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Abstract

In this paper we initiate a new area of study dealing with the best way to search a possibly
unbounded region for an object. The model for our search algorithms is that we must pay costs
proportional to the distance of the next probe position relative to our current position. This
model is meant to give a realistic cost measure for a robot moving in the plane. We also examine
the effect of decreasing the amount of a priori information given to search problems. Problems
of this type are very simple analogues of non-trivial problems on searching an unbounded re-
gion, processing digitized images, and robot navigation. We show that for some simple search
problems, the relative information of knowing the general direction of the goal is much higher
than knowing the distance to the goal.

1 Introduction

The problems considered in this paper were suggested by general problems in graph searching [15],
finding optimal paths [3, 17], boundary detection in digital images [7], and robotic navigation. When
searching a graph or maze we usually assume that we have some representation of the maze or graph.
However in the real world we may not have a complete representation, as is reasonable, for example,
if we wish to have a robot explore an unknown building or if we are playing a computer maze game.
In cases of incomplete information in potentially unbounded domains how can we best search the
domain? Further, some non-geometric searching problems can be phrased as geometric search
problems in unbounded domains. For example, consider the problem of searching sequentially for
a record which is known to be on one of m large tapes given that we have only one tape drive and
that we must rewind the current tape before searching any other. How can we minimize the time
needed to find the record assuming that the tapes are so large that it is impractical to search any
one tape completely before searching any other tape? (This problem is solved in section 2.)
Bentley and Yao [4] constructed an almost optimal algorithm to find an integer chosen from
an unbounded set of positive integers. The problems we consider in this paper differ from theirs
in that we have to pay costs proportional to the distance of a probe whereas they assume random
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access to any location. Karp, Saks and Widgerson [15] consider “wandering RAMs” with bounded
memory searching binary trees. For them the number of node visits was the cost measure; this
problem is closer in spirit to the class of problems we consider here.

All problems considered in this paper are of the following form: we are searching for an object
in some space under the restriction that for each new “probe” we must pay costs proportional to
the distance of the probe position relative to our current probe position and we wish to minimize
this cost. This is meant to model the cost in real terms of a robot (or human) searching for an
object when the mobile searcher must move about to find the object.

To make this concrete, suppose that we are at the origin in the plane and we are searching for
a line. Suppose that the line is distance n steps (we use steps as our metric) away from the origin.

e Given a normal to the line we can find the line in n steps.
e Given the line’s distance and slope we can find the line in 37 steps.

e Given the line’s distance and that the line is horizontal or vertical we can find the line in
3v2n &~ 4.24n steps.

e Given the line’s distance we can find the line in (1 ++/3 4+ 77/6)n ~ 6.39n steps.
e Given the line’s slope we can find the line in 9n steps.
e Given that the line is horizontal or vertical we can find the line in 13.027n steps.

¢ Given nothing at all we can find the line in 13.81n steps.

Except for the last two, all of the above results are provably optimal up to lower order terms. All
are considered or mentioned in this paper. These results are representative of the gradation in cost
as information about the target decreases.

Searching for a line of arbitrary slope a known distance away in the plane was posed by Bellman
[3] and was solved by Isbell [13]; Melzak [16] has claimed a solution, however this solution is
incorrect, giving a bound of 6.459 - - - instead of 6.397 - - -.

In this paper we begin investigation with search problems in the plane. We distinguish between
the cases in which the robot knows the distance (measured in steps) to the object and the cases in
which it does not know the distance. In the first case, our bounds will be functions of the known
distance n; in the second case, our bounds will be ratios of the distance walked divided by the
(unknown) distance to the object, n. In all cases we assume that the robot starts at the origin;
that the robot can only recognize the object when directly upon it; and that the object is an integer
number of steps away from the robot (none of these restrictions lose generality). Finally, in all but
one problem, we will only be concerned with the worst case.

