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In this paper we consider a natural probabilistic variation of the classical minimum 
spanning tree problem (MST), which we call the probabilistic minimum spanning tree 
problem (PMST). In particular, we consider the case where not all the points are 
deterministically present, but are present with certain probability. We discuss the appli- 
cations of the PMST and find a closed-form expression for the expected length of a 
given spanning tree. Based on these expressions, we prove that the problem is NP-com- 
plete. We further examine some interesting combinatorial properties of the problem, 
establish the relation of the PMST with the MST and the network design problem, and 
examine some cases where the problem is solvable in polynomial time. We finally 
characterize the asymptotic behavior of reoptimization strategies, in which we find the 
MST or the Steiner tree, respectively, among the points that are present on a particular 
instance, and the PMST, in the case in which points are randomly distributed in the 
Euclidean plane and in the case in which the costs of the arcs are randomly distributed. 
In both cases the PMST is within constant factors from both strategies. 

1. INTRODUCTION 
The classical minimum spanning tree (MST) problem plays an important role 

in combinatorial optimization. It possesses the matroidal property that allows 
the greedy algorithm to solve the problem optimally, and thus it is the prototype 
for problems solvable in polynomial time. For a summary of its properties and 
algorithms for its solution, see Papadimitriou and Steiglitz [8]. From a practical 
point of view, it has important applications in transportation, communications, 
distribution systems, etc. 

In this paper we consider a natural probabilistic variation of this classical 
problem. In particular, we consider the case where not all the points are 
deterministically present, but are present with certain probability. Formally, 
given a weighted graph G = (V,  E )  and a probability of presence pi for each 
vertex i, we want to construct an a priori spanning tree of minimum expected 
length in the following sense: On any given instance of the problem, delete the 
vertices and their adjacent edges among the set of absent vertices provided that 
the tree remains connected. The problem of finding an a priori spanning tree 
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of minimum expected length is the probabilistic minimum spanning tree (PMST) 
problem. In order to clarify the definition of the PMST problem, consider the 
example in Figure 1. If the a priori tree is T and nodes 2 , 7 , 9  are the only ones 
not present, the tree becomes TI .  One can easily observe that if pi = 1 for all 
i E V ,  then the problem reduces to the classical MST problem. 

This paper is part of a more general investigation of the properties of com- 
binatorial optimization problems when instances are modified probabilistically . 
Jaillet [6] defined the probabilistic traveling salesman problem (PTSP), exam- 
ined some of its combinatorial properties, and proved asymptotic limit theorems 
in the plane. Bertsimas [2] derived further properties of the PTSP and also 
analyzed the probabilistic vehicle routing problem and probabilistic facility 
location problems. To our knowledge, the PMST problem has never been 
defined before in the literature despite its intrinsic interest as well as its applica- 
bility. 

In the next section, we discuss some applications of the PMST problem, 
whereas in Section 3 we address the question of finding an explicit expression 
for the expected length of an a priori tree 7: In Section 4, we investigate the 
complexity of the problem and we prove that even a restricted version of the 
problem with all weights equal is NP-complete, which in view of the simplicity 
of the MST problem is a quite surprising result. We further examine some 
special cases that are solvable in polynomial time. In Section 5 ,  we examine 
some interesting combinatorial properties of the problem. In Section 6, we 
perform probabilistic analysis under the random Euclidean and the random- 
length models of the PMST and the two reoptimization strategies, in which we 
find the MST or the Steiner tree, respectively, among the points that are present 
at a particular instance. Under the random Euclidean model, we characterize 
the asymptotic behavior of the two reoptimization strategies and the PMST. In 
particular, we prove that with probability 1, as the number of points goes to 
infinity, the expected length of the PMST is within a constant of the MST and 
the Steiner reoptimization strategies. In the random-length model, using a result 
of Frieze [4], we prove that in probability the expected length of the PMST is 
asymptotically smaller than is the expectation of the MST reoptimization strat- 
egy. The final section includes some concluding remarks. 

FIG. 1. The PMST methodology. 
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2. DISCUSSION AND APPLICATIONS OF THE PMST PROBLEM 
The PMST problem defines an efficient strategy to update minimum spanning 

tree solutions when the problem’s instances are modified probabilistically be- 
cause of the absence of certain nodes from the graph. We denote this strategy 
with CTP, where Tp is the optimal a priori tree. Then, in the instance S,  i.e., 
when only nodes in the set S are present, the strategy produces a tree Tp(S) 
with length LTp(S), which is the length of the tree that connects nodes from 
the set S of present nodes using parts of Tp. In the context of this discussion, 
the letter C denotes the strategy used. Alternatively, we can use either one of 
the following reoptimization strategies. 

1. A reoptimization strategy CMST, in which we find the minimum spanning 
tree (MST) of the set of present nodes in every instance. We denote with 
LMST(S) the length of the MST of the nodes in the set S. 

2. A reoptimization strategy CSTEINER, in which we find the minimum Steiner 
tree of the set of present nodes in every instance. We denote with LSTEINER(S) 

the length of the Steiner tree of the nodes in the set S ,  using possibly nodes 
from the set V -  S. 

Remarks. The above definition of the reoptimization strategy CSTElNER ap- 
plies only for the case of a fixed network, as opposed to the case where the 
points are located in the Euclidean plane. In this case, LSTEINER(S) is the 
length of the Steiner tree in the plane of the points from the set S. Note also 
that the PMST strategy uses “Steiner” points. 

Why do we not use these reoptimization strategies, CMsT, CSTEINER, rather 
than the strategy C, that we are proposing? 

Concerning the C s m I N E R  strategy, it is clear that LSTEINER(S) 5 LTp(S), be- 
cause the tree connecting the set S using only parts of the tree Tp is also a 
solution to the Steiner problem. The disadvantage of the STEINER strategy is 
that we have to solve an NP-hard problem in every instance, something that is 
feasible only for small problem instances. 

With the strategy CMST, it is clear that we can compute LMST(S) in O(lS12), 
using the greedy algorithm, but it is not clear that LMST(S) 5 LTp(S). In fact, 
in Section 5 ,  we construct examples where the probabilistic strategy C, we are 
proposing is better than the 2;MST. Furthermore, in Section 6 ,  we prove that 
asymptotically under reasonable probabilistic assumptions the probabilistic 
strategy C, is at least as good as the XMST. 

