
Shortest-Path and Minimum-Delay Algorithms in

Networks with Time-Dependent Edge-Length

ARIEL ORDA AND RAPHAEL ROM

Technion-Israel Institute of Technology, Haifa. Israel

Abstract. In this paper the shortest-path problem in networks in which the delay (or weight) of the edges
changes with time according to arbitrary functions is considered. Algorithms for finding the shortest
path and minimum delay under various waiting constraints are presented and the properties of the
derived path are investigated. It is shown that if departure time from the source node is unrestricted,
then a shortest path can be found that is simple and achieves a delay as short as the most unrestricted
path. In the case of restricted transit, it is shown that there exist cases in which the minimum delay is
finite, but the path that achieves it is infinite.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems-computations on discrete structures; G.2.1 [Discrete Mathematics]:
Graph Theory-graph algorithms, path and circuit problems

General Terms: Algorithms, Network algorithms, Shortest paths

Additional Key Words and Phrases: Functional complexity, time dependency, waiting times

1. Introduction

Shortest-path algorithms have been the subject of extensive research for many years
resulting in a large number of algorithms for various conditions and constraints
[2]. The vast majority of these deal with fixed graphs, that is, fixed topology and
fixed link weights.

The advancement of computer networks and distributed processing has brought
renewed interest in the subject with a new twist: time dependency. Several works
have been published dealing with topological changes in which links may occasion-
ally become unavailable (i.e., infinite weight) and others deal with quasi-static
models, that is, link weights that change from time to time but remain constant in
between these (infrequent) changes [6, 131.

Time-dependent shortest-path problems have been studied in the case of discrete
delay functions whose domain and range are the positive integers. Such problems
were addressed both directly [1, 1 l] and indirectly in the context of maximal flow
[7, 81.

In this paper, we address the shortest-path problem without these restrictions,
that is, we allow arbitrary functions for link delays. In this respect, this is the

The research of the authors was supported by the Fobndation for Research in Electronics, Computers,
and Communications, administered by the Israel Academy of Science and Humanities.

Authors’ present addresses: A. Orda, Department of Electrical Engineering, Technion-Israel Institute
of Technology, Haifa, Israel 32000; R. Rom, Sun Microsystems, Inc., MS14-49, 2550 Garcia Avenue,
Mountain View, CA 94043.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 0004-541 l/90/0700-0607 $01.50

Journal of the Association for Computing Machinery, Vol. 37, No. 3, July 1990, pp. 607-625.

608 A. ORDA AND R. ROM

broadest generalization. Such a problem was briefly treated by Dreyfus [4] and
Ling et al. [121, which address only limited cases. The most direct treatment to
date was done by Halpern [lo] where arbitrary waiting times are also considered.
In this latter work, an algorithm is proposed for various waiting constraints, but
this algorithm cannot be bounded by network topology (i.e., the number of
operations cannot be bounded by a function of the number of nodes or edges) nor
are the properties of the resulting path investigated (e.g., whether it is a simple
path). All the above works avoid the treatment of functions by addressing the
problem for a single instance of time and not for time ranges. In this paper, we
present algorithms for finding the shortest path and minimum delay for all instances
of time and under various waiting constraints and investigate properties of the
derived path. We show that if messages can be arbitrarily delayed at the source
node, then a shortest path can be found that is simple and achieves a delay as short
as the most unrestricted path, without having to wait en route.

Our interpretation of time dependency of links is that of message traversal. For
example, one interpretation might be the delay incurred by a message traversing
the links. We note that time dependency may not be a continuous function.
Consider a dial-up link between two nodes that is established and disestablished
periodically. A message arriving while the link is established will suffer a relatively
short delay, whereas a message arriving immediately after the link is disestablished
will suffer a much greater delay.

We also do not restrict ourselves to FIFO (first-in-first-out) links only, since in
some potential cases the FIFO assumption is invalid. For example, consider a link
composed of two physical communication channels one being faster than the other.
If the policy of link management is to send a message over the first available
channel, then a message sent over the slower one may arrive later than another
message, sent later on the faster channel, meaning that messages arrive in a non-
FIFO order.

Our interest in the problem stems from related problems in computer commu-
nication networks; hence, our reference to “messages.” Nonetheless, the results
reported here hold for a general graph. In particular, some transportation networks
may serve as good examples. One such example (following [121) is a traveler
standing on a platform in a railway station wondering whether to take the local
train stopping in front of him or to wait for the express train to his destination.
Here again, we have time dependency of delays, with possible non-FIFO behavior.

This paper is structured as follows: After presenting a formal model in Sec-
tion 2, we present shortest-path algorithms for various types of node behavior and
several classes of delay functions. Section 4 concludes these results and points at
some further research problems to extend this work.

2. Model

We consider a bidirected network G(V, E, D), with V = (1, 2, . . . , n 1 being the set
of nodes, E G V X V the set of links (with (i, k) E E implying (k, i) E E), and
D = (dik(t)l (i, k) E EJ a set of time-dependent link delays, that is, drk(t) is a
strictly positive function of time defined for [0, ~0) that describes the delay of a
message over link (i, k) at time t. (Several results presented in this paper are valid
only for a smaller class of functions, for example, continuous or piecewise contin-
uous; we shall indicate these restrictions when the need arises.)

Several interpretations of the link delay functions are possible, resulting in
somewhat different models. In one model, referred to as thefrozen link model, the
delay of a message is fixed at the time a message starts traversing it. In another,

Network Shortest-Path and Minimum-Delay Algorithms 609

referred to as the elastic link model d;k(t) is the instantaneous link length at time
t. According to this latter model messages that start traversing the link from i to k
at time to will arrive at k at the first instance of time t, > to for which t, - to 2
dik(tl>-

As a matter of fact the elastic link model is a submodel of the frozen link one.
Consider the following transformation from a function dj$(t) to dik(t):

djk(t) = ?I; (T 1 T L d$)(t + T)),

then, d!;‘(t) interpreted as the delay function according to the elastic link, and
dik(t) interpreted as the delay function according to the frozen link model, will
result in exactly the same network behavior. Note that in the elastic link we always
have FIFO behavior, while in the frozen link model non-FIFO behavior is possible.
In the rest of the paper, we therefore focus our attention on the more general frozen
link model.

Because of the possible non-FIFO characteristics of the d;k(t) it may sometimes
be preferable to wait a certain amount of time at the sending node before embarking
on the link traversal. Such waiting consumes buffer space and may not be permitted
by all nodes. We therefore consider three different network traversal policies:

-Unrestricted waiting (VW) in which unlimited waiting is allowed everywhere
along the message path through the network.

-Forbidden waiting (FW) in which waiting is disallowed everywhere along the
message path through the network.