2 Searching for a Point on a Line

Suppose that the robot needs to find some distinguished point on a line. Assume that the point is
n steps away along the line. If the robot knows that the point is to its left (or to its right), whether
or not it knows the actual distance to the point, then it can optimally find the point in n steps.
If the robot knows that the point is n steps away but not whether the point is to its left or right,
then it is easy to show that the obvious algorithm is also optimal: Go left for n steps then turn
and go right for 2n steps.




2.1 Point Arbitrarily Far Away

Suppose that the robot does not know how far away the point is. What is the minimum number
of steps it must make to find the point as a function of n? For this first, and simplest, problem
we will spend some time developing the basic ideas and manipulations since they are used several
times.

Any algorithm to solve this problem can be described as a function, f, where f(7) is the number
of steps it makes to the left (or right) before the it turn and where the odd terms are the number
of steps to the left and the even terms are the number of steps to the right as measured from the
origin. That is, starting at the origin, the robot walks f(1) steps to the left, turns and returns to
the origin then walks f(2) steps to the right etc. Observe that if the robot is to find the point,
then f must be such that

f()) > f(i—2)+1 Vi>1where f(—=1) = f(0) =0

Linear Spiral Search: Execute cycles of steps where the function determining the number of
steps to walk before the 3" turn starting from the origin is

fi)=2" Vvi>1

(We will see later why this algorithm is called linear spiral search.) The total distance walked is
no more than 9n steps. It is straightforward to show that this bound of 9n steps is achieved by an
infinite class of algorithms.

THEOREM 2.1 Linear Spiral Search is optimal up to lower order terms.

Proof: Let the point be found after the (i + 1)®* turn and before the (i + 2)** turn for some i.
That is, let ¢ be such that f(¢)+1 < n < f(i+2). The worst case ratio of the total distance walked
divided by the distance to the point is then

+1 141
23" £(7) + )+ 1 > 1)
max = =1+ 2max = (1)
12>1 f(’L) + 1 12>1 f(’L) + 1

Since we already know that a 9n algorithm is possible suppose that f is such that
it1
> 1)
7=1 .
——<c Vi>1 2
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where ¢ is a constant. A lower bound on c¢ yields a lower bound of (2¢ + 1)n steps for the problem
(from equation 1). We now show that ¢ must be at least 4, from which it follows that any 9n
algorithm is optimal up to lower order terms.

First, from inequality 2 it follows that

c>14 f(i+1)/(f(é)+1)




Since f is strictly monotone increasing for even or odd : we can choose a sufficiently large ¢

such that E;tll f(G)—c¢> f(i)+ 1. For a fixed and sufficiently large 7 simple manipulation suffices
to show that ¢ must also satisfy the following infinite set of inequalities:

k+1
FAO+ T+ fi+75) - fE+E)
Fli+ k) > Flc_l Vk>1

Together with the previous inequality on ¢ this system of inequalities may be solved inductively
for each k by deleting the f(i+ k) term on the right hand side, substituting the derived bound on
f(i + k) into the inequality for f(i+ k — 1) and using that bound on f(i + k£ — 1), and so on.

As an example, here are the first two steps of this bounding process. For ease of description we
change variables to the normalized function h(5) = f(5)/(f(2)+ 1). For k = 0 we have that

c>14h(i+1)>1

Therefore, ¢ > 1. This implies a lower bound of (2¢ + 1)n = 3n.
For k = 1 we have that

14+ h(i+2) S 1
c—1 c—1

h(z+ 1) >
Therefore,

. 1
c>1—|—h(l+1)>1+:

This implies that,
2 —2c>0

Therefore, ¢ > 2 (implying a lower bound of 5n). And so on inductively.
In general, ¢ must be such that the following polynomials are all positive:

g(k) =¥ i_o: (k ;J> (=1/c)’