What is more important is the fact that in many applications we need a real- 
time strategy to modify the solution when the instances are modified. Clearly, 
the PMST strategy satisfies this criterion, since the tree T(S) can be found in 
O(n) time as follows: 

1. Start with the a priori tree T. 
2. Until there are no unmarked leaves in T: 

find an unmarked leaf in T; 
if i E S mark it; else delete i from T. 

3. The resulting tree is the tree T(S).  
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Since we are only looking at every node at most once, this is an O(n) algorithm. 
Note that the two reoptimization strategies are superlinear. In addition, we 
may not have the computer resources to reoptimize. An even more important 
motivation in favor of the ZTp strategy is that this strategy does not change the 
underlying network structure, whereas both the reoptimization strategies can 
result in a completely different network structure by adding new edges and 
deleting old ones. In a communication network, for example, it may be very 
expensive or even impractical to create new communication links for each 
problem instance. 

After this discussion of the various strategies available when problem in- 
stances are modified, we will describe some potential application areas of the 
PMST problem. In a VLSI context, suppose that on a circuit there are n 
processors subject to failures and processor i becomes inactive with probability 
pi. Then we would like to connect the active processors using a spanning tree 
structure, which minimizes the manufacturing cost. Communication of two 
active processors through some inctive processors means that the inactive pro- 
cessors allow communication. Since in this example changing the underlying 
network structure is impractical, the PMST strategy is a good solution to the 
problem. 

In a communication network, nodes may represent communication centers, 
arcs represent communication links, and link costs are the communication 
costs among centers. The probability of failure pi is the probability of blocked 
communication in center i. If the centers are blocked, they can be used only 
to establish communication between unblocked centers. Then the problem of 
finding an a priori network structure of minimum expected cost is the PMST 
problem. 

A more unusual application of the PMST problem is in the area of organiz- 
ational structures. Suppose the n points that we wish to interconnect represent 
our agents or spies in a foreign country. They will undertake in the future a 
series of missions, each mission involving a different subset of agents. A mission, 
in our context, is an instance of the problem. We are looking for an a priori 
organizational structure in which, for obvious reasons, each agent will know 
only the people immediately above or below hidher  in the structure; this 
implies a spanning-tree-like structure. The probability pi associated with point 
i is the a priori probability that agent i will have to participate in any random 
mission undertaken by the network. For any given mission, only that part of 
the organization that is necessary to interconnect all the agents participating in 
that particular mission is activated. The distance between points i and j is 
interpreted as the cost or risk of exposure incurred when agents i and j must 
communicate or work with each other. Given pi for i = 1,2 ,  . . . , n and the 
distance matrix for all possible pairs (i, j ) ,  the PMST gives the organizational 
structure that, in the expected value sense, minimizes the risk of exposure of 
the network on a random mission. 

Other applications of the PMST include transportation and strategic planning. 
One might object that all the examples we have discussed represent some 
idealization of reality. Nevertheless, the PMST is a generic problem, which in 



PROBABILISTIC MINIMUM SPANNING TREE PROBLEM 249 

many applications can be a more appropriate model than is the classical MST, 
in the case where a particular type of randomness is present. It also addresses 
the question of finding a spanning tree that is optimal on the average, rather 
than a solution that is optimal on a particular instance. The essential character- 
istic therefore of the PMST is that it is a more global and more robust problem 
than is the MST. 

Unfortunately, as we prove in Section 4, one pays for these nice properties 
(robustness, globality) by changing the complexity of the problem radically. 
Although the MST problem is easily solvable, the PMST problem is NP-hard. 

3. THE EXPECTED LENGTH OF A GIVEN SPANNING TREE 
As we noted in the previous section, the PMST problem defines an efficient 

strategy for updating spanning tree solutions when problem instances are mo- 
dified probabilistically in response to the absence of certain nodes from the 
graph. Given an a priori tree T we define LT(S) to be the length of the tree 
that connects nodes from the set S of present nodes using only parts of T. For 
example, in Figure 1 ,  S = { 1 , 3 , 5 , 6 , 8 }  and LT(S) is the length of the tree T I .  
Then if the set S of points present has probability p ( S ) ,  the problem can be 
defined formally as follows: 

Problem definition. Given a graph G = (V,  E ) ,  not necessarily complete, a 
cost function c :  E + R ,  and a probability function p :2v+[0, 11, we want to 
find a tree T that minimizes the expected length E[L,]: 

where the summation is taken over all subsets of V ,  the instances of the 
problem. 

Note that at this level of generality we can model dependencies among the 
probabilities of presence of sets of nodes. An additional observation is that 
with this formulation one would need O(n2"), (Ill = n)  effort to compute the 
expected length of a given tree T.  We would like to be able to compute E[LT] 
efficiently. The question we address in this section is for which probability 
functions p(S)  we can compute efficiently E[L,] for a given tree T .  

If we define h(S) A Pr {none of the nodes in S is present} = XRcv-sp(R),  
then 

Theorem 1. Given an a priori tree T its expected length is given by the ex- 
pression 

E[LT] = E c ( e > { l -  h ( ~ , )  - h ( ~  - K,) + ~ ( v ) I  (2) 
eET 

where K,, V -  K, are the subsets of nodes contained in the two subtrees ob- 
tained from T by removing the edge e (see Fig. 2). 

Proof. Given a tree T, let us consider how much each edge e E T contributes 
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FIG. 2. The sets K,, V -  K,. 

to E [ L T ] .  By the definition of the problem, only the edges in T contribute in 
this expectation. If we define the events: A(k,) B at least one node in K, is 
present, then the contribution of every edge e is 

because the edge e is used if and only if there exists at least one node present 
in K, and at least one node present in V -  K,. As a result, 

But 

P~{A(K, )  n A(V - K,)) = P~{[Ac(K, )  u AC(V - K J C )  

= 1 - Pr{AC(K,) U Ac(V - K,)} 
= 1 - Pr{Ac(K,)} - Pr{Ac(V - K,)} + Pr{Ac(Ke) U Ac(V - K,)}. 