-Source waiting (SW) in which waiting is disallowed everywhere along the message
path through the network except at the source node which permits unlimited
waiting.

Note that waiting time is a means of flow control [9]. The UW model implies a
hop-by-hop flow control, the SW an end-to-end flow control mechanism, and the
FW rules out flow control.

We now define the terminology used in analyzing the above models. Consider a
message that arrives at node i at time t, waits for a period of r and then departs on
link (i, k) at time t + T. This message arrives at node k at time t + [r + drk(t + T)].
We define Djk(t, T) P r + dik(t + r), which is the combined waiting time and link
delay for traversing link (i, k). To minimize traversal time, we are interested in
finding, for link (i, k) and time t, an optimal waiting time, that is, a waiting time
T* 2 0 such that for any other waiting time 7 2 0, D;k(t, r)* 5 Djk(t, T). Note that
in some cases such a value may not exist. Consider, for example, a link (i, k) for
which

d;k(t) = ioo
t5 10,
t> 10.

Then, for t = 0, infTeO D,(O, T) = 11 but this value cannot be achieved for any
r 2 0. This point was overlooked in previous works [4, 10, 121. In the following,
we shall implicitly assume that delay functions are such that for all (i, k) and every
time instant t a proper optimal waiting time 7 * does exist. This property clearly
holds for continuous functions while for piecewise continuous functions a sufficient
condition for this property to hold is that for all i, k, t: dik(t) 5 min{d&t+),
&At -)I.

Denote by Nk the set of node k’s neighbors; then, a topological path through the
network is a sequence of nodes (vo, . . . , v,) such that a link exists between every

610 A. ORDA AND R. ROM

pair (vi, vi+l) that is, Vi+1 E NV,. These definitions of Nk and of a topological path
are only topology dependent and not time dependent. A simple topological path is
one in which no node appears more than once.

A waiting schedule is an m-tuplet of waiting times T = (TV, 71, . . . , T,-~) with
7i E [0, ~0) signifying the duration of waiting at node vi. A traversal path is an
ordered pair (x, T) of a topological path 7r and a waiting schedule T, T having one
less component than H. A traversal path (P, 7) is called simple if 7r is a simple
topological path. When no ambiguity exists, we shall use the term “path” to refer
to both topological and traversal paths.

Let ts be the earliest time in which a given message can start traversing the
network (this is usually the message creation time). ts is referred to as the starting
time. Suppose that a given message travels from a source node s to its destination
node w along some traversal path (K, r), with K = (vO, vl, . . . , v,), v. = s, v, = w,
T = (TV, TV, . . . , T,-~). Define:

t,(O) p ts,

tA(i) P tA(i - 1) + Dvj+,,vi(tA(i - I), 7i--1) Ociam,

tD(i) P tA(i) + 7i OIiCm.

For starting time ts, tA(i) is the arrival time at node Vi and b(i) the departure time
from that node when traversing the network according to (T, 7). The path delay
PD((r, T), ts) of a path (x, r) for starting time ts is given by

PD((x, T), ts) = L(m) - k(O).

The shortest-path problem for a graph G(V, E, D) can now be formulated.
Given nodes s and w in V and a time ts E (0, m), find a traversal path (7r, r), 7r =

@, Vl, . . . , vm-I, WI, 7 = (To, 71, . . . , r,-,) such that for any other traversal path

CT’, 7 ‘) with ?r’ = (s, ul, . . . , u/-], w)

PD((T, 71, ts) 5 PD((r’, T’), ts>.

Such a traversal path is a minimum-delay path to which we shall also refer as a
shortest path. The topological-path component of a minimum-delay traversal path
is referred to as a shortest topological path. A shortest path as defined above is
denoted SP(s, w, ts) and since there may be several shortest traversal paths for
given s, w, ts, we denote by SP(s, w, ts) the set of them all.

A shortest topological path may have the property that each of its subpaths is
also a shortest topological path between the source and the intermediate nodes for
the same starting time. Such a topological path is said to be concatenated. Formally,
a shortest topological path 7r = (vo, vl, . . . , v,) between nodes v. and v, for starting
time ts is said to be concatenated if, for each i, 0 5 i I m - 1 there is a schedule
7(j) such that ((vo, vl, . . . , vi), T(~)) is a shortest traversal path between v. and vi for
starting time ts. Note that the schedule for each of the subpaths may be different.
Consider now a shortest traversal path whose corresponding topological path is
concatenated. If the optimal schedule of each subpath is the corresponding sub-
schedule of the entire traversal schedule we say that the shortest traversal path is
also concatenated. Formally, a shortest traversal path (x, T), r = (vo, vI , . . . , v,),
7=(nJ,71,..., 7,-]), for vo, v,, and starting time ts is said to be concatenated if
for each i, 0 5 i 5 m - 1, the traversal path ((vo, vI, . . . , vi), (TV, TV, . . . , Ti-1)) is
a shortest traversal path for vo, vi, and ts.

Finally, although all the shortest paths in SP(s, w, t) have the same delay, they
may differ by the number of hops (i.e., edges). Consider the subset of paths of

Network Shortest-Path and Minimum-Delay Algorithms 611

SP(s, w, t) that are simple and concatenated, and assuming this subset is nonempty
we define the hop-index H(s, w, t) as the minimal number of hops among these
simple and concatenated shortest paths.

3. Shortest-Path Algorithms

3.1 THE UNRESTRICTED WAITING MODEL

3.1.1 A Shortest-Path Algorithm for a Given Starting Time. Given a source
node s and a starting time ts, we look for shortest paths and minimum delays
between s and all other nodes for that starting time. As noted in Dreyfus [4], this
is a straightforward extension to such algorithms as Dijkstra’s [3] or Ford’s [8]. We
present the algorithm here to become familiar with some notions and differences
from the standard version that will be helpful later.

We start by making some observations regarding optimal waiting times. Define
Dik(t) B minTZO{Dik(t, T)] and consider Figure 1. In Figure l(a) we observe a
message departing node i at time tl when the link delay is dik(tl), meaning that the
message arrives at node k at t ,’ = tl + dik(tl). Figure l(b) depicts arrival times at
node k for several departing times from node i. It is noteworthy that a delayed
departure at t3 results in an earlier arrival.

The reader will easily convince himself that to minimize the delay, a message
arriving at t, should depart at t4 (see Figure l(c)). The point t4 can be characterized
as the rightmost intersection point in [t,, tl + dik(tl)] between dik(t) and the 45”
cord closest to the origin. (If dik(t) is differentiable, then its derivative at t4 equals
-1). Note that all messages arriving in [to, t4] should depart at t4 to achieve
minimum delay. Dik(t) is a well defined function oft. Figure 2 shows the function
Dik(t) resulting from d,k(t) of Figure 1.