The minimal value of ¢ for which each of these polynomials is greater than zero bounds ¢ from
below.
These polynomials obey the recurrence

g(k) = cg(k—1) —cg(k-2)
Which has characteristic equation
M —cAte=0

This equation has roots

c++c? - 4c
2
If the roots are distinct then

1 (<c+\/cz—4c>k+1_ (c—\/c2—4c)k+1)

c? — 4c 2 9

9(k) = ;




and this function is positive for all £ > 0 if and only if ¢ > 4.
Alternately, if the roots are equal (¢ = 4) then

g(k) = (k + 1)2*+*

and this function is positive for all £ > 0.
Therefore any algorithm to find a point on a line an unknown distance, n, away must take at
least 9n steps. m

Note that this is a lower bound on the constant multiple of the distance walked to the actual
distance to the point. In fact there exist algorithms which take no more than 9n — Q(lgn)* steps
for any 1.

2.2 The Average Case for a Point a Bounded Distance Away

Suppose that the robot knows that the point is within n steps and that it is distributed uniformly
about the interval of length 2n centered on the origin. Then the naive algorithm is also the best
average case algorithm, with an average distance of 3n/2. However, if the robot knows that the
point is likely to be near the origin, then it might want to turn after a smaller number of steps,
since going very far from the origin the probability of finding the point further on is much less
than finding it near the origin on the other side. We show below that the optimal average case
algorithm for most distributions, including bounded domains, has an infinite number of turning
points! Intuitively, this happens because there is always a point at which it is better to turn back
and look at ranges on the other side of the origin where the probability of finding the point is
greater.
For clarity in the following proof, we normalize over the range [—1,1].

THEOREM 2.2 Let f(z) be a density function over the range [—1, 1] with right and left tail distri-
butions F,(t) Fi(t). Suppose we have points —t; and ty such that

Fo(ty) 11—t
h 0<ty <t 1
Fl(ftl) 171, where 0 < ¢4 2 <

If the last turn was at the point —ty, then the average distance travelled if we turn at the point t,
1s less than the average distance travelled if we do not turn at the point ts.

Proof: Suppose we are at the point ¢ proceeding right, and the last turn was at the point —i;.
That is, we have not found the point yet. Let d be the remaining distance we travel to find the
point p. Thus d depends on the search strategy we use, as well as the probability distribution of p.
The expected distance traveled if we turn at ¢, is

ET[d] = ET[d|p > tQ]Fr[tg} + ET[d|p < —tl]Fl(—tl)

Note that the only possibilities under the stated assumptions are —1 < p < —%; and 5 < p < 1.
But Er[dlp < —t1] = t1 + 12 + E[—t1 — p|p < —t1] and Ex[d|p > t2] = 2(1 + £2) + E[p — t2[p > 12]
(assuming that we only turn at —1 on failing to find the point to the left of —¢;). Thus

Erld] = (t1 + ta + E[~t1 — plp < —t1])Fi(—t1) + (2 + 2t2 + E[p — ta[p > t3]) Fr(t2)




Alternatively, if we do not turn then by a similar break down
Enld]=(2+t —ta+ E[-t1 —plp < ~t])F(-t1) + E[p — t2[p > t2] F;(%2)
It is better to turn if E[d] < En|[d], That is when

(t1 +ta+ E[-t1 — plp < —t1]) Fi(—t1) + (282 + 2 + E[p — t2|p > ta]) F1(%2)
<2+t —ta+ E[-t1 —plp < —t1])Fi(—t1) + E[p — ta|p > t2] Fr(t2)

From which the result follows by simple manipulation. m

Corollary 2.1 If for each 0 < t; < 1, there exists a ts such that the conditions of the above
theorem are satisfied, and the density function f(z) is symmetric with respect to the origin, then
the optimal average case search algorithm has infinitely many turning points.