But since Pr{Ac(K,)} = Pr{none of the nodes in K, is present} = h(K,), we easily 
obtain (2). rn 

Thus, if instead of the probability function p ( S )  we are given the function 
h(S) ,  we can compute E[LT] for any given tree T in O(n), assuming we can 
compute h(S) in 0(1), since we can find all the sets K, for all e in O(n) by 
starting the computation at the leaves. An interesting case, and important in 
practice, is when the nodes are present independently. Then we can find an 
explicit expression for E[LT] .  

Theorem 2. If node i is present with probability pi, then the expectation E[LT]  
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of a given tree T is given by the expression 

Proof. In this case, because nodes are present independently 

h(S) = n ( 1  - p i )  
i€S 

Substituting the above expression in (2), we easily obtain (3). 

From (3) we can compute E[LT] in O(n*), since we can compute h(S) in 
O(lS1). By organizing the computation carefully, we can compute E[&] in O(n) 
as follows: 

1 .  Let a = IIiEV(l - pi); let ai = 1 ;  let MARKED = set of leaves. 
2. Until node set is empty: 

if i is a leaf, let a i = ( 1  - p i ) ~ j I j E M A R K E D , ( i , j ) E T a j ;  

add i to the set MARKED; delete i from T. 
3. E[LT] = xe=(i,j)ETc(e)(l - ai)(l - dai) .  

An important special case is when pi = p  for all i. Then E[&] becomes 

If we define 

f#@) 4{1- ( 1  - p ) k } { l -  (1 -p)n-k} (5) 

then 

Based on these closed-form expressions, we will prove in the next section that 
the decision version of the PMST problem, even with pi  = p  for all i and c(e) = 
1, is NP-complete. An additional importance of the expressions (6) is that they 
will assist us in deriving some key combinatorial properties of the optimal 
solution to the PMST problem. 

4. THE COMPLEXITY OF THE PMST PROBLEM 
In this section, we prove that the simplest possible case of the PMST problem 

with equal weights c(e) = 1 and p i  = p is NP-complete. We first define formally 
the decision version of this restricted problem. 
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The Restricted PMST Problem (RPMST) 

number p ,  0 < p  < 1 and a bound B. 
Instance. Given a graph G = (V, E), costs c(e) = 1 for all e E E ,  a rational 

Question. Is there a spanning tree T for G with 

In order to prove that the RPMST problem is NP-complete, we will need some 
properties of the function +(k) = (1 - x k ) ( l  - x n P k ) ,  x = 1 - p defined in ( 5 ) .  

Proposition 3. The function +(k) has the following properties: 

1. If k < m < n / 2 ,  then +(k)<4(m) .  
2. +(k + m )  < &k) + 4(m) .  
3. 34(3) - 2+(4) > 0. 

Proof. These properties follow easily from elementary algebraic manipu- 
lations as follows: 

1. 4(k)  - 4 ( m )  = (xm - xk)(l - xn-m-k) < 0 if k < m and 

2. +(k) + +(m) - +(k + m )  = ( 1  - x")(l - x")(l + x ~ - ' - ~ )  > 0. 
m + k < n12 - n12 = n. 

3. 34(3) - 24(4) = 3(1- x3)(1- ~ - 3 )  - 2(1 -  x 4 ) ( 1 -  x n - 4  1 
2 ( 1  - ~ - 4 ) ( 1 +  h4 - 3x3) = (1 - ~ - 4  ) ( I -  4 
x [ 1 + x( 1 - x') + x2( 1 - x)] > 0. rn 

We now have all the required tools to prove that the RPMST problem is 
NP-complete. 

Theorem 4. The RPMST problem is NP-complete. 

Proof. Clearly, RPMST belongs to the class NP, since given a tree T we can 
compute E[L,]  in polynomial time (O(n)) and compare it with the given bound 
B. In order to prove the completeness of the problem, we will reduce the 
NP-complete problem EXACT COVER BY 3-SETS (Garey and Johnson [5] )  
to it. 

Exact Cover by 3-Sets (E-3C) 
Instance. A family S ={al, . . . , vs} of 3-element subsets of a set C =  

{CI, . . , c3c) 

Question. Is there a subfamily S1 C S of pairwise disjoint sets such that 
UrrESl 0 = C? 
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Given an instance of the E-3C problem, we define the following instance of 
the RPMST problem: 

G = (V,  E ) ,  
v =  R u S u c, 
R = {ao, . . . 7 arl, 
r = s + 3c, 
E = { ( a i , a o ) , i = l , .  . . , r } U { ( a o , a ) , a ~ S } U { ( a , c ) , c ~ a } .  
p arbitrary rational with 0 < p  < 1, 
B = (r + 3c)Hl) + c#44), 
4(k )  = (1 - x")(l - x"-"), x = 1 - p ,  n = r + 1 + s + 3c. 

As an example, if S = {h, c 2 , ~ 3 } ,  ( ~ 2 ,  c3 ,  4, b, ~ 4 ~ ~ 5 1 ,  {cq, c5, c&, c = 2, s = 
4, the corresponding graph is presented in Figure 3. 

Let T be a feasible (E[LT]  4 B )  spanning tree of G. Clearly, (ai, ao) E i? We 
now show that if E[LT]  5 B ,  then (ao, a) E T for all a€ S. Suppose first there 
exists only one (ao, a) 4 T for some a€ S. We will show that E[L,]  > B. Since 
(ao, a) 65 T, there exists i E S and j E C such that (ao, i), (i, j ) ,  ( j ,  a) E T (see 
Fig. 4a). We define gl A the number of nodes in C - { j }  that are adjacent to I 
in T. In the example in Figure 4a, gi = 1, g, = 2. 

We also define sI 4 the number of nodes in S - {i, a} in T that are adjacent 
to exactly I vertices from C in T (1  = 0, 1 ,2 ,3) .  

