 1 in G. The maximum movement
in this motion is the maximum weight of such a matched edge {v;,v;}, which is
precisely w(M).

Now we argue that no solution to MatchMax has maximum movement less
than w(M). By definition of MatchMax, any solution induces a perfect match-
ing M’ in the graph H (i.e., on the pebbles) with the property that, in the
target configuration, every two matched pebbles have distance at most 1 in G.
For every edge e = {v;,v;} in this matching M’, by Lemma 16, we have that

max {|7(ps)], [(p;)|} > [%

in the solution must be at least max.cpr w(e) = w(M’). But M was chosen to min-
imize this lower bound w(M), so every solution must have maximum movement at
least w(M), proving optimality of our strategy of maximum movement w(M). O

= w(e). Therefore, the maximum movement

5 Minimum Total Movement

In this section, we consider the variations of the movement problems in which the
goal is to minimize total movement instead of maximum movement. For both
ConSum and MatchSum, we obtain tight results.

5.1 CONNECTIVITY: Q(n'~¢) INAPPROXIMABILITY

LEMMA 18. Suppose the graph G is a path of length n with wvertices
V0, V1, .-+, Un—1, and initially there are n — 1 pebbles, one on each vertex
V1,V2, ..., Un_1. 10 occupy vy with a pebble and maintain connectivity, we need
motion with total movement at least n — 1.

PROOF. In the initial configuration, the sum of the distances from each pebble
to vy is di = Z?;lli = n(n — 1)/2. In the target configuration, this sum is at
most dz = (n — 1)(n — 2)/2. Thus the total motion must be at least the difference
between these two values, that is, dy —ds =n—1. O

THEOREM 19. For every constant €, 0 < e< 1, it is NP-hard to approximate
ConSum within an n'~¢ factor.

Transactions on Algorithms, Vol. ?, No. 7, ? 207.

22 : E. D. DEMAINE ET AL.

PrOOF. We prove that, if the ConSum problem can be approximated within
n'~¢ then set cover can be solved in polynomial time. Let S = (E,C,k) be
an instance of set cover, where E = {ej,ea,...,e,} is the universe of elements,
C = {c1,c2,...,cs} is the set of subsets of F, and k is an integer. Without loss
of generality, assume that m > s; otherwise, we can place s — m dummy elements
€m+1,---,€s i every subset in C.

We convert the set-cover instance S into a graph G as follows. For every element
e; € E, we add to G a path P; of length m3/~2 with one endpoint labeled v;. For
every subset ¢; € C, we add a vertex w; to G and we connect vertices v; and w;
precisely when e; € ¢;. We also add a vertex v* to G connected to wy,ws,. .., ws.
Finally, we attach v* to one endpoint of a path Py of length m?®/¢=2. This graph G
has n =1+ s+ (m + 1)m®*=2 = ©(m?3/=1) vertices. In our instance of ConSum,
we place one pebble on every vertex of every path P;, 0 < i < m, and we place
k + 1 pebbles on v*.

If S has a set cover C" = {c,,,¢p,, ..., Cp,, } Of size k' < k, then we can connect
the pebbles in G using k' total movement by moving one pebble each on vertex v*
to vertices wp, , Wp,, ..., wp,,. Conversely, by Lemma 18, if we move pebbles on one
of paths P; to connect with an adjacent vertex, then we need at least |P;| = m?/—2
total movement. Thus, any solution with less than m3/¢=2 total movement does
not move a pebble off of any path P;, 0 < i < m. Furthermore, any such solution
can only move k of the pebbles on vertex v*; if it moved all £ + 1 pebbles from
vertex v*, it would disconnect Py from the remaining pebbles. It helps to move
these k pebbles only to vertices w;, so any such solution must move k' < k pebbles
to a set of vertices wy, , wp,,...,wy,, that covers all v; vertices, which corresponds
to a set cover {c,,, Cp,, ..., Cp,, } Of size at most k.