Proof: If there exist such points ¢; and £, then there also exists a point 1 > ¢3 > ¢; such that

Fy(t3) < 1—13
F.(t2) 1+4t3

because Fi(t) = F,(t). Repeating this argument we obtain an infinite number of turns. m

A similar result may be proved for any distribution depending on the characteristics of the tail
distributions. Suppose, for example, that the point has a triangular distribution given by

V-n<z<n

plz) = |25~

n?2

In this case, the search space is finitely bounded, yet the theorem can easily be seen to apply.

2.3 Searching for a Point in m Concurrent Rays

Suppose that the robot is at the meeting point of m rays and that the robot has to find a point
distance n away on some one of the rays with the restriction that the robot can only travel along a
ray (for example, the rays may represent rails or corridors). If the robot knows the distance to the
point then it has an optimal (2m — 1)n algorithm as can be shown by a straightforward argument.

Suppose that the robot does not know the distance to the point. If m = 1 then the robot finds
the point in n steps. If m = 2 then we have the equivalent of searching for a point on a line (section
2.1) and so the robot finds the point in 97 steps.

It is straightforward to show that the robot needs only to visit the rays cyclically since there is
no advantage to favouring one over another. No other order can improve the worst case. Let the
rays be numbered in order of visits (assuming a cyclic visiting pattern) 1,2,...,m, where m > 2.
Let f(i) be the distance moved counting from the origin before the it* turn. In order to guarantee
finding the point, f must be such that

f@)> f(i—m)+1 Vi>1where f(—-7)=0V0<j<m-1




Generalized Linear Spiral Search: Execute cycles of steps where the function determining
the number of steps to walk before the i** turn starting from the origin is

The worst case ratio is then
1+ Q(mﬁ (for large m)
m—1)m~

Thus to search 2 concurrent rays (equivalently, a line) we use increasing powers of 2, to search
3 concurrent rays we use increasing powers of 3/2, and so on. Note that if the rays are ordered
uniformly in the plane then the turning points of generalized linear spiral search describe the
intersection points of a logarithmic spiral (hence its name). Finally, recall that we assume the
point to be an integral number of steps away, so the last turn may be a fraction of a step in excess.

THEOREM 2.3 Generalized Linear Spiral Search is optimal up to lower order terms.

Proof: Let the point be found after the (i + m — 1)*» turn and before the (i + m)** turn. The

worst case ratio is:
24+m—1

1+ 21}1;1}( Z F()/(f(E)+ 1)

Let ¢ be a constant such that

2+m—1

> @/ ) < Vi1

As in the lower bound analysis of the straight line search problem it is possible to construct an
infinite sequence of functions of ¢ each of which must be positive. The positivity of each function
places bounds on how small ¢ can be.

The functions are

o(k) = &1 i (k +m—2- (m — l)j) (1/e)
§=0 J
These functions obey the recurrence
g(k) = cg(k —1) — ™ g(k —m)
This recurrence has characteristic equation
A —edmlpeml =g

This equation has a positive real double root at ¢ = m™/(m — 1)™~!, namely A = ¢(m —1)/m. Al
other roots are negative or imaginary. m




3 Searching for a Point in a Lattice

Suppose that a robot has to find a point in a rectangular grid in the plane and that the robot
can move left, right, up or down in one step. We can think of this as an exploration of a simple
rectangular maze with no barriers. Call the points of the lattice which lie n steps from the origin
the reference diamond. This is of course a circle under the £, metric. We say a point is within a
reference diamond = if it is at distance £,0 < k < n. We shall use compass bearings (north N, east
E, south S and west W) to describe algorithms.

If the robot knows that the point is exactly n steps away, then it moves directly to the north-
ernmost point at distance n, then follows a zigzag path that visits all the nodes at distance n in
sequence. The total number of steps is 97 — 2, which is optimal.

Suppose that the robot does not know how far away the point is. As a function of the unknown
distance n, the worst case behavior of any algorithm will be evoked by an adversary that places
the point at the last point visited at distance n by the algorithm. Counting the number of points
in the reference diamond, we get a trivial lower bound of 2n? 4 2n steps for any algorithm.