From these definitions we get 

31 + 2s2  + 3% = 3c - gi - g u -  1 +sg 
= 33c  - 2.s2 - s1- gt - gu- 1) 

We now write an expression for E[L,]: 

G 

(7) 

FIG. 3. Equivalent instances of E-3C and RPMST. 
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0 
FIG. 4. The cases (ao, u) 4 T and (ao, g1), . . . , (ao, uk) 4 T.  

where the first term (r+(l)) is from the contributions of the r edges (ai, ao), the 
second term is from the contributions of the edges connecting the nodes in C 
except the ones that are connected with i, a, and the terms 4(gi +g ,+  3), 
4(2 + gs) and +(l + gu) are from the contributions of the edges (ao, i), ( i , j ) ,  
and (j, a), respectively. Then 

Substituting (7) we get 

Using Proposition 3 we can easily check that all the terms in [ ] are strictly 
positive and thus E[LT]  > B. 

Suppose now that there are (ao, a1), . . . , (ao, ak) CZ T (see Fig. 4b). Since T 
is a tree, there exist i E S and j € C such that (ao, i), ( i , j ) ,  (j, ak) E T. Then if 
we add the edge (ao, ak) and delete the edge (j, ak), we get a new tree Tk- l ,  
in which there are only k - 1 nodes al, . . . , uk-1 not connected with ao. If we 
denote the tree T with Tk in order to represent the fact that there are k nodes 
in T not connected to ao, we claim that 

Let ui,uj,uuk be the number of nodes in the subtrees from nodes i ,j ,ak, 
respectively (see also Fig. 4b).The contribution of edges in Tk, Tkv1 that are 
not involved in the cycle created by adding the edge (ao, ak) is the same. Then 
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E[L,] - E[L,_,] = C$(Ui + 1 + uj + 1 + u, + 1) + $(U/ + 1 + u, + 1) 

+ +(UUk + 1) - f#& + 1 + uj + 1) - 4 ( U j  + 1) - +(UUk + 1) 

where 4(ui + 1 + uj + 1 + u, + l), 4(uj + 1 + u, + l), and 4(uuk + 1) are the 
contributions in Tk of (ao, i),(i,j), and (j, uk), respectively. Similarly in 
Tk-l, the terms 4(ui+ 1 + u j+  l), 4(u, + 1) and 4(uuk + 1) are from (ao, i), 
(i ,j) ,  and (ao, uk), respectively. By Proposition 3, we have that 
+(ui + 1 + uj + 1 + u, + 1) > 4(ui + 1 + uj.+ 1) +(uj + 1 + u, + 1) 
> 4(uj + 1). As a result, E[L,] > E[L,-,]. Note that we have used the fact 
r = s + 3c, since in order for Proposition 3 to hold, we need ui + 1 + uj + 1 
+ u, + 1 < s  + 3c<n/2 = ( r +  1 + s  + 3c)/2. 

As a result, the expected cost of T decreases by adding one missing arc 
(ao, uk). Making this transformation inductively, we find 

and 

But since the tree TI has only one missing arc (ao, ul), we have already proved 
that in this case EILTl] > B. 

Therefore, it follows that for the tree T to be feasible, all edges (ao, ui) E T. 
We will now show that 

E[LT] 4 B @  E-3C has a solution 

But using the quantities sI (I = 0 ,1 ,2 ,3 )  defined above, we have 

s1 + 2s2 + 3s3 = 3c, so + s1 + s2 + s3 = s 

The expected cost of T is then given by 

Thus 

From Proposition 3, 34(2) - 4(4) > 0 and 34(3) - 24(4) > 0. As a result, in- 
equality (8) holds if and only if s1 = s2 = 0 and, hence, s3 = c, which is equivalent 
to E-3C having a solution. Thus, E[L,] 5 B HE-3C has a solution, and hence, 
the RPMST problem is NP-complete. 

We can add some insight to why the problem is hard by noticing the following 
remarkable fact. As p + l ,  the PMST approaches the MST, which is easily 
solvable. What is the limit as p +O? In this case 
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~(k)=(1-(1-p)k)(l-(1-p)”-k)+p2k(n-k) 

As a result 

The expression Z,eTc(e)lKel(n - \Kel) is the objective function of another fam- 
ous problem, the NETWORK DESIGN PROBLEM on a tree, which is defined 
as follows: 

Network Design Problem 

Instance. A graph G = (V, E ) ,  a weight c(e) for each e E E ,  and a bound B .  

Question. Is there a spanning tree T for G such that, if W({u, v)}) denotes 
the sum of the weights of the edges on the path joining u and v in T, then 

f ( T )  = W ( { u , v } ) s B ?  
U.VEV 

It is easily seen by considering the contribution of every edge e that f ( T )  = 
z,,,,Tc(e)lK,l(n- I&]). The network design problem on a tree was proved 
NP-complete in Johnson et al. [7]. Thus, the PMST problem approaches as 
p+O an NP-complete problem, which gives some intuition as to why the 
problem is hard. In fact, it is this observation that originally led us to suspect 
that the PMST problem is hard. 

We have proved that the restricted version of the PMST with equal costs on 
a noncomplete graph is NP-complete. We now prove that even if the graph is 
complete, but the costs are either small or large, the problem is still hard. 

We have proved that the restricted version of the PMST with equal costs on 
a noncomplete graph is NP-complete. We now prove that even if the graph is 
complete, but the costs are either small or large, the problem is still hard. 

The PMST problem on a complete graph. 

probability p , 0 < p < 1. 
Znstance. A complete graph K,, a cost c(e) €{1, M}, a bound B ,  and a 

Question. Is there a spanning tree T with E[LT] I B? 

Theorem 5. The PMST problem on a complete graph is NP-complete. 

Proof. Clearly, the problem is in NP because of the closed-form expressions 
we have found. To prove that the problem is complete, we use the same 
reduction as in the proof of Theorem 4. In order to make the graph complete, 
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we add the remaining edges but with very high cost, i.e., c(e) = 
[ ( I  + 3c)+(1) + c+(4) + 1 ] / [ + ( 1 ) ] .  Then if we include any edge of this type, its 
contribution would be c(e)+(JKel) 2 c(e)+( l )  = B + 1 ,  i.e., it cannot be included 
in the tree. Therefore, the proof remains unchanged since edges with large 
costs never appear in a tree with E[&] 5 B .  

The previous theorems indicate that the problem is hard if either the graph 
is complete and the costs are 1 or M or the graph is noncomplete but the costs 
are equal. 