On the other hand, if there is a set cover of size at most k, then we claim that
any solution to ConSum with total movement at least m?®/¢~2 has an approximation
ratio w(n'~¢). Because k < s < m, the approximation ratio is at least m>/¢=2/m =
m?3/¢=3_ which is asymptotically larger than m3/¢=3-1+¢ = (m3/e—1)1-c = @(n'~*)
because € < 1. Therefore, we can decide whether there is a set cover of size at most
k by testing whether an O(n'~¢)-approximation algorithm for ConSum produces a
solution of total movement less than m3/=2. [

5.2 CONNECTIVITY: O(min{nlogn,m}) APPROXIMATION. Note that
O(nm)-approximation is trivial for ConSum, where n is the number of vertices and
m is the number of pebbles. If the pebbles already induce a connected graph, then
there is nothing to do. Otherwise, the optimal solution has total motion at least 1,
and we can move all m pebbles to any particular vertex using at most m(n — 1)
total movement.

The O(min{nlogn, m})-approximation algorithm consists of two parts, one for
each term of the min.

THEOREM 20. There is an O(nlogn)-approzimation algorithm for ConSum.

PRrROOF. Consider an instance of the ConSum problem, which consists of a graph
G and a configuration of pebbles p1,p2,...,pr. Let OPTgonsum be the optimal
solution for this instance. Let U be the subset of vertices of G occupied by at
least one pebble in the initial configuration. We consider the instance of the node

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 23

Steiner tree problem defined by graph G and vertex subset U. Let OPTNgteiner b€
the optimal solution to this instance, that is, the minimum set W of vertices in G
such that U U W induces a connected graph. It is known how to approximate this
problem within an O(lg|U|) = O(lgn) factor, and that no better approximation is
possible unless P = NP [Klein and Ravi 1995; Guha and Khuller 1999].

First we prove that OPTNgteiner < OPTconsum- Let m(p;) denote the motion path
of p; in the optimal solution OPTconsum- We can form a solution to OPTNgteiner by
including all vertices in m(p;) except the initial position of p;. Because the target
positions of the pebbles induce a connected graph, attaching the paths m(p;) to
this connected graph also results in a connected graph. The size of this solution is
precisely the total length of the paths 7(p;), which is the total motion OPT¢onSum-
Therefore OPTNSteiner < OPTConSum-

Next we show how to construct a solution to ConSum whose total movement is
at most nOPTNsteiner- Let T be a spanning tree of the connected subgraph induced
by U U OPTxNsteiner- Root this tree T at an arbitrary node r € U. We define a
motion of pebbles by repeatedly performing the following step. Pick a pebble on a
vertex v # r such that no descendant vertices of v in T are occupied by pebbles.

Let v,v1,v2,...,v;,r denote the path in T from v to r. We move a pebble on v
to the first vertex v; that is connected to r via other pebbles, that is, for which
Vit1,Viy2,...,v; are occupied by pebbles. Thus, the target position of pebble v is

a vertex without a pebble, so it is in OPTxNsteiner- Therefore, the number of moved
pebbles is at most OPTnsteiner, and the motion of each pebble is at most n — 1, for
a total cost of OPTNsteiner(n —1). O

Note that this analysis is tight. Consider a graph consisting of just a path
v1,Va,...,Va,—1 such that v, has no pebble, but every other vertex has exactly one
pebble' By Lemma 187 OPTCOnSum = @(Tl), but OPTNSteiner =1L

THEOREM 21. There is an O(m)-approximation algorithm for ConSum.

PRrROOF. Consider an instance of the ConSum problem, which consists of a graph
G and a configuration of pebbles pi,ps,...,0pm. Let OPTconsum be the optimal
solution for this instance. We fix the pebble p,,, and try to connect other pebbles to
it. For a path P in G, we set its weight W (P) as the number of unoccupied vertices
within P. For each pebble p;(1 < i < m) define distance dist(p;), the weight of
the path who has the minimum among all the paths from p; to p,,. Since G is
connected, each pebble has some finite distance.

LEMMA 22. maxi<i<m dlSt(pl) < OPTconSum -

PROOF. Suppose that p; has the maximum distance. Assume that in the optimal
solution, p; is moved to u by m; movements and p,, is moved to v by m,,, movements.
Consider the path P in the target configuration which connects p; to p,,. Because
all vertices of P must be occupied, the other pebbles should have at least W (P)
movements in total. Therefore OPTconsum > ™mi + My + W(P). Consider the
path P’ including P and the vertices that each of p; and p,, have traversed. P’
may not have more than m; +m,, unoccupied vertices other than P, thus W (P’) <
m;+m, +W (P). By definition dist(p;) < W(P’), therefore OPT consum > dist(p;),
as desired. O

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

24 : E. D. DEMAINE ET AL.