Suppose, without loss of generality, that any algorithm always begins by going north. The
simple spiral, which fills in a square centered on the origin, requires 4n? 4+ 3n steps to visit the
last square at distance n, directly west of the origin. (It visits all the points in a 2n 4+ 1 by 2n 4 1
square, except those directly north of the point at distance n west of the origin.) This is nearly
twice the lower bound, because the reference diamond encloses about 1/2 of this square.

We can modify the spiral to yield a path that more closely follows the boundary of a reference
diamond on each cycle. However, one problem we inevitably encounter is that we must visit points
either further or closer to the origin between every pair of points at distance n. That is, each cycle
of the spiral must visit nodes of two (at least) adjacent reference diamond boundaries. This fact is
used to establish the following improved lower bound.

THEOREM 3.1 Any algorithm which can find a point at some unknown finite distance n in the
lattice, requires at least 2n? + 4n + 1 steps.

Proof: Consider any algorithm A. Let A(n) be the number of steps required by A to visit all
points at distance n. We define fi(n) and fy(n) respectively to be the number of points in the
n + 1st reference diamond and the number of points beyond the n + 1st reference diamond visited
by A before the last visit to a point in reference diamond .

We note that to visit m points, the algorithm must take at least m — 1 steps. Since there are
2(n — 1)2 +2(n — 1) 4 1 points within reference diamond n — 1, we have

An-1)>2n-1242n—1)+ fy(n— 1)+ fa(n — 1)

where the inequality may occur if some point is visited more than once. We consider the two cases
where fi(n—1)>2n—1and fi(n—1)<2n—-2. If fi(n—1) > 2n — 1, then

Aln-1)>2(n—-12+4(n-1)+1

and this meets our claim for distance n — 1.

On the other hand, suppose fi(n — 1) < 2n — 2. After the last visit to a point at distance
n — 1, there remain 4n — f(n — 1) points unvisited in the nth reference diamond. Observing that
it is impossible to visit any two points of a reference diamond without visiting at least one point




between them, we see that visiting these remaining points requires at least 2(4n — fi(n — 1)) — 1
steps. Thus,

Aln) > A(n—1)+2(4n— fi(n—1))—1
o2(n— 12 +2(n— D+ fr(n—1)+ filn—1)+8n—2f;(n—1)—1
2n® +6n—1— fi(n—1)

2n? +4n+1

vV IV IV IV

An examination of this proof leads to several observations which lead to interesting conse-
quences. The first observation is that we achieved the lower bound by a balancing act which was
optimized by choosing fi(n) & 2n. This implies that to get close to the lower bound, an algorithm
should attempt to visit about 1/2 of the points at distance n + 1 between visits to those at n, and
between the remaining points at n we should visit points at distance n — 1. Clearly, we should
attempt to do the intermediate visits to the closer points first. These concepts lead to the algorithm
illustrated in Figure la.

S S
a) Balanced Algorithm b) Flipped Balanced Algorithm
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Figure 1: Balanced Algorithms for Better Worst Case Behavior

The sequence of directions is indicated for the visits to the points at distance one. Notice that
alternate points on the line of points with horizontal coordinate zero are visited twice, including
the origin. The idea is that between visits to points at distance one in the northern hemisphere,
we visit points at distance zero, while in the southern hemisphere, we visit points at distance two.
Similarly, between visits to points at distance three, in the northern hemisphere we visit points at
distance two, while in the southern hemisphere we visit points at distance four.




In Figure la, the circled points indicate the last points visited at the distance indicated by
the dashed lines. Note that odd distances are completed to the west of the origin, while even
distances are completed to the east, another indication of the balancing used in this algorithm. To
continue the algorithm from any circled point, move out to the next level, and visit the points on
the appropriate two sides of the reference diamond to the next circled point. To complete the nth
distance set takes 4n + 3 steps, and thus by induction the algorithm requires 2n? + 5n 4 2 steps
before visiting the last point at distance n.