The next question concerns the complexity of the problem when we combine 
the above restrictions, i.e., when we have a complete graph with all costs c(e) = 
1 .  We prove a more general theorem, which includes this case and characterizes 
the optimal solution. 

Theorem 6. In the case where pi = p  for all i E V ,  whenever the optimum 
solution of the MST problem is a star tree T,, then T ,  is also the solution to 
the PMST problem. 

Proof. For all trees T 

EILTl = z c(e)+(lKeI) (P(1)LT 
e E  T 

from Proposition 3. But 

= E c(e)+(l> = +(~wT* 
eE T 

Since T ,  is by assumption the MST LT* I LT for all trees. Combining the above 
inequalities 

E[LT*] I E[LT] 

Therefore, the star tree T ,  solves the PMST problem. I 

Theorem 6 characterizes the optimal solution whenever the MST is a star 
tree T,. Examples in which the MST is a star tree T ,  and thus, by Theorem 
6, it is also the PMST include a complete graph, with c(i, j )  = ci + cj,  c(i ,  j )  = 
cicj, ci 2 0, c(i ,  j )  = ci + cj + didj, with c1 = min ci and dl  = min di or c(i, j )  = 
min(ci, cj). 

Clearly in a complete graph with c(e) = 1 ,  the MST is a star tree T ,  and thus 
T ,  is also the PMST. Hence, in this case, the optimal solution can be found in 
O(n) time. Finally, using similar techniques, we can prove that even in the case 
in which the nodes have different probabilities of presence there are cases in 
which the star tree is the PMST. 

Theorem 7. If the probability of presence of node i is p i , p l  = minipi and the 
MST is a star tree T ,  rooted at node 1, then T ,  is the PMST. 
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5. PROPERTIES OF THE PMST 

case, we are trying to find a spanning tree that minimizes the expression 
In this section, we examine the case with equal probabilities pi = p .  In this 

5.1. Functional Properties of the PMST 
Expression (9) is clearly a function of the coverage probabilityp. For different 

values of p, the corresponding optimal probabilistic trees that minimize (9) are 
different. We first address the question of specifymg the properties of the 
function fb). From the results of Section 4, we have seen that it would be 
difficult to find f(p) for a particular value of p, but can we find some global 
properties of this function that will give some insight into the problem? Some 
initial observations are stated in the following proposition. 

Proposition 8. The function f(p) is continuous, increasing, and piecewise differ- 
entiable. For np)2, it is also concave if the costs are positive. 

Proof. We examine the properties of the function 

We can easily check that (dldp)&(p) >0, and (d2/dp2)&k@) < O  for all k 2 2  
and (d2/dp2)&(p) < 0 if np > 2. Thus, the function fT@) is continuous and 
differentiable since it is a polynomial and furthermore it is increasing and 

MST 

c f(P) A 

LMST . 
Network Design 

I 
I 
I 
1 
I 
I 
I 

1 P  
I c 

PZ . . .  0 PI 

FIG. 5. The PMST problem as a function of the coverage probability p .  
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concave for np > 2, since it is a weighted sum with positive weights (c(e) 2 0). 
Therefore, the function f(p) is concave for np > 2 and continuous, since it is 
the minimum of a finite number of concave and continuous functions. Further- 
more, f(p) is increasing because for p1 <p2 if f(pi) =fT,(pj) ,  i = 1,2,  then 
f(p1) =frL(pl) sfr2(p1) <f&2) =f(p2). Finally, there is a finite number of 
trees, which can possibly minimize f ( p ) .  Thus, the function f(p) has a finite 
number of breakpoints. Between successive break points pi, pitl ,  
f(p) =f&), pi s p  sp i+ l  for some Ti. Hence, f(p) is piecewise differentiable. 

rn 

We can now combine Proposition 8 and our previous observations that as 
p + l  the PMST tends to the MST, i.e., the optimal tree fo rp  close to 1 is the 
MST, and as p+O, the optimal PMST is the solution to the network design 
problem, to sketch a possible graph of the function f(p) in Figure 5. 

5.2. Bounds for the PMST 

from Proposition 3, we can prove the following proposition. 
Based on the above functional properties of f(p) and some properties of 4(k) 

Proposition 9. If Tp is the optimal PMST and LT is the length of the tree T, 
then 

Proof. From the concavity of the function f(p), we get that 

where clearly LMsT P the length of the minimum spanning tree, which is the 
solution of PMST for p = 1. 

From Proposition 3 we get 

From the closed-form expression (6) for E[LT] ,  we find 

Since E[Lq,]  I E[LMST], we easily derive (10). 
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Exploiting these bounds, we address the question of how good is the MST 
as a solution to the PMST problem. The following is an obvious corollary of 
the bounds (10). 

Corollary 10. 

Proof. Since E[LTp] 5 E[LMST] 5 (b([n/2])LMST( ( 1  - ( 1  -P) [~'~])LMST,  and 
E [ L T ~ ] ~ P L ~ ~ ~ ,  we can easily derive ( 1 1 ) .  Note that as p - + O  the bound 
becomes O(n). 

These bounds indicate that for p large enough (say p > 1/2) the MST solution 
is a good approximation for the solution of the PMST problem, which is 
consistent with our intuition. However, as p + O  and n + m, this bound is not 
informative. In fact, the following example confirms our intuition that the MST 
can be a very poor solution to the PMST problem. 

Consider a complete graph K,,, with cost function: c(i ,  i + 1) = 1 ,  i = 
1 ,  . . . , n and c(e) = 2 for all e f  (i, i + 1). Note that the cost function in this 
example satisfies the triangle inequality. If the tree T I  is the path 1 , 2 , .  . . , 
n +  1 and T2 is the star tree rooted at node n +  1 (see Fig. 6 ) ,  then 
clearly TI is the MST. Then E [ L n ] = ( 2 n - 1 ) ( b ( 1 )  and 

(assuming n is an even number). Then if T,, is the minimal PMST, we obtain 
E[L7-,]=2Xyi=2, (b(i)=n(l+(l-p)")-2[(1-p)+p(l-p)"'2-(1-p)"]/p 

If P = a/n for some constant a > 2,  we easily obtain as n +m that 

FIG. 6. The trees T I ,  T2. 
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Thus, from (11) we always have 

and we have found an example for which 

As a result, we conclude that the bound (11) is the best possible. 

solution to the MST problem? Similarly we can show 
Furthermore, we can address the opposite question. How good is the PMST 

Proposition 11. 