LEMMA 23. There is a polynomial-time algorithm that connects the pebbles such
that no one moves more than its distance.

PROOF. Define the weighted undirected graph H as follows. For each pebble
p; we make a vertex v; in graph H. For each pair of pebbles p; and p;, find the
minimum-weight path F; ;, that connects them and has no pebble in its intermediate
vertices. If such a path exists, we set the weight of the edge e = {v;,v;} in H,
w(e) = W(P; ;). By dividing a path P of G between two pebbles, to some P, js,
you may find the corresponding path P’ in H such that the weight of P is the same
as the length of P’. By use of this correspondence the distance of a pebble p;, is
equal to the shortest path from v; to v,, in H.

Run the Dijkstra algorithm on H from v,,. Consider the Dijkstra tree T'. For each
vertex v; consider the shortest path from v; to v, in T and find the corresponding
path P,, from p; to p,,. Since P,, has the minimum unoccupied vertices, we have
W (P,,) = dist(p;). Sorting the pebbles according to their distance yields the order
P, D5, .., Py Use an incremental algorithm. At step [move the pebble pj through
the path P, until it reaches an occupied vertex on Py,.

By 1nduct10n after step [of the incremental algorlthm the pebbles p},ph, ..., p
are connected, and at last all the pebbles are connected. Since the shortest path
from v; contains the shortest paths from its ancestors, P, contains their paths.
Thus each pebble p; moves at most W(P,,) steps because the pebbles that their
corresponding vertices are ancestors of v; do not leave the P, in the described
algorithm. Since W (P,,) = dist(p;), no pebble moves more than its distances. O

By applying the algorithm given in Lemma 23, the sum of the movements of
the pebbles are at most Y .-, dist(p;). Moreover, by applying Lemma 22, we have
o dist(p;) < mOPT consum-

5.3 Pata CONNECTIVITY: O(n) APPROXIMATION
THEOREM 24. The PathSum problem is NP-Hard.

PrOOF. Apply the same construction as proof of Theorem 6. Then G has a
Hamiltonian path if and only if PathSum has a solution of total movement n(n +
2). O

THEOREM 25. There is an O(n)-approzimation algorithm for PathSum.

PRrROOF. Consider an instance S of PathSum problem with optimum solution
OPT. Let k pebbles change their initial position in optimum solution. So k¥ < OPT.
We consider the instance of PathNum defined by S. Let OPTpathnum be the
optimal solution to this instance, that is, the minimum number of pebbles which
must change their initial position to connect s and ¢. By moving these pebbles
we can connect s and ¢ with total movement of at most nOPTp,thnum - Because
OPTpathNum < k < OPT. Therefore we have an O(n)-approximation algorithm
for PathSum. O

5.4 PERFECT MATCHABILITY. Like MatchMax, the MatchSum variation can
also be solved in polynomial time:

THEOREM 26. There is a polynomial-time algorithm solving MatchSum.

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 25

PrOOF. As in Theorem 17, we assume without loss of generality that the graph
G is connected and has an even number of pebbles, p1,ps,...,p2,. Define the
weighted complete undirected graph H with vertex set {p1,pa,...,pan}. For each
edge e = {v;,v;} in H, we set its weight w(e) to max{0,dg(p;,p;) — 1}. Define
the total weight w(M) =3 ., w(e) of a perfect matching M of H to be the total
weight of its edges.

Our algorithm computes a perfect matching M in H of minimum total weight
w(M) (in polynomial time), and converts this matching into a motion as follows.
For each edge e = {v;,v;} in the matching M, we move p; by max{0, dq(p;,p;) —
1} = w(e) steps toward p; along a shortest path from p; to p; in G. Thus, after
the motion, p; and p; are at distance at most 1 in G. The total movement in this
motion is) ., w(e) = w(M).