We proceed now to present the algorithm, which is a version of a labeling
algorithm where each node is labeled by the earliest possible arrival time at that
node with the given starting time at the source node. Following the terminology of
labeling algorithms, & is the permanent label of the node (NULL indicating the
node is not permanently labeled), and Yk is its temporary label. The algorithm also
builds the shortest topological-paths spanning tree that can be constructed by the
values offk computed by the algorithm. fk is the identity of node k’s father in that
tree. The functions Dik(t), as defined above, are part of the algorithm’s input.

Algorithm U W 1

1. Initialization:
X,cts;fs+NIL;Vk#s Y,cm,Xk+NULL,fktNIL;
j-s;

2. For all neighbors k ofj for which & = NULL, do:
a. Yk c mini Yk, X, + Djk(X,))

b. If Yk changed in Step 2(a), then set& c j.
3. If all nodes have nonnull X-value, then stop.

Otherwise, let I be a node for which X, = NULL and such that Y, 5 Yk Vk for which
X, = NULL.
Set X, t Y,, j c I, and proceed with Step 2.

The main difference between this and conventional shortest-path algorithms is
the calculation of Djk(Xj) in Step 2(a). However, this is a simple operation (see
next section) and thus all operations performed by the algorithms are simple.

THEOREM 1. Algorithm UW 1 terminates after 0(I VI ‘) operations. After exe-
cution, the relation j -Aforms a spanning tree of G rooted at s on which each path

612 A. ORDA AND R. ROM

(4 (b)

FIG. 1. Message departure and arrival times. (a) Immediate departures. (b) Arrival times for several
departure times. (c) Optimal departure time.

dik(t) ,

Dik(t)
d

I
I
I
I I

.
‘0 ‘4 t

FIG. 2. Optimal delay function (including optimal wait-
ing) for the delay function of Figure 1.

from s to any node j is a shortest topological path for starting time ts whose delay
is given by Xj - ts .

PROOF. The proof follows closely that of Dijkstra’s algorithm (see, for example,
Even [5]). Cl

COROLLARY 1. In the UW model, for any source-destination pair and any
starting time, there exists a simple and concatenated shortest path.

Network Shortest-Path and Minimum-Delay Algorithms 613

Note that optimal waiting times are implicitly given via the functions Dik(t) and
dik(t): a message arriving at node i at time t and having to depart on link (i, k)
waits at node i for a period of T, where 7 is such that T + dik(t + T) = Djk(t). Thus,
the algorithm enables construction of shortest traversal paths.

3.1.2 A Shortest-Path Algorithm for All Starting Times. The algorithm we
present is a generalization of UW 1. The main difficulty stems from the fact that
the values X, are now functions of time. In addition, constructing the spanning
tree is now more complicated since the tree changes with time in a manner that is
harder to capture.

To overcome this latter problem we define, instead of a single value, a set of
functions Y,,(t) that is defined for every node k and for each of its neighbors
1 E Nk. &(t) is, as before, the earliest arrival time at node k for starting time t
(as known at a certain step of execution). Ykl(t) is, similarly, the earliest arrival
time at node I through its neighboring node k of a message started at time t. The
double index on Y is used to determine the spanning tree. This tree is defined by
choosing a father k for node 1 and time to such that Xt(to) = Yk[(tO); if more than
a single such node exists we choose (arbitrarily) the one with the smallest index
(this is done throughout the paper whenever a selection is not unique).

Algorithm U W2

1. Vk: (a) J&(t) c 03; (b) Vl E Nk Ykl(t) c cm.
2. X(t) c t.
3. For each (k, 1) E E, set Ykl(t) c&(t) + &(xk(t)).
4. For each 1 E V, set X,(t) c mink,, 1 Y&t)).
5. If no X,(t) just changed’ (for any 1) stop; otherwise, proceed with Step 3.

Before we proceed to the next theorem some explanations are in order. All the
assignments are to functions. Thus, for example, in Step 3 the function Y,,(t) is
set to the sum of two functions Xk(t) and Dkj(&(t)). In order to analyze and
compare algorithms that work with functions, we first introduce terminology of
operations performed on functions. We refer to one dimensional functions with
domain [0, w) and range (0, 03). A simple operation on functions is one of the
following:

-Function assignment: f(t) t g(t).
-A linear combination of two functions: cl g, (t) + c2g2(t).
-Minimum of two functions: mini g, (t), g2(t)).

-Compounding two functions: f(g(t)).

-Computing the maximal right neighborhood of a function in which it is constant,
i.e.:f(t) = maxi7 1 V8, t 5 0 5 T, g(0) = g(t))’

We say that an algorithm operating on functions has a functional complexity of
order a(n), denoted @(a(,)), if there is a constant k > 0 such that for an input of
length n (that is, n functions to be operated on) the number of simple function
operations performed by the algorithm is bounded by kol(n). Clearly, the execution
of a function operation may sometimes be quite involved. Nonetheless, the
definition is useful for several reasons: (1) assuming that such operations can be
performed in finite time, an algorithm of finite functional complexity is finite;
(2) algorithms that operate on functions can be compared; (3) algorithms that

’ Just changed means that there exists at least one instance t for which the function changed its value
during the most recently executed step.

‘Such operations are not used by algorithm UW2, and are introduced for future reference.

614 A.ORDA AND R. ROM

operate on functions can be compared with those that do not (e.g, UW 1 with
UW2). This definition of functional complexity leads to the following theorem.

THEOREM 2

(i) Algorithm UW2 terminates after at most OJ(1 V 1 1 E I) function operations.
(ii) .4Jier termination, X,(t) - t is the minimum delay from node s to node k for

starting time t.
(iii) For a given time t and for every node I let k be the father of I (i.e., k is the

lowest index for which Ykl(t) = X,(t)), a relation denoted by 1 + k. Then,
after termination, the relation I -+ k defines a spanning tree G rooted at s for
which the topological path from s to every node along the tree is a simple and
concatenated shortest (topological) path for starting time t.

PROOF. See Appendix A. Cl

Note that the functional complexity of UW2 is O’(I VI I E]) whereas the
complexity of UW 1 is 0(I VI *). The difference is that when all starting times are
considered at once, we can no longer identify at each iteration a single node that
serves as the center of operation for that (and only that) iteration and be disregarded
in subsequent iterations (this is done in UW 1 by labeling a node permanently).
Rather, in each iteration of UW2 all edges must be considered in an attempt to
improve the earliest arrival times. In other words, we cannot use a Dijkstra-type
algorithm, and must resort to a Ford-type one (see [5]).