The second observation about the proof of theorem 3.1 is that from the treatment of fy(n) it
seems obvious that for the worst case analysis we may choose fp(n) = 0. In the previous algorithm,
we only alternate between adjacent levels. Nevertheless, revisiting points seems wasteful. Extension
of the pattern in Figure 1b yields a 2n? 4+ 5n + 2 step algorithm which does not repeat points. The
sequence of steps for visiting the points at distance one is indicated in the caption. This algorithm
can be derived from the previous algorithm by “flipping” the paths which repeat points so that the
intermediate visit is to a point at the next distance out, and then avoiding this point on the next
cycle. In the event that the goal is located at one of these “flipped out” points, this algorithm is
clearly superior to the previous algorithm, but the worst case function of n is the same.

Thirdly, we observe that the proof does not make use of induction. That is, for points at
distance less than n — 1 in the proof, only the trivial lower bound is used. So far our lower bound
and our best algorithm differ by approximately n. The question then arises, can we increase the
lower bound by using the lower bound for points at distance less than n — 1 inductively?

Interestingly, if we are given the parity of the point’s distance then we can improve the search by
n steps! That is, we can get a pair of algorithms which make 2n2? +4n +n mod 2 steps by exploring
the appropriate pair of levels at each step. Either of these algorithms visits all points within any
distance n. These algorithms illustrate that this inductive approach is not likely to improve the
lower bound.

We illustrate the initial steps of these algorithms in Figure 2. The algorithm for odd n illustrated
in Figure 2a optimally visits all points at distance 1 in 7 steps using the indicated sequence,
terminating at the circled point at distance one. Note that it re-visits the origin three times. The
last point visited at distance n for odd n is at the western tip of the reference diamond. After
visiting this point, the algorithm proceeds W N E . .. visiting the points at distance n+ 2 and n+ 1
until reaching the western most tip of the n» + 2nd diamond. Completion of the cycle which visits
the points at distance n for odd n requires 8n steps. Thus it takes 2n? + 4n + 1 steps to visit
all within distance n, where n is odd. For even n, the algorithm visits the last unvisited point
at distance n just three steps before completing the cycle for reference diamond n + 1. Thus, the
algorithm takes 2n 4+ 8n + 4 steps to visit the last point at distance n.

The algorithm for even n is illustrated in Figure 2b. The first cycle is given, which visits all
points within distance 2 in 16 steps. The cycles end at the north point of the reference diamond
for n even. The cycles start NESE... and follow around between the n — 1st and nth reference
diamonds, for even n. In general, this algorithm visits all points within n, for n even, in 2n? + 4n
steps. However, if the goal is the last point visited at an odd distance n, then this algorithm takes
2n? + 8n + 3 steps.

Flipped versions of the odd and even algorithms are illustrated in Figure 3. In addition to
avoiding repetitions, the worst case for the non-optimized parity is improved in each algorithm.
For the odd algorithm, the last even point visited is at the south tip of the reference diamond,
and for the even algorithm the last odd point is at the western tip. In each case, the worst case is
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Figure 2: Odd and Even Spiral Algorithms

reduced by 2n steps to 2n2 + 6n + 4 for the odd algorithm and to 2n2 + 6n + 3 for the even one.

For both algorithms, if the adversary is free to place the point at a distance of opposite parity
to the parity that the algorithm was designed for, then the bound is worse than modified spiral
search. The 2n2 4+ 5n + 2 step algorithms can be seen as a trade off between the even and odd
algorithms, making some of the wasted steps at even levels useful at the odd levels and vice versa.