Now we argue that no solution to MatchSum has total movement less than w(M).
By definition of MatchSum, any solution induces a perfect matching M’ in the
graph H (i.e., on the pebbles) with the property that, in the target configuration,
every two matched pebbles have distance at most 1 in G. For every edge e = {v;, v;}
in this matching M’, by Lemma 16, we have that |7(p;)| + |7(p;)| > da(pi,p;) — 1,
and thus |7(p;)| + |7(p;)| > max{0,dg(pi,p;) — 1} = w(e). Therefore, the total
movement in the solution must be at least } ., w(e) = w(M'). But M was chosen
to minimize this lower bound w(M), so every solution must have total movement
at least w(M), proving optimality of our strategy of total movement w(M). 0O

6 Minimizing the Number of Movements

6.1 CoNNuM AND DIRCONNUM. It is easy to see that ConNum (DirCon-
Num) is at least as hard to approximate as the (directed) Steiner tree problem,
and thus is Q(log n)-inapproximable (Q(log? n)-inapproximable). For consider an
instance of (directed) Steiner tree consisting of a graph G and terminal set T'. At-
tach a path of length |V (G)|? to each terminal in T (directed toward the terminal),
and place one pebble on each vertex of each such path. Any o(n)-approximation
must leave at least one pebble on each path, and thus the ConNum (DirConNum)
problem becomes to find a minimum set of nonterminal vertices in G to connect
together the terminals, which is exactly the (directed) Steiner tree problem.

The remainder of this section considers approximability of ConNum and DirCon-
Num.

We can canonicalize the graph so that there is at most one pebble on each vertex.
For otherwise, for each vertex v with [> 1 pebbles on it, we replace v with vertices
v1,v2,...,v. Then, for each 1 < 4,5 < [, we put a directed edge from v; to v;.
Also, for each incoming edge (u,v) in the previous graph, we put directed edges
(u,v;); and, for each edge outgoing (v,u) in the previous graph, we put directed
edges (v;,u), 1 <i<l.

Definition Given a directed weighted graph G, a root r, an integer k, and a set
X CV(Q) of terminals with |X| > k, the k-DSteiner(r, X) problem is to construct
a tree rooted at r, spanning any k terminals in X, and of minimum weight.

The following lemma is proved by Charikar et al. [1999].
LEMMA 27. [Charikar et al. 1999] There is an O(|X|%)-approzimation for the

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

26 . E. D. DEMAINE ET AL.

k-DSteiner problem.

Definition Given a directed graph G, a root r, and a subset X of terminal vertices.
The node-weighted directed k-Steiner tree problem, k-DNSteiner, is to find a tree
rooted at r that spans at least k£ terminals and has the minimum possible number
of nonterminal vertices.

THEOREM 28. There is an O(|X|%)-approzimation for k-DNSteiner.

PRrROOF. Consider an instance of the k-DNSteiner problem. Given a graph G
with a root r, an integer k, and a set X C V(G) of terminals. We construct an
instance G’ of the k-DSteiner problem as follows. For each vertex v € V(G), we
place two vertices v~ and v™ in G’ and put a directed edge from v~ to v. We put
a directed edge from u™ to v~ if and only if (u,v) € E(G). For each v ¢ X, define
the weight of edge (v, v") to be 1. Define the weight of all other edges to be 0.
Specify vertex v+ to be a terminal in the k-DSteiner instance if and only if v is a
terminal in the k-DNSteiner instance.

For each solution of k-DSteiner(k,r™,U) in G’ with weight [, there is a solution
to our instance of the k-DNSteiner problem with [nonterminal vertices and vice
versa. Now applying Lemma 27, we obtain an O(|X|)-approximate solution for
the k-DNSteiner instance. [

LEMMA 29. Given a directed tree T rooted at r, let U be the set of occupied
vertices. Then there is a solution for this instance of DirConNum whose cost (moved
pebbles) is at most |Vp — U].

PROOF. We define a motion of pebbles by repeatedly performing the following
step. Pick a pebble on vertex v # r such that no descendant vertices of v in T are
occupied by pebbles. Let v,v1,v2,...,v;,r denote the path in T" from v to r. We
move a pebble on v to the first vertex v; that is connected to r via other pebbles, that
is, for which v;;1,vi42,...,v; are occupied by pebbles. Thus, the target position
of pebble v is a vertex without a pebble, so it is in Vi — U. Therefore, the number
of moved pebbles is at most |V — U|. O

THEOREM 30. An f-approzimation for k-DNSteiner implies an (1 + f)-
approximation for DirConNum.