3.2 THE FORBIDDEN WAITING MODEL. It is possible that in the FW model
none of the shortest paths is simple or concatenated. A simple four node example
is shown in Figure 3 where d12(t) = d13(t) = 1, dz3(t) = d32(t) = 2, and d34(t) =
1 + (t - 5)*. Here SP(1, 4, t = 0) = (1, 3, 2, 3, 4) is the only shortest path and
contains a loop (since in the FW model the waiting schedule is all zeros a traversal
path is fully described by the topological path; we thus make no distinction between
these two concepts when dealing with this model). The shortest path from node 1
to node 2 is SP(1,2, t) = (1,2). Thus, SP(1,4,0) is neither simple nor concatenated.

The above fact rules out the use of Ford- or Dijkstra-type algorithms and suggests
that no polynomial algorithm exists, that is, the number of operations cannot be
bounded by a polynomial in I VI. Indeed, if shortest paths are not concatenated,
“partial results” cannot be used and the calculation of the shortest path between
two nodes must consider all possible paths between them. (The problem can be
shown to be NP-hard.)

Under some circumstances it is even possible to have an infinite shortest path
(i.e., containing an infinite number of hops) although the minimum delay is finite.
Figure 4 depicts such a case for the shortest path between nodes 1 and 3. Here

ddt) = h,(t) =
Octc1,

elsewhere,

ddt) =
3 - 2t Ost<l,
l

elsewhere.

Starting in node 1 at some time 0 < ts < 1, node 1 can be revisited at a sequence
of times tk = 1 - (1 - ts)/4k, meaning that possible arrival times at node 3 are
Tk = tk + d13(tk) = 2 + (1 - tS)/4k > 2. However, for k + co one can arrive at
node 3 at time T = 2.

Network Shortest-Path and Minimum-Delay Algorithms

path for the Forbidden Waiting (FW) model.

615

and nonconcatenated shortest

2

FIG. 4. Example of an infinite shortest path with finite minimum delay.

i-0 I 3

In Halpern [lo], an algorithm is presented that attempts to find a (finite) shortest
path in a time-dependent network. Waiting at every node is limited to a predeter-
mined (possibly) empty set of intervals and delay functions are nonnegative and
piecewise continuous. The FW model is a special case of that model. From the
above example of an infinite shortest path, we conclude that Halpern’s algorithm
cannot perform its task in all cases for which it was supposed to. A close exami-
nation of Halpern’s proof reveals that slightly tighter constraints must be imposed
on the delay functions for the algorithm to be correct (such as the constraints
discussed below).

There are only a few facts that can be stated generally regarding this model. One
obvious characteristic is that if optimal waiting time is always zero (in which case
D,k(t) = dik(t)) the behavior of the algorithm in the FW and UW will be identical.
This is a characteristic of a network with only FIFO links that, for differentiable
delay functions means that the slope of dik(t) never decreases below - 1. Another
general fact that can be stated is that if for every i, k and every finite T there exists
a 6 > 0 (depending on i, k, and T) such that for every t I T holds d;k(t) > 6, then
the shortest path between any two nodes is finite.

3.3 THE SOURCE WAITING MODEL. We observe an immense gap between the
UW and FW models in finding shortest paths: the UW model behaves just like the
time-independent case (i.e., when delays are constant) whereas in the FW model it
seems that such efficient algorithms do not exist. However, by just alleviating
slightly the constraint on waiting, namely by permitting source waiting, efficient
algorithms can be found. In particular if all the delay functions are of the class
described below the following theorem proves equivalence (from the shortest path
standpoint) between the UW and SW models.

THEOREM 3. If V(k, j) E E dkj(t) is continuous or piecewise continuous with
only negative discontinuities (i.e., V t dkj (t -) 2 dkj (t ‘)) and such that for all t either
dkj (t) = dk, (t -) or dk, (t) = dkj (t +), then every shortest topological path in the UW
model is also a shortest topological path in the SW model, having the same delay.
In other words, if

(*, 7) = ((vo, Vl, . . . , bn), (70, 71, . . . , 7m-1)) E SPuw(s, w, t)

616 A.ORDA AND R. ROM

then for some 76 :

(a, 7 ‘1 = (vo, Vl, . . . , bn), (To), 0, * f * , 0))

E SPsw(s, w, t) and PD((r, 7), t) = PD((r, T’), t).

PROOF. Assume first that all delay functions are continuous.

Let (ruw, T”~) = ((~0, . . . , h), (70, 71, . . . , ~~-1)) E SPUW(S, w, k), s = ~0,

w = v,,,, and let tA(i) and tD(i) be, respectively, the arrival and departure times at
node vi E ruw when traveling along (7ruw, Tag). To prove the theorem, we show
that, for any given vi E ruw and for any given time T 2 tA(i), there is a source
departure time T, L ts such that if we leave s at TD and travel along ruw according
to the SW model we arrive at Vi at time T. In other words, we can adjust the
departure times from s so that we arrive at the node vi at any desired preset time
T as long as it is not earlier than tA(i).

We prove this claim by induction on the nodes in guw. For i = 0, the claim is
trivially true. Assuming truth for the ith node, we prove for the i + 1st.

Choose T I tA(i + 1). To arrive at node v. ,+r at time T we have to depart node vi
at time 0 such that f3 + d,,,,;+,(O) = T. The qustion is whether such /3 exists and
whether we can arrive at node vi at that time. Consider therefore the function
f(x) = x + d,,,,+,(x). f(x) is continuous, f(x) + CO as x + CQ and f(tD(i)) =
tA(i + 1) 5 T. Therefore, according to the Intermediate Value Theorem of
infinitesimal calculus, there exists a 0 such that f(O) = T and 0 2 tD(i) 2 tA(i). By
the inductive assumption, there exists a departure time TD that will cause arrival
in node vi at time 0 and therefore at node Vi+, at time T.

Suppose now that delay functions have a countable number of negative discon-
tinuities. Up to the point where the continuity off(x) is assumed the proof remains
the same. Next, for this case, f(x) is piecewise continuous with negative disconti-
nuities, f(x) + cc) as x + w and f(b(i)) = tA(i + 1) 5 T. It can be verified that the
Intermediate Value Theorem holds for this case as well, so that there exists a 0
such thatf(e) = T and 0 2 b(i) 2 tA(i); the proof follows. Cl

It should be noted that while the same path is being traversed, the departure
times for each intermediate node may be different. Indeed, as we shall see in
Algorithm SW 1 that follows, a separate calculation is needed for each source-
destination pair.

From Theorem 3 and Corollary 1 we get immediately

COROLLARY 2. If all dik(t) are as in Theorem 3, then, for a given source and
destination pair and a starting time, there exists a shortest traversal path in the SW
model that is simple and whose corresponding topological path is concatenated.