Intuitively, the cost of turning the corners from one side of the reference diamond to the next
combined with the need to make all the visits from the nth level to the closer intermediate points
before any visits to the outer intermediate points, seems to prevent us from achieving the lower
bound. We seem to require one extra step at each reference diamond to make these turns, and this
apparently accounts for the difference of n between our upper and lower bounds. However, the gap
remains open.

4 Searching for a Line in the Plane

Suppose that the robot has to find a line in the plane. There are four natural scenarios: the robot
either knows or does not know the distance to the line and it either does or does not have any
information about the line’s slope. We only consider the least information version of the problem,
the other cases have been solved elsewhere. When the slope is known the problem is trivial. When
the distance but not the slope is known the worst case distance is (1++v/3+ 77/6)n ~ 6.397n steps.

11
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Figure 3: Odd and Even Spiral Algorithms

An algorithm to optimize the average distance walked is discussed in [11], and a variation where
instead of searching a line we are searching for a circle is discussed in [12]. For further results see
[1, 3, 13, 17, 14, 10].

Suppose that the robot does not know the line’s distance or slope. It seems clear that the
optimal search path must be similar with respect to rotations and dilations (that is, the curve must
have spiral similarity). The only known curve with these properties is the logarithmic spiral.

The robot executes a logarithmic spiral r = k® where k& = 1.250 - -- (this value is a numerical
approximation for the best logarithmic spiral). If the line is n steps away this algorithm takes
approximately 13.81n + O(lnn) steps. (Note that this is only an upper bound since we have
assumed that the search path si a logarithmic spiral.)

If we restrict the line to be horizontal or vertical (that is, two orthogonal directions), we can
prove a 12.74n lower bound assuming a logarithmic spiral, and a 13.02 upper bound, using similar
techniques as before (see [1]). This lower bound also applies to the general case.

5 Further Problems

We conclude by stating, and giving some partial results for, three general planar search problems.

5.1 Line of Restricted Slope a Bounded Distance Away

Suppose that the robot knows the line’s distance away and that the line’s slope belongs to the finite
set {01, 02, ceey Gk}

Given the distance n to the line, the possible set of slopes describes a polygon that circumscribes
a circle of radius n. It is not difficult to formulate the optimal algorithm as a function minimization
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problem where the function has between k& and 2k variables. If we restrict the polygon to be a
regular j-gon then Table 5.1 summarizes the results for 7 < 6. These results are all optimal as may
be proved by direct (although tedious) algebraic manipulation of the appropriate path minimization
problems.

Path Length

4n

3v2n ~ 4.24n

(4sin?(7/5) + (1 + 2 cos(7/10))/ cos(w /5))n ~ 4.97n
(4+2/V3)n = 5.15n

S Ol b W,

Table 1: Results for Regular j-Gons for Small 7

The minimum length for general j is unknown. In the above results the optimal path is a
collection of diagonals of the regular 7-gon. All of the above minimal paths stay within the boundary
of the j-gon. However, it is possible to show that there exists a 5 for which the minimal algorithm
must leave the boundary of the regular j-gon.

5.2 Searching for a Point on the Boundary of a Region

Suppose that we have polygonal line (a non-self-intersecting continuous curve made up of straight
line segments) bisecting the plane into two halfplanes. The robot’s task is to find a point known
to be somewhere on the polygonal line. The difference between this problem and the simpler one
of searching for a point on a line is that the robot can at times shorten its path by moving off of
the polygonal line.

For example, suppose the robot must search the boundary of a region bounded by two concurrent
rays (assuming the robot is at the concurrent point initially) where the robot is not constrained
to stay on the rays. There is a simple algorithm we call “bow-tie search” — walk along one ray
for some number of steps, walk in the plane to the second ray, walk along the second ray for some
number of steps, then return to the last point of departure on the first ray and repeat. As the
angle between the rays is reduced to zero, the problem reduces to searching for a point on a ray.
As the angle is increased to 180 degrees, the problem reduces to searching for a point on a line. If
the angle between the rays is 90 degrees, the best bow-tie algorithm is given by f(i) = k* where
k =1.849 ... The worst case of this algorithm 7.422...n.