PROOF. We want to find a (1 + f)-approximation for instance I of DirConNum
with graph G. Let OPT denote the optimum solution for instance I. We make an
instance of the k-DNSteiner problem from [with the same graph G. The set X
of terminal vertices of I consists of the initial positions of the pebbles in I. Let
k be m — OPT where m is the number of pebbles in instance I. The optimum
solution for instance I is a solution for our instance of the k-DNSteiner problem
with OPT nonterminal vertices. So the optimum solution for this instance has
at most OPT nonterminal vertices. According to the f-approximation for the k-
DNSteiner problem we can find a tree T" with at most f-OPT nonterminal vertices
and that spans at least m — OPT terminal. Now using Lemma 29 and moving
at most f - OPT pebbles of these m — OPT pebbles, we can form these m — OPT
pebbles into a tree T’ rooted at r. We still have m— (m—OPT) = OPT pebbles that
are not present in tree 7. We move these OPT pebbles to r. Now all pebbles are

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement . 27

present in tree 7" and we have moved at most f - OPT + OPT pebbles. By testing
all possible values of OPT, we have an (1 + f)-approximation for the DirConNum
problem. [J

COROLLARY 31. There is a polynomial-time O(m?)-approzimation algorithm for
DirConNum.

By applying Theorem 31 to all possible root vertices r, we obtain the same
approximation factor for ConNum:

COROLLARY 32. There is a polynomial-time O(m?)-approzimation algorithm for
ConNum.

6.2 PATHNUM

THEOREM 33. There is a polynomial-time algorithm that solves PathNum for a
given graph G and two given vertices s and t in G.

PRrROOF. We use dynamic programming to find a path from s to ¢ that has the
minimum number of unoccupied vertices. For every vertex v in G and any integer
I, 1<1<|V(G), let C,,; be the minimum number of unoccupied vertices that a
path of length [from s to v could have. Then C,,; can be computed using C,, ;1
where u iterates over all neighbors of v. At last we find the minimum of C ; where ¢
ranges from 0 to the total number of pebbles, which is the solution of the PathNum
problem. [

6.3 INDNuUM. Like IndMax, it is NP-hard to decide whether an IndNum in-
stance has a valid solution: an instance has a solution precisely if the graph has an
independent set of size m, the number of pebbles.

For case of the Euclidean plane, our problem is equivalent to finding a minimum
vertex cover in unit-disk graphs: by moving the pebbles of minimum vertex cover
to infinity, we reach an independent set of pebbles and unmoved pebbles in our
problem must induce an independent set. Because minimum vertex cover has a
PTAS in unit-disk graphs [Hunt et al. 1998], IndMax has a PTAS in the case of the
Euclidean plane.

6.4 MATCHNUM. MatchNum can be solved in polynomial time as follows.
Find a maximum matching whose edges have both endpoints in occupied vertices.
Moving an unmatched pebble near another unmatched pebble can increase the size
of the matching by one, and we cannot get better by moving one. So moving
unmatched pebbles one by one leads to a perfect matching with the minimum
number of movements.

7 Conclusion

This article makes a systematic study of movement problems which, despite con-
nections to several practical problems, have not been studied before in theoretical
computer science. Among the problems we consider, we highlight one open problem
of primary concern: the approximability of ConMax and PathMax. For directed
graphs, we proved essentially tight approximability and inapproximability results

for DirConMax, of roughly ©(n). However, for undirected graphs, we obtained

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

28 . E. D. DEMAINE ET AL.

an O(1 4+ y/m/OPT) = O(y/m)-approximation for ConMax and PathMax. Can
these approximations be improved, or are there matching inapproximability re-
sults? Figure 1 shows a difficult example which might be extended to prove an
inapproximability result for both problems.

It would also be interesting to consider more problems in the practical scenario of
the Euclidean plane, either for improved approximation ratios compared to general
graphs or for problems that cannot be solved on general graphs. In particular,
in the latter category, we obtained an additive O(1)-approximation for IndMax,
but even the existence of a multiplicative O(1)-approximation for IndMax remains
open. (Specifically, when OPT = o(1), we lack good approximations.)

Several other movement problems fit into our general framework. One variation
changes the notion of the graph induced by a set of pebbles to include edges between
pebbles within a given fixed distance d. This variation models the situation in which
pebbles can communicate within a fixed distance d, but they still move one unit at a
time (so we cannot simply take the dth power of the graph). Another variation, the
facility-location movement problem, introduces two types of pebbles, namely clients
and servers, and the target property is that every client is collocated with some
server. If only the clients are permitted to move, this problem is trivial: each client
moves to its nearest server. If both clients and servers can move, this solution is a
2-approximation to the maximum-movement version, but can we do better? What
about the other versions of the problem, for example, total movement?