Proof. Inequality (12) follows from the inequality (10) as follows: 

5.3. Relation of the PMST Problem and Reoptimization Strategies 
As mentioned above, the PMST problem defines an efficient strategy to 

update the solution to minimum spanning tree problems, when problem in- 
stances are modified probabilistically because of the absence of certain nodes 
from the graph. We have also defined the two alternative reoptimization 
strategies CMsT and &mINER.  If LMST(S), LSTEINER(S) is the length of the 
MST (Steiner tree) of the nodes in the set S, we define the expectation of these 
reoptimization strategies as follows: 

where p(S)  was defined earlier to be the probability that only nodes in S are. 
present. In this section, we address the question of comparing the expectation 
of the reoptimization strategies with the expectation of the PMST strategy. We 
should emphasize that the PMST strategy uses Steiner points and therefore it 
is directly comparable with the Steiner reoptimization strategy. 

In general, it is difficult to find a closed-form expression for E[xMST], since 
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we have to compute a sum of 0(2'9 terms. Instead, we will find a bound on 
the E[~MsT]. 

Proposition 12. If every node is independently present with probability p, then 

np + ( 1  -p)" - 1 
n - 1  

LMST E[~MsT] 

where LMsT is the length of the MST. 

Proof. 

We define Dk P ZSCv,p = LMST(S) and thus 

We claim that 

We will prove the above claim by backward induction. Consider the n sets Si = 
V- {i}. Then 

because the tree created by adding the edge (i, j )  to the MST on Si is a feasible 
solution to the instance V. We apply (18)  for i = 1 . . . n,  and since it holds for 
any edge in the MST, we choose for every i the corresponding edge ( i , j )  from 
the MST, such that the n - 1 edges ( i , j )  are distinct, and one edge is the one 
with the minimum cost among all edges in the MST. Summing over all i we get 

In order to choose n - 1 edges ( i , j )  to be distinct and the one remaining the 
least in cost, we perform the following algorithm: 

1 .  Find the edge e* with smallest cost c(e*). 
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2. Until the node set is nonempty, 
if i is a leaf in the MST, then let (i,ji) be the unique edge in MST. 
If (i,ji) # e* delete i. 

3. For the two remaining nodes, let e* be their corresponding edge. 

Since there are n - 1 edges ( i , j )  that are distinct, then 

1 c(i ,  j )  = LMsT + c(e*) 5 ( 1  + -) LMsT 
i =  1 n - 1  

As a result 

Consider now the t =  (k) subsets of V of cardinality k,Al,A2, . . . ,At .  For all 
Ai, let Ai,j P Ai - G}. Arguing as before 

k(k - 2)  x LMST(AiJ) ~ LMST(Ai) 
i k - 1  

Adding with respect to i, we get 

k(k - 2)  
LMST(Ai,j) ~ Dk 

i J k - 1  

But 

since in the summation in (20), we count each distinct subset of the (k! ! l )  

subsets of V cardinality k - 1 ,  n - k + 1 times. Combining (19), (20) we find 

k(k - 2) 
D k - 1 2  Dk (k  - l ) (n  - k + 1 )  

Applying (21) inductively, we easily obtain (17). Then from (16) and (17), we 
find 

k - 1  n 
E[xMST] pk( 1 - p)" - ( k )  LMST 

k = l  
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Therefore 
np + (1 -p>" - 1 

n - 1  E[~MsT] LMST 

Note that as n +to the bound becomes 

E [CMST] p LMST rn 
It is not clear that E[&ST]IEILTp]. In fact, we give an example where 
E[&sT] > E[L,,]. Let G = (V,  E )  be a complee graphs K, with c(i, j )  = ci + cj, 
c1 I c2 I . . . Z Z  c,. Then, the MST is the star tree rooted at node 1, and thus 
from Theorem 6, the optimal PMST is the same star tree. As a result 

In this example, we will be able to find a closed-form expression for E[&ST] 
by exploiting the special structure of the cost function. If the ith node is present 
and the lst, . . . , i - l th nodes are not present, then the optimal tree is the star 
tree rooted at node i. From this observation, we can write a closed-form 
expression for E[x.MST] 

n - 1  

E[x.MST] = X p ( 1 -  p)' - ~ E [ L , ~  I node i is present] 
i =  1 

where E[LTj] means the expected length in the PMST sense of the star tree 
rooted at node i with leaves i +  1 , .  . . , n.  Since E [ L ,  I i is present] = 
pLT, = p [ ( n  - 1 - i)ci + Cz,i+l ck], after some algebraic manipulations, we eas- 
ily find that 

n 

Choosing ci = i, we find 

n(n + 1) - 1 3 p + n - - + 0((1 -p )" )  
2 P 

E[LT,,] = 

n2 + 3n - 4 
2 P + O((1 - P)") E[xMST] = 
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6. PROBABILISTIC ANALYSIS 
In this section, we address the important issue of comparing in terms of 

performance the PMST with the MST and the Steiner reoptimization strategies 
asymptotically as the number of points tends to infinity. We show that the 
PMST behaves comparably with the two re-optimization strategies we have 
defined under the two models that have been widely used in the literature: the 
random Euclidean model and the random-length model. Under the random 
Euclidean model introduced in Beardwood et al. [l], the points are uniformly 
and independently distributed in [0, lid. Beardwood et al. [ l]  analyzed the TSP 
and Steele [lo] develops the theory of subadditive Euclidean functionals to 
obtain very sharp limit theorems for a broad class of combinatorial optimization 
problems. For a very nice survey of the area, see Steele [ 131. Under the random- 
length model, we are given a complete network with the costs c ( i , j )  being 
uniform random variables in (0,l) .  Since we want to find the performance of 
these strategies as the number of points goes to infinity, we assume that every 
point has the same probability of presence p and therefore the probability of a 
set S is p ( S )  =plsI(l - P ) ~ - I ~ I ,  where n = IVI. 