3.3.1 A Shortest-Path Algorithm for Continuous Functions and a Given Starting
Time. As in the UW model, we first present an algorithm to find the shortest
path between some node s and all other nodes for a given starting time ts. The
addition here is the computation of the departure times for every destination node
(we assume the delay functions are those for which Theorem 3 holds). In the
algorithm, we make use of the results of Theorem 3 and Corollary 2.

For a given destination, we first determine the minimum delay and shortest
topological path for the UW model. By Theorem 3, we know that the same
topological path can be used for the SW model with the same arrival time at the
destination. We thus start at the destination node for the known arrival time and
compute the departure time from its predecessor on the shortest topological path.

Network Shortest-Path and Minimum-Delay Algorithms 617

This process is then repeated for all nodes in the path. When this backtracking is
complete, that is, when the source node is reached in the computation process, we
have computed the departure time from the source node that trivially yields the
source waiting time.

Algorithm SW 1

1. Compute a shortest topological path using Algorithm UWl for node s and starting
time ts (after execution both the spanning tree relation j -A and the minimum delay
Xj - ts are known for every node j).

2. For each i E V/do
a. Sett,cX,,jci.
b. Until j = s do

i. Find tD such that tD 2 X4 and tD + dJsj(tD) = tA.
ii. tA+tD,j+A.

c. t,(s, i, ts) +- tA - ts.

THEOREM 4. The following is true for Algorithm SW 1:

(i) It stops after 0(1 V I*) operations.
(ii) After termination, the relation j +J forms a spanning tree of G rooted at s on

which each path from s to any node j is a shortest topological path for time ts
whose delay is given by Xj - ts.

(iii) After termination for each i E V tw(s, i, ts) is a (nonnegative) waiting time
such that departing node s at time ts + tw(s, i, ts) and moving without waiting
along the tree will result in arrival at node i with minimum delay.

PROOF. By Theorem 1, the relation j +A defines a spanning tree, meaning that
Step 2(b) terminates (in fact is executed 0(1 V I) times) provided the value of tD,
as appears in Step 2(b)(i) of the algorithm, can always be computed. We now
demonstrate this fact.

For continuous or piecewise continuous functions with only negative discontin-
uities, the equation tD + dkj(tD) = tA has at least one solution tD E (-00, 03) for any
given tA. The solutions are the intersection points between dkj (t) and the -45” line

tA - t. Moreover, Theorem 3 guarantees that one of these solutions fulfills
tD > X4, proving claim (iii).

The two other claims follow immediately. Step 2(b) involves 0(I VI) opera-
tions and is executed 0(I V I) times resulting in a total of 0(I VI ‘) operations for
Step 2. By Theorem 1 claim (ii) holds. Claim (i) follows directly from the above
and Theorems 1 and 3. 0

As an example of the above computation, consider a network all of whose links
have the same delay functions, that is, dik(t) = d(t). Starting at a given time ts, we
seek minimum delay from the source node to a node 4 hops away traversing nodes

1, 2, 3 on its way. Figure 5 shows the function d(t) and the respective arrival and

departure times in the UW model (the dashed lines). Having determined t,, we
compute backward the visiting times according to the SW model (marked tl).

These are computed as follows. We determine tl as the departure time for arrival
at t: . We then compute t; , the departure time for arrival at t; , and so on (the dot-
dashed lines in Figure 5). Finally, ti determines the departure time from the source
according to the SW model, and tw(s, w, ts) = ts’ - ts is the waiting time.

3.3.2 A Shortest-Path Algorithm for All Starting Times. We assume in this
section that the delay functions are those for which Theorem 3 holds. The following
observations show how Algorithm UW2 is used for solving the same problem in

618 A. ORDA AND R. ROM

d(t)

FIG. 5. Computation of waiting times.

the SW model. As was proved, when UW2 terminates J&(t) is the earliest arrival
time at node k from node s for starting time t in the UW model. Since waiting is
allowed in the UW model, t2 > t, implies Xk(tZ) 2 &(t,). With each time instant
to and destination node k we may thus associate the latest starting time, Lk(tO), that
results in the same arrival time at the destination. Formally, for each to and node
k: (a) Lk(tO) L to; (b) Xk(Lk(tO)) = &(to); (c) V t > LdtO): J&(t) > &(tO). In fact,
Lk(tO) is the latest departure time from node s in the UW model that enables arrival
at node k at the earliest possible arrival time for starting time to. It is fairly easy
to determine Lk(tO) for given k and t o, since from the above follows that V t E
[to, Lk(tO)], we have i&(t) = Xk(tO). The following lemma establishes a useful
property of the values of Lk(t).

LEMMA 1. For source node s, destination node w, starting time ts, and L,(ts)
as defined above, let P = (7r, r) be a shortest traversal path for s, w, L,(&). Then
7 = (0, 0, . . .) 0) that is, traversing is without waiting (neither at the source nor
en route).

PROOF. Assume the contrary, that is, there is a shortest path

P = (7r, 7) = ((s, VI, . . . , vm-I, w), (70, . . . , 7*-l))

for s, w, L,(ts) such that for some 0 I i 5 yy1 - 1, Ti # 0. We distinguish two cases
depending on the value of TV. Assume first that 7. # 0. Since X,,(t) is the earliest
arrival time at node w for starting time t and since P is a shortest path we have

Xv(Lw(ts)) = PWP, L&i)) + L&s).

Consider now the traversal path P’ = (r, 7 ’) where T ’ = (0, 7,) . . . , 7,-i) and
consider the starting time L,(t,) + 70. It is straightforward to notice that the arrival
time at node w for these two paths is the same, namely,

PWP’, L&s) + TO) + Ldts) + TO = PD(P, L,(ts)) + L&s),

hence,

&(L&)) = PD(P’, L,(ts) + TO) + L,(ts) + 70.

Network Shortest-Path and Minimum-Delay Algorithms 619

On the other hand, again because X,,,(.) is the earliest arrival time, we have

PD(P’, L&s) + 70) + I+&,) + TO 2 X&&s) + 70)

and we conclude that Xw(Lw(ts)) 1 X,,(L,(ts) + 70). But L,(k) + TO > L,(ts) 2
ts, thus property (c) in the definition of L,(k) implies that X,(L,(ts)) c
Xw(L,(ts) + TV), contradicting the above conclusion.