A Proof of Inequality 1

In this appendix, we prove Inequality 1 from the proof of Theorem 12:

i (% arccos(av/3/2) — ay/% — ta? + 2 arccos(bv/3/2) — by /% — ib2>

1 V3 a?+b?—1
- — — Jarccos | ————— | . (1)
3 27 2ab

First we note that the inequality is symmetric with respect to a and b. Let g(a, b)
and f(a,b) be the left- and right-hand sides of the inequality, respectively. Define
h(z) = 2 arccos (zv/3/2) — 1/ % — $22, so that g(a,b) = 3 (h(a) + h(D)).

We first prove the following lemma to show that it is sufficient to prove the
inequality just for the boundary values of a and b.

LEMMA 34. For sufficiently smalle > 0, if 1l <a—¢,a <b, andb+¢e < %,
then we have f(a —e,b+¢) < f(a,b) and g(a —e,b+¢€) > g(a,b).

d (a75)2+(b+5)271 a’+b>—1

PROOF. Because arccos is a decreasing function an 2(a—z)(b+e) 2ab

we have f(a —e,b+¢) < f(a,b).
For the other part, we must show that h(a) — h(a —¢) < h(b+) — h(b) or
equivalently (because € tends to zero), h'(a) < h/(b). It is sufficient to prove that

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 29

h"(z) >0 for any 1 <z < 2.

V3
1 3 1
-z —zz
CCTE T LCEN o e -
SR Y W U Y B g Yy @)
= 33TV T)= 3 17
1_ 1,0
371

Now, we have b/ (z) = a /(2 i- iaz) , which is clearly nonnegative. [

According to Lemma 34 and the mentioned symmetry of Inequality 1, it remains
to prove the inequality just for b =1 and b = %
First suppose that b = % Then we have

2 1
(L“rg

4a/\ﬁ'
a’+1/3 <

Because - s S 2 and arccos is a decreasing function, f(a,b) > (
On the other hand, we have

fla,b) = (% - ﬁ) arccos

2

1_ V3 5
3 5o arccos g.

gla,b) =1 (% arccos (aV/3/2) —ay/ 5 — icﬂ) = 1h(a).

By Equation 2, function h(x) reaches its maximum at 2 = 1, where h(1) = § — ﬁ
Thus,
g(a,b) < 1 (g - ﬁ) < (% - 2—‘/3) arccos 2 < f(a,b).
In the other case, b = 1. Here we have
f(a,b) = <§ - ‘2/3) arccos 3a; and
g(a,b) = % (?,) arccos(av/3/2) — a@—i— (g - 2\1@)) .
The function f(a,b) reaches its minimum at a = jg’ where f(a,b) =

1_ V3 1 Qimi ;
(3 27T) arccos . Similar to the previous case,

S

277) arccos % < f(a,b).

W=

1 (m 1 s 1 _ 1
g0 <3 (5-mm+5-2m) =5 -am = (

This inequality completes the proof of Inequality 1.

Acknowledgments

We thank the anonymous referees for helpful comments on this article.

REFERENCES

ARKIN, E. M., BENDER, M. A., FEKETE, S. P., MITCHELL, J. S. B., AND SKUTELLA, M. 2002.
The freeze-tag problem: how to wake up a swarm of robots. In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms. San Francisco, California, 568-577.

Transactions on Algorithms, Vol. ?, No. 7, ? 207.

30 : E. D. DEMAINE ET AL.

ARkKIN, E. M., BENDER, M. A., AND GE, D. 2003. Improved approximation algorithms for the
freeze-tag problem. In Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms
and Architectures. San Diego, California, USA, 295-303.

BrEDIN, J. L., DEMAINE, E. D., HAJIAGHAYI, M., AND Rus, D. 2005. Deploying sensor net-
works with guaranteed capacity and fault tolerance. In Proceedings of the 6th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC 2005). Urbana-
Champaign, Illinois, 309-319.

CHARIKAR, M., CHEKURI, C., CHEUNG, T.-Y., DaI, Z., GOEL, A., GUHA, S., AND L1, M. 1999.
Approximation algorithms for directed steiner problems. Journal of Algorithms 33, 1, 73-91.