We first establish the asymptotic behavior of the MST and the Steiner reopti- 
mization strategies in the random Euclidean model. We then characterize the 
asymptotic behavior of the PMST problem by using the theory of subadditive 
Euclidean functionals (Steele [lo]) and finally we prove that under the random- 
length model the expectation of the MST reoptimization strategy is asymptoti- 
cally larger than the expectation of the PMST strategy. 

6.1. Reoptimization Strategies in the Random Euclidean Model 
Let Xc") A (XI, . . . , Xn) be n points, which are uniformly and independently 
distributed in [0, l I d  according to a distribution with bounded support and 
absolutely continuous part f(x). It is well known (Steele [lo]) that if 

LGsT(Xcn)) A the length of the MST on X(") 

and similarly 

L{TEINER(X(n)) P the length of the Steiner tree on X(") 

then with probability 1 as n + t ~ ,  there are constants P I L I S ~ ( d )  and PSTEINER(~) 
such that 
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Let the probability of presence of any point be p. The expectation of the MST 
reoptimization strategy on X(") is then 

where LMsT(Sn);S) denotes the MST if the points are X(") and the set of 
present points is S. Similarly 

We now prove the following result. 

Theorem 14. With probability 1 

Proof. Let W be the number of nodes being present and 

Then 

Since LMST(X(I1); S) < (IS1 - l ) ~ ,  since every edge in the tree is less than the 
largest edge,then h k  5 n ~ .  A s  a result 

r n m  - €11 - 1 I: Pr{W=k}hk+ 2 P r { W = k } ~ ~ ~ n ~ P r { l W - n ~ l > n p €} 
k=O k =  [np(l+ .)I+ 1 



PROBABILISTIC MINIMUM SPANNING TREE PROBLEM 267 

From the Chernoff bound (Raghavan [9]), we have 

The contribution of the first two terms is then 

For [tip( 1 - E ) ]  5 k 
V E  > 0, 3 k ,  : VS, with 1.51 = k 2 k, 

[np( 1 + c)] ,  we apply (22) and get that with probability 1 

and thus 

In addition 

Therefore 

from which 
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Combining the above bounds, we find that almost surely t l ~ > O ,  
tln L k, l [p( l  - E ) ]  

Since E can be arbitrarily small, we let E + O  and thus we prove the theorem. 
The same argument proves the result for the Steiner reoptimization strategy. 

The next interesting and natural question to address is what is asymptotically 
the expectation of the PMST strategy. 

6.2. The PMST Strategy in the Random Euclidean Model 

We prove in this subsection that we can characterize asymptotically the 
expected length of the optimal PMST. We define LT(X(") ;  S )  to be the length 
of the tree under the PMT strategy if the points are X ( " ) ,  the set of present 
points in S ,  and the a priori tree is 7: If E[L?(X("))]  denotes the expected 
length of an a priori tree T, then the following theorem holds. 

Theorem 15. Let X(" )  be a sequence of points distributed independently and 
uniformly in [0, lId and p the coverage probability of each point. With pro- 
bability 1, there exists a constant c ( p ,  d )  

where Tp is the optimal PMST and 

Proof. We will prove that with probability 1 

exists. In order to do so, we use subadditivity techniques developed by Steele 
[lo, 121. Clearly, the functional 
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is Euclidean and linear and has finite variance. As we prove in the following 
claim, it is also subadditive, but, unfortunately, it is not monotone (the MST 
is not also monotone). Thus, we cannot directly apply Theorem 1 of [lo]. 
Instead, we use some approximate monotonicity property to prove its conver- 
gence. First we establish the subadditivity property of the PMST. 

Claim. f ( X ( " ) )  is subadditive, i.e., if Qi, i = 1, . . . md is a partition of the 
unit square in md subsquares, then 

Proof. Since the functional is Euclidean, we can restrict our attention to the 
case r = 1. Consider the following algorithm: 

1. For every nonempty subsquare Qi, construct the PMST Ti for the points 
X(") n Qi. 

2. Select a point in each subsquare which is a leaf in Ti. Call these points 
representatives. Consider the representatives as points always present ("black" 
points). 

3. Construct a MST T* among the representatives. 
4. The trees Ti and T* create a tree T, which connects all the points Xc"). 

The expected length of the tree T is 

where f 1 (X(" )  f l  Qi) is the expected length of Ti in which one point, the re- 
presentative, is always present (it is a "black" node) and all the others have 
probability p for being present. If we turn a "black" node to a "white" node 
(a node that has probability p of being present), the expected length of Ti 
decreases. The resulting tree has expected length not smaller than E[LTp],  
since by definition, Tp is the PMST. Then 

It is well known (Eilon et al. [3]) that 

that is, the MST of 1 = md points is less than bl(d ~ for some constant b. The 
question now is to relate f i (X(")  n Qi) with f ( X ( " )  n Qi) or equivalently 
E [ L T ]  with E [ L ,  I a leaf is a black node]. The expected length E [ L , ]  is given 
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E[LT,.] = Ec(e){l - (1 -p)lKel}{l - (1 -p)"i- lKel}  
e€Ti 

where Ke is defined to be the set of nodes that the component not containing 
the black node i has, if the edge e is deleted from the tree (see Fig. 7) and ni 
is the number of points in X(") n Qi. The above equation is derived by consider- 
ing the contribution of every edge of the tree Ti in the expected length of Ti.  
Note that with this definition IK,( is not restricted to be less than [ni/2]. Similarly 

Then 

As a result 

We need to bound the term CEET,  (1 -p)"c - l K e l .  

the claim by induction on 
(1 - p )  + (1 -p ) '=  (1 - p ) / p [ l -  (1 

ni. For ni = 3, C,,, (1 -p)3-lKel = 
- p)" '1. 

e 

FIG. 7. The set K,. 
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Suppose the claim is true for ni - 1. Consider a tree TFt with nj  nodes. There 
exists a second leaf j other than i. Deleting j we obtain a tree T:l- with ni - 1 
nodes. Then 

~ ( T : ' ) = ~ ( T : ' - * ) + ( l - p ) ~ , - ~ 5 ( 1  -p)/p[l-(1-p)"~-2]+(1 -p),,-' 