Assume now the 7, # 0 for some j > 0 and let i be the smallest such j

(’ i.e., 7. = 7, = . . . = Ti-, = 0). Denote by t,,(i) the departure time from node Vi on
path P for starting time L,(ts). Theorem 3 guarantees that there is some 7 > 0
such that if we leave node s at time L,(ts) + 7 traversing the topological path a,
we arrive at node vi at time t,,(i) without waiting en route. Thus for P’ = (?r, T ‘),
7’ = (7, 0, . . . , 0, 7i+l, . . . 3 T,-,), we have PD(P’, L,(ts)) = PD(P, L,(ts)), and
thus P’ is also a shortest path for s, w, L,(ts) but with 7. = 7 > 0, and we have
already seen that a contradiction follows. 0

COROLLARY 3. For source node s, destination node w, and starting time ts,
L,(t,) - ts is an optimal source waiting time for the SW model and any shortest
topological path for s, w, L,(ts) in the UW model is also a shortest topological path
for s, w, ts in the SW model.

PROOF. Let X,(t,) (where A,(t,) 2 ts) be the latest departure time for
starting time ts that assures earliest arrival time at node w in the SW model. From
Theorem 3 it follows that X,(t,) = L,(ts), establishing the first part of the corollary.
The second part follows directly from Lemma 1. El

The above corollary makes our approach clear. We first run Algorithm UW2
and obtain for each w E V the function X,,,(t) which is the minimal delay from
node s to w for all times t in both the UW and SW models. To construct a
shortest traversal path for starting time t we calculate the source waiting time
WAZT(s, w, t) according to

WAZT(s, w, t) = max(T I X,(t + T) = X,,,(t)),

that is, we want to leave at L,(t) and therefore wait for L,(t) - t. We then
traverse the topological path defined by the values of Xk(t + WAZT(s, w, t)) and
Yk,(t + WAZT(s, w, t)).

The above discussion is summarized by the following formal specification of the
algorithm, along with the corresponding theorem.

Algorithm SW2

1. Execute Algorithm UW2.
2. For each w E V, do WAZT(s, w, t) + max(T 1 X,(t + 7) = X,Jt)).

THEOREM 5. The following is true for Algorithm S W2 and for the SW model :

(i) It stops after Of(1 V 1 I E I) function operations.
(ii) After termination, X,(t) - t is the minimum delay from node s to node w for

starting time t, and WAZT(s, w, t) is an optimal source waiting time.
(iii) For a time t and for every node w, the topological path between s and w

on the spanning tree defined (in the way described in Theorem 2) by
X,(t + WAZT(s, w, t)), Ykl(t + WAZT(s, w, t)) is a shortest topological path
for s, w, t.

PROOF. According to Theorem 2, claim (i) is true for the first part of the
algorithm. The second part of the algorithm involves Of (I V I) function operations.

620 A. ORDA AND R. ROM

Thus, we conclude that the algorithm terminates after executing Of(I V/)) E ()
function operations, proving claim (i). Claim (ii) follows from Theorems 2 and 3,
together with Corollary 3. Claim (iii) follows from Corollary 3. Cl

Note that the only functions that should be stored are X,(t) and YM(~).
WAZT(s, w, t) need not be computed as a function for all t. Rather, the cal-
culation of WAIT@, w, to) can be done only when the need arises for a message
generated at s at time to and whose destination is w. A shortest topological path to
node w for the SW model can then be constructed from the spanning tree defined
by X,(t,, + WAIT(s, w, to)), Yk,(tO + WAIT@, w, to)) as described in the theorem.
In this way, we avoid using the last type of simple function operations, and restrict
the definition of functional complexity to much simpler types of operations.

3.3.3 Extension to General Piecewise Continuous Functions. To gain some
insight regarding the problematic aspect of positive discontinuities consider the
four-node network in Figure 6 where

d&t)
&3(t)

400,
&(t)

1 fooo f 5 : &4(t) ‘I 1000 t < 10, = = = = 3
1 t 2 10.

In the UW model, for ts = 0, we get SP(1, 4, t = 0) = ((1, 3, 4), (0, 9)) with 11
units delay. In the SW model SP(1, 4, 0) = ((1, 2, 3, 4), (0, 0, 0)) with 801 units
delay, demonstrating that the shortest path and minimum delay in the SW model
are different from those in the UW model.

Let us make a slight change in the problematic delay function as follows:

1

1 t5 1,
&(t) = 999t - 998 1 c t 5 2,

1000 t > 2.

This function is “almost” the same as the one before except for being continuous.
With this change, one could, in the SW model, leave node 1 at ts = 1.008, go
through node 3 arriving in node 4 at t = 11 as we would have in the UW model.

Although the above demonstrates that Corollary 2 does not always hold for
general noncontinuous functions, the following demonstrates the reason. Consider,
again, a network all of whose link delay functions are the same, noncontinuous
function d(t) (see Figure 7). For starting time ts the UW arrival time t,, is computed.
However, going backward from t4) = t,, we notice that there exists no time t2/ that
will cause arrival at t; . Graphically, the -45” line at t; does not intersect d(t).

Although Corollary 2 does not hold for general noncontinuous functions, we
can expand the previous results to cover a wider class of functions by slightly
relaxing the waiting constraints. Clearly, if we allow unrestricted waiting at nodes
whose incoming links have noncontinuous functions, we can do as well as in the
UW model since each such node can be considered a source for traversal of a
subnetwork, all of whose delay functions are continuous. However, for piecewise
continuous functions, we shall demonstrate in the following that to achieve
minimum delay equal to that of the UW model, the amount of waiting in such
intermediate nodes may be bounded in terms of when and for how long waiting
must be allowed.

Consider a network whose delay functions are piecewise continuous, and we
require also that for all i, k, t either dik(t) = &(t -) or dik(t) = &(t ‘). Our SW
policy is relaxed to allow limited waiting in nodes whose incoming links have
noncontinuous delay functions (in addition to the unrestricted waiting at the
source). Since negative discontinuities are treated in Theorem 3, we focus here on

Network Shortest-Path and Minimum-Delay Algorithms 621

FIG. 6. Example of a network for computing the
shortest path for noncontinuous functions.

do

t
01 +d, +02=+d2 to3

‘d3
t
o4

-t

I I

+; ‘2

FIG. 7. Computation of waiting times for discontinuous functions.

positive discontinuities. Let dik(t) have a positive discontinuity at to, that is,
dik(tz) > djk(t;). To such a discontinuity we assign a relaxation instant 7. around
the time to + djk(t;) when waiting restrictions are relaxed in the following manner.
Messages arriving at node k from node i at the relaxation instant 7. may wait at
node k for an amount of time not exceeding dik(t0+) - d;!Jt;) + t for any
predetermined E > 0 (E can be arbitrarily small). Moreover, if djk(tO) = dik(ti), then
we may even choose c = 0. We refer to this policy as the relaxed SW policy.