COHEN, J. 1998. Broadcasting, multicasting and gossiping in trees under the all-port line model.
In Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures.
Puerto Vallarta, Mexico, 164-171.

COHEN, J., FRAIGNIAUD, P., KONIG, J.-C., AND RASPAUD, A. 1998. Optimized broadcasting and
multicasting protocols in cut-through routed networks. IEEE Transactions on Parallel and
Distributed Systems 9, 8, 788-802.

CORKE, P., HRABAR, S., PETERSON, R., Rus, D., SARIPALLI, S., AND SUKHATME, G. 2004a. Au-
tonomous deployment of a sensor network using an unmanned aerial vehicle. In Proceedings of
the 2004 International Conference on Robotics and Automation. New Orleans, USA.

CORKE, P., HRABAR, S., PETERSON, R., Rus, D., SARIPALL], S., AND SUKHATME, G. 2004b. De-
ployment and connectivity repair of a sensor net with a flying robot. In Proceedings of the 9th
International Symposium on Ezxperimental Robotics. Singapore.

Dobpbi, S., MARATHE, M. V., MIRZAIAN, A., MORET, B. M. E., AND ZHU, B. 1997. Map labeling
and its generalizations. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms. New Orleans, LA, 148-157.

GHODsI, M., HAJIAGHAYI, M., MAHDIAN, M., AND MIRROKNI, V. S. 2002. Length-constrained
path-matchings in graphs. Networks 39, 4, 210-215.

GUHA, S. AND KHULLER, S. 1999. Improved methods for approximating node weighted steiner
trees and connected dominating sets. Information and Computation 150, 1, 57-74.

Hsiang, T.-R., ARKIN, E. M., BENDER, M. A., FEKETE, S. P., AND MITCHELL, J. S. B. 2003.
Algorithms for rapidly dispersing robot swarms in unknown environments. In Algorithmic
Foundations of Robotics V, J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson,
Eds. Springer Tracts in Advanced Robotics, vol. 7. Springer-Verlag, 77-94.

Hunr, III, H. B., MARATHE, M. V., RADHAKRISHNAN, V., Ravl, S. S., ROSENKRANTZ, D. J., AND
STEARNS, R. E. 1998. NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. Journal of Algorithms 26, 2, 238—274.

JiaNG, M., BEREG, S., QIN, Z., AND ZHU, B. 2004. New bounds on map labeling with circular
labels. In Proceedings of the 15th International Symposium on Algorithms and Computation.
Lecture Notes in Computer Science, vol. 3341. Hong Kong, China, 606—617.

JIANG, M., QIAN, J.; QIN, Z., ZHU, B., AND CIMIKOWSKI, R. 2003. A simple factor-3 approximation
for labeling points with circles. Information Processing Letters 87, 2, 101-105.

KrEIN, P. N. AND Ravi, R. 1995. A nearly best-possible approximation algorithm for node-
weighted steiner trees. Journal of Algorithms 19, 1, 104—115.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge University Press.
http://msl.cs.uiuc.edu/planning/.

RErr, J. H. AND WaANG, H. 1995. Social potential fields: a distributed behavioral control for
autonomous robots. In Proceedings of the Workshop on Algorithmic Foundations of Robotics.
331-345.

ScuuLTZ, A. C., PARKER, L. E., AND SCHNEIDER, F. E., Eds. 2003. Multi-Robot Systems: From
Swarms to Intelligent Automata. Springer. Proceedings from the 2003 International Workshop
on Multi-Robot Systems.

STRIJK, T. AND WOLFF, A. 2001. Labeling points with circles. International Journal of Compu-
tational Geometry & Applications 11, 2, 181-195.

Transactions on Algorithms, Vol. 7, No. ?, ? 207.

Minimizing Movement : 31

SZTAINBERG, M. O., ARKIN, E. M., BENDER, M. A., AND MITCHELL, J. S. B. 2004. Theoretical
and experimental analysis of heuristics for the “freeze-tag” robot awakening problem. IEEE
Transactions on Robotics and Automation 20, 4, 691-701.

WEsT, D. B. 2001. Introduction to Graph Theory, Second ed. Prentice Hall Inc., Upper Saddle
River, NJ.

RECEIVED FEBRUARY 2007; REVISED DECEMBER 2007; ACCEPTED MARCH 2008

Transactions on Algorithms, Vol. 7, No. 7, ? 207.