= (1 -p)/p[l- (1 -p)"t-'] 

by the induction hypothesis, and thus the claim is proved. 
As a result of the claim we find that 

E [ L ,  I i is black] 5 E[L,] + cmax(l -p)/p 

Since cmaX 5 Cdlm, we find that 

From (23) and (24), we then conclude that 

which means that the PMST problem is subadditive. rn 

Let m, = ExE[L+p(X("))], where Ex denotes the expectation taken over all 
random sequences X("). To extract the asymptotics of m,, we will first prove 
that 

nm,-, 5 ( n  + i) m, 

Consider the optimal PMST T; on X("). Let xr be an element xi of the neighbor- 
hood N(i )  of xi in T; such that ]xi - x,] is minimum. By taking the edges of T;, 
deleting all the edges incident to xi  and adding the set of edges which join xr 
to other neighbors of xi, we get a spanning tree Ti on X(") - {xi}. Then 

since the weight of each edge in E[T,] not adjacent to x,,x' is less than the 
corresponding weight in T and the weight of the edges that are adjacent to x' 
are less than 1. From the triangle inequality Ixr - x , l 5  Ix' -x,I 
+ Ix, - xI/ 5 214 - x,l, we find that 

E [ L q - l ( X ( " )  - {x,})] 5 E[L , I  5 E [ L 4  + 2 2 Ix, - x , I  
r E N ( 0  
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Adding the for all 1 5 i 5 n and taking expectation (Ex), we find that 

nmnPl 5 (nm, + 4Ex[LT;] 5 n + - m, ( 3 
since any tree T satisfies p(1-  (1 - p ) " - l ) L T s  E[L,], which implies that 

nkm, 2 (n - l)km, - 

Having established the subadditivity and the approximate monotonicity of 
the PMST, we follow the same techniques as in Steele [12] and we prove that 
with Probability 1 

exists and it is equal to a constant c ( p ,  d )  that depends only on the dimension 
d and the coverage probability p .  Since the proof is very similar to [12], we 
omit the details. 

Since for every tree p(1-  (1 - p ) " - ' ) L T s  E[LT]  5 LT and E[&TEINER] 5 
E[LT], we use (22) for the case of f  being uniform and theorem 14 to find the 
following bounds on c ( p ,  d ) :  

6.3. The PMST and MST Reoptimization Strategy in the Random- 
Length Model 

In this model, we are given a complete graph with the costs c ( i , j )  being 
independently and uniformly distributed in [0, 11 and the coverage probability 
p fixed. We want to compare the MST reoptimization strategy and the PMST 
strategy asymptotically. We base our analysis on the following quite remarkable 
result, proved by Frieze [4]. 

In the random-length model, the MST converges in probability to 

Remark. Frieze proved that the above theorem holds in expectation and 
Steele strengthened the result to prove convergence in probability. 
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Based on this result, we prove the following theorem about the behavior of 
the MST reoptimization strategy. 

Theorem 16. In the random-length model, for all p such that limn+= np = a, 
the strategy of MST reoptimization converges in probability to 

Proof. The proof follows along the same lines of Theorem 14. The idea is 
that the asymptotically important terms in E[zMST] are the ones that correspond 

rn to the number of points present within E of np. 

For the PMST strategy, we will need only an easy bound in order to compare 
this strategy with the MST reoptimization strategy. Since 
p L T ( l  - (1 -p)"-')  I E [ L T ]  I LT and using (25) we obtain: 

Proposition 17. The following inequality holds in probability 

pC(3) I lim inf E[LFp] 5 lim sup E[J%~] I l (3)  
n-= n-- 

We conjecture that 

Conjecture 18. In the random-length model, the PMST converges in probability 
to 

lim E[LFP] =p5(3)  
n-m rn 

One can observe that we have not discussed the Steiner reoptimization strategy 
in this model. The reason is that in contrast with the MST there do not exist 
sharp theorems characterizing the asymptotic behavior of the deterministic 
Steiner tree problem in the random-length model. Since the Steiner reoptimiz- 
ation strategy is always better than is the PMST strategy, the following ordering 
holds asymptotically is probability: 

7. CONCLUDING REMARKS 
We have seen that a natural probabilistic variation of a classical combinatorial 

problem has the potential to model various practical situations, offers an alterna- 
tive way to update solution to problem instances that are modified probabilist- 
ically, and leads to very different properties in comparison with its deterministic 
counterpart. The simple possible version of the PMST problem was proved to 
be NP-complete, in sharp contrast with the fact that the MST problem is solved 
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by a greedy, most straightforward algorithm. We have examined, however, 
some special cases in which the PMST can be solved in polynomial time. 

Surprisingly, our analysis of the combinatorial properties of the problem 
established some interesting connections with the network design problem and 
naturally with the MST and the Steiner tree. In particular, as the probability 
of presence p tends to 0, the PMST approaches the solution to the network 
design problem. This limiting behavior suggests the idea of solving the network 
design problem as a sequence of PMST problems, which is a topic of future 
research. 

Finally, we compared the PMST updating strategy with the MST and the 
Steiner reoptimization strategies. The PMST strategy has the property that it 
finds a solution to the modified instance very quickly (in linear time) and so it 
can be used in real time, but it is suboptimal on the worst case. It should also 
be emphasized that it uses Steiner points. The reoptimization strategies on the 
contrary find optimal solutions at every instance, but they need exponential 
time for the Steiner reoptimization strategy and quadratic time for the MST 
reoptimization strategy. It is quite surprising to find that the PMST strategy is 
asymptotically at least as good in terms of performance as the MST reoptimiz- 
ation strategy in the random-length model and within constant factors of the 
MST and the Steiner reoptimization strategies in the random Euclidean model. 

As a general conclusion, probabilistic variations of classical combinatorial 
optimization problems raise interesting and entirely new questions compared 
with their deterministic counterparts and, in addition, understanding of the 
properties of the probabilistic problem can add insight to determinsitic prob- 
lems, as it was the case with the network design problem. Our results add 
evidence that a priori strategies may offer a useful and practical method for 
resolving combinatorial optimization problems on modified instances. 
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