Figure 8 illustrates a simple example of the above method. In the figure dik(t)
has a positive discontinuity at t = to of the kind dik(t&) = dik(t0). We choose 70 =
t, = to + dik(tg) and allow messages departing on link (i, k) at time to to wait at
node k an amount of time limited to d&t;) - dik(tg). Doing so we guarantee that
messages arriving at node k on link (i, k) at time 7. = t, may depart from k at any
time during the interval [t,, t2].

LEMMA 2. In the relaxed SW model, the results of Theorem 3 holdfor piecewise
continuous delay functions.

PROOF. See Appendix B. 0

4. Conclusion

In this paper, we have investigated the shortest-path problem for networks in which
link delays are functions of time. It is shown that the problem can be solved
efficiently when no constraints are imposed on waiting times at the nodes. On the
other hand, the examples presented for the FW model indicate that general waiting

622 A. ORDA AND R. ROM

dik(t)
t

FIG. 8. Example for treating delay-function discontinuity.

constraints render the problem very complex. For a wide class of delay functions,
it is shown that an efficient solution exists if we allow waiting just at the source
node. It should be pointed out that delaying the departure at the source node is
commonplace in practical cases. Moreover, it is proved that performance in this
case, from the minimum delay standpoint, is equivalent to that of the most
unrestricted case.

The relaxation needed in order to cover all piecewise continuous delay functions
is slight, since it changes the waiting constraints in only a countable number of
points in a continuum. Since, in most practical cases, delay functions are contin-
uous or piecewise continuous, we conclude that waiting restrictions at intermediate
nodes do not really impose limitations on minimal delay nor do they increase the
complexity of computing these delays.

In this paper we restricted ourselves to delay functions for which an optimal
waiting time can be defined for all times. One can avoid this restriction by
considering paths that are c-optimal, that is, their delay is within a predetermined
and arbitrary small range of the infimum delay of all paths. For a wide family of
delay functions (including the piecewise continuous ones), the algorithms presented
in this paper can be applied to the t-optimal paths problem after making some
modifications, for example, instead of an optimal waiting time, we consider an
t-optimal one, defined for time t by &(t, TV) 5 Dik(t, T) + c for all T z 0;
the function Dik(t) is then defined accordingly.

We have presented algorithms (UW2 and SW2) that handle all starting times at
once. These are useful in a scenario where messages may be created at the source
node at any time and an optimal path should be found for each of them. An
efficient way is to run an algorithm for all starting times prior to the time range
being considered; then, for a message created at time ts, an optimal path is
immediately found from the values of &(t,) and Ykl(tS) that are computed by the
algorithm (along with the value L,+(tS) computed in the SW model). Those algo-
rithms were also presented to make a conceptual point: they demonstrate the
difference between the cases having a single, given, starting time, and those that
consider all starting times at once. Their study offers more insight into the nature
of the time-dependent environment (e.g., the functions L,(t)) and they serve as
building blocks for extending these algorithms to a distributed environment.

Network Shortest-Path and Minimum-Delay Algorithms 623

There are several possible extensions to these results, two of which we describe
here. The drive for this paper came from the field of computer communication
networks for which it is interesting to consider distributed versions of network
control algorithms. Indeed, for the static or quasi-static environment, several
distributed shortest path algorithms were developed based on centralized versions.
(See, e.g., Segall [16].) Such distributed versions were developed and investigated
also for the algorithms presented in this paper [141.

This paper considers minimum-delay paths. In a general case, the “length” of a
link may be characterized by factors other than delay such as reliability, traversal
cost, etc. Since these factors may also be time-dependent, it is of interest to
investigate the shortest-path problem for general time-dependent link weights. This
problem is far more complicated than the minimum-delay one to the extent that
the least restricted UW model does not guarantee the existence of simple, conca-
tenated, or even finite optimal paths. The interested reader is referred to [151 for
discussion and analysis of this problem.

Appendix A. Proof of Theorem 2

We start with some notations. Denote each execution of Step 3 of Algorithm
UW2 as an “iteration.” Let VAR, be the value of VAR after the nth iteration. Let
fk(t)n be the neighbor 1 of node k with the smallest index for which &(t)n = Ylk(t)n
(clearly such a neighbor exists). Finally, for given i, t, n let PATH(s, i, t)n =

(Vm, vm-1, ..‘, Vl, vO), where s = v, and i = vo, be defined by v(= fYITl(t)“. The
theorem is proven through the following two lemmas.

LEMMA Al. For all i, t, n, ifXi(t)n is defined (not w), then PATH(s, i, t),, is a
simple topological path and Xi(t),, - t is its delayfor starting time t (when choosing
an optimal waiting time at each node).

PROOF. From the way X,(t) and the Y’s are calculated in all nodes, it is
clear that PATH(s, i, t)n is a well-defined and finite topological path, and that

4(t) n+l I Xj(t)n. Denote f AA(t),; thus,

&(t)n = YLj(t)n = D/j(xJ(t In> + xf(t In > x/(t In,

meaning that the X value is strictly increasing along the path, and since it is
impossible to move around a loop with monotonically decreasing X’s it follows
that PATH(s, i, t)n is simple for all i, t, n.

By the way X, is constructed along the topological path, it is clear that
Xk(t)n - t is the delay of PATH(s, i, t)n. III

In Section 2 we defined the hop-index H(s, w, t) as the minimal number of hops
(edges) among all the simple and concatenated shortest paths for s, w, t. We use
this definition to prove the following lemma.

LEMMA A2. Let h = H(s, i, t). Then Vm 2 h PATH(s, i, t)m is a simple and
concatenated shortest topological path for s, i, t whose delay (choosing an optimal
waiting time at each node) is &(t),,, - t.

PROOF. By induction on h. For h = 0, the assumption is trivially correct since
then s = i. Assuming it is correct for all times t and for all nodes k for which
H(s, k, t) = h, we prove it for all times t and for all nodes for which the hop index
(corresponding to that time) is h + 1. Let to and i be such that H(s, i, to) = h + 1.
Node i has at least one neighbor k whose hop index for to equals h. By the inductive

624 A. ORDA AND R. ROM

assumption, after the m = h iteration PATH(s, k, to)m is a simple and concatenated
shortest topological path whose delay is Xk(t~)~ - to. Thus, at its (h + I)st iteration
(at most), the algorithm sets Yki at Step 3 and subsequently sets Xi (at Step 4) to
the earliest arrival times. This operation appends node i to PATH(s, k, to) to yield
PATH@, i, to), which is therefore a simple and concatenated shortest topological
path.

Henceforth, once again by the inductive assumption, X, will remain unchanged.
Since to is arbitrary the assumption holds for all t, completing the proof. q

Lemma A2 shows that after at most 0(1 V I) iterations the algorithm terminates.
Since Step 3 involves @(1 E I) functional operations the algorithm requires a total
of @(1 I/ 1 1 E I) functional operations. The rest of the claims of the theorem follow
directly from the two lemmas. Cl

Appendix B. Proof of Lemma 2

Let SPuw(~uw, 7uw) = ((~0, vl, . . . , VA (70, 71, . . . , ~~-1)) E WUWO, w, k),

vo = s, v, = w, and let t*(i) and tD(i) be respectively the arrival and departure
times for node v, E ruw when traveling along SP uw. Without loss of generality, we
assume that 7uw is such that tA(i + 1) is the earliest possible arrival time at v,+~
when departing from Vi at t 2 tA(i) (this rule applies recursively to i = 0, 1, . . . , m
- 1). We show that for any Vi E 7ruw and any time T 2 tA(i), there is a departure
time T,, 2 ts such that if we leave s at TD and travel along ruw according to the
relaxed SW policy we may depart from node vi at time T. We prove this claim by
induction on the nodes of ruw. For i = 0, the claim is trivially true; assuming truth
for the ith node we prove for the i + 1st.

Choose T 2 tA(i + 1). Since t + d,,,,,+,(t) +f+m w, the set &-&I (t 1 t + d,,,,+,(t)
> T, t,(i) 5 t) is nonempty, and let t, P inf ST. If t, + d,,.,,+,(t,) = T, then we are
done, since by the inductive assumption, we may depart from node Vi at time tl,
arrive at v;+~ at time T, and depart immediately. Otherwise, since t, = inf Sr, it
follows that Tj P t, + d “,,“, +,(t;) I T and T, P tl + d, ,,“, +,(t:) > T; moreover, if
T, = T, then T2 > T (otherwise, we have t1 + d,,,,,+,(t,) = T). Thus, there is a
positive jump of d,,,,,+,(t) at tl.

Assume first that dv,,,i+,(t,) = dyI,yl+I (t;). Since t, 1 tA(i), it follows that T, L
tA(i + 1); otherwise, tA(i + 1) would not be the earliest arrival time at Vi+1 for
departure time t 2 tA(i) from vi contrary to the assumption made on 7~~. We
choose T, as the relaxation point for t,. Since t, I tA(i), it follows from the
inductive assumption that in the relaxed SW model one may depart from node Vi
at time t, and therefore arrive at node v;+~ at time T,. Since

T - T, = T - [t, + dv,.v,+, @,)I = T - [t, + dv,,vi+Jt;)l 5 T2 - [tl + dv~,v,+,(r>l
= [tt + dv,,vI+, U:)l - [Ll + dv,.v,+l (t;)] = dvj,vt+,(t:) - dvi,v;+,(t;),

one may wait at Vi+1 for a period of T - T, and then depart at time T.
Assume now that d,,,,,, (t,) # d,,,,,+,(t ;). Since d,,,,,+,(t) is piecewise continuous,

for any t > 0, there is a value i, < tl close enough to tl such that

(a) i, 2 tA(i).

(b) I d+,+,(t;) - dv,,v,+,(il)I < ;.

(c) t, - il < ; .

Network Shortest-Path and Minimum-Delay Algorithms 625

Denote F, B i, + d Y,,V,+l(il). We choose F, as the relaxation point for t,. Since
i, 2 tA(i), one may depart from node Vi at time i, and arrive at node v;+~ at time
?, . We have

T-f’, = T-[i, +d y,,v, +,(i,)]<T- i, +dv,,v,+,(t;)-;
I

< T- [t, + d,,,,,,(t;) - ~15 Tz - [tl + a&+,(t;) - ~1

= [t, + d,,v,+, U:)l-[t, +d,,,+,(t;)-~l=d,,.,,+,(t:)--d,,,i+,(t;)+~.

Thus, one may wait at vi+, for a period of T - p, and then depart at time T. Cl

ACKNOWLEDGMENT. The authors would like to thank the reviewers for an extra-
ordinary reviewing effort that considerably improved the presentation of the work.

REFERENCES

1. COOKE, K. L., AND HALSEY, E. The shortest route through a network with time dependent

internodal transit times. J. Math. Anal. Appl. 14 (1966), 493-498.

2. DEO, N., AND PANG, C. Y. Shortest path algorithms: Taxonomy and annotation. Networks 14
(1984), 275-323.

3. DIJKSTRA, E. W. A note on two problems in connection with graphs. Num. Anal. I (Oct. 1959),

269-27 1.

4. DREYFUS, S. E. An appraisal of some shortest path algorithms. Oper. Rex I7 (1969), 395-412.
5. EVEN, S. Graph Algorithms. Computer Science Press, New York, 1979.

6. EVEN, S., AND GAZIT, H. Updating distances in dynamic graphs. Meth. Oper. Rex 49 (May 1985),

37 l-387.

7. FORD, L. R., JR., AND FULKERSON, D. R. Constructing maximal dynamic flows from static flows.

Oper. Res. 6 (1958), 419-433.

8. FORD, L. R., JR., AND FULKERSON, D. R. Flows in Networks. Princeton University Press, Princeton,

N.J., 1962.

9. GERLA, M., AND KLEINROCK, L. Flow control: A comparative survey. IEEE Trans. Commun.
COM-28,4 (Apr. 1980), 553-574.

10. HALPERN, J. The shortest route with time dependent length ofedges and limited delay possibilities

in nodes. Z. Oper. Res. 21 (1977), 117-124.

11. KLAFSZKY, E. Determination of shortest path in a network with time-dependent edge-lengths.

Math. Oper. Stat. 3 (1972), 255-257.
12. LING, S. T., FURUNO, K., AND TEZUKA, Y. Optimal path in networks with time-varying traverse

time and expenses branches. Tech. Rep. of Osaka University, Japan, 1972.

13. MCQUILLAN, J. M., RICHER, I., AND ROSEN, E. C. The new routing algorithm for the ARPANET.

IEEE Trans. Commun. COM-28, 5 (May 1980), 711-719.

14. ORDA, A., AND ROM, R. Distributed shortest-path protocols for time-dependent networks. In

Proceedings of ICCC 88 (Tel Aviv, Israel, Nov. 1988), pp. 439-445.

15. ORDA, A., AND ROM, R. Minimum weight paths in time-dependent networks. EE Publication No.

710. Faculty of Electrical Engineering, Technion, Haifa, Israel, Mar. 1989.

16. SEGALL, A. Distributed network protocols. IEEE Trans. on If: Theory (Jan. 1983), 23-34.

RECEIVED JUNE 1987; REVISED MARCH 1988, DECEMBER 1988, AND SEPTEMBER 1989; ACCEPTED

SEPTEMBER 1989

Journal ofthe Association for Computing Machinery, Vol. 37, No. 3, July 1990.