In general, let ¢ = cos(f) where 0 is the smaller angle between the rays. The optimal & (for
bow-tie search) is

o 4t (c— DM3((c® + 14c+ 17 — 4(c+ 3)v/2(c + I3 + (e + 14c + 17 + 4(c + 3)y/2(c + 1))1/?)
c+3

The worst case ratio is then
kvk?2 —2kc+1
k-1

We do not know if “bow-tie search” is optimal.

E+ 1+
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5.3 Searching in the Plane with Error

Rivest et al. [19] examined problems in which we wish to search for an integer (in a bounded
domain) but the adversary can tell a bounded number of lies. In this section we explore the effect
of errors when searching in the plane. In this case two different kinds of measurement errors may
occur. One error may occur when measuring distance and the other when measuring direction.

For example, if you are walking along a path from point A to point B while counting your steps
and checking your direction you may miscount your steps or you may misjudge your direction (or
both). How can you guarantee that you will indeed reach B starting from A if you have good
estimates on how much you could possibly misjudge your current position and direction? This
problem is a very simple version of the general problem of ensuring that a robot keeps to its correct
path while mobile.

These two types of errors have different implications when constructing a search strategy. Fur-
ther, knowing the general direction of the goal is more important than knowing its distance away.

When searching for a point on a line only one type of measurement error is possible, namely, an
error in the distance (because the only two possible directions are given by the line). The simplest
way to model distance errors is to assume that an error of no more than §z distance units is made
at each step. Suppose that you know the distance, d, to the point, you need to consider your error,
and make the appropriate correction in the path. Hence, you need to walk a distance d’ such that

d >d+ézd

However, you can make errors in the opposite direction as well, so the overall distance walked is

1+ 6z
d
1-éz
Hence, in the worst case you will have to walk
14+ 6z
1-— 6z

If you do not know the distance, d, then distance errors do not affect your search algorithm
provided that the increase in the number of steps is greater than the worst possible error you could

d+2 d = 3d + 46zd + O(62%d)

have made.

When searching for a line in the plane when the line’s distance is known a direction error is
more important. To analyze possible consequences of this let us assume that a path consists of
a sequence of straight line segments and that the robot can walk a straight line but that when it
changes direction it can make an error of 66 in its intended direction.

A consequence of this model is that in a convex path, if you want to be assured of being
“outside” of the path then you need to make a correction in your direction. For example, if the
robot wants to go around a circle, it must be sure that it is never in the circle. (If not, it may never
find the line.) Hence, in each segment of its path it must make a correction of §6 in its direction.
However, in the worst case, the overall error in the direction is 266. If the first segment has length
[, then after traversing it we can be as much as 2!sin 60 units away from the exact path. After 5
segments the direction error can be as much as 2566 and with an error in the distance depending
on the segment lengths of the path.

Finally, suppose that the direction error é6 can be made in each unit step. That is, the robot
cannot even walk a straight line without drifting off its intended direction by 46.
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In this case, around the circle, after walking a distance [ the direction error is 266, that is, the
robot executes a spiral instead of a circle. As a consequence of this, it is not possible to guarantee
that we reach an arbitrary distance away. This is because in a straight line it is possible to have a
66 error in the direction on the same side of the line. Hence, in the worst case, the line degenerates
to a circle of radius 7 = 1/(2sin(60/2)). Therefore, the maximum distance from the origin in the
worst case is 2r = 2/66 for small §6.

If we have both types of errors at the same time, the corrections appear to be very difficult. A
simple model in this case is that after each unit distance, the final point is inside a circle of radius
§p. The maximum distance is of the same order as previously for small §p (that is, 2/ép). In the
general case we are unable to compute a correction for an arbitrary path, even if the average error
made throughout the path may be small, because an error in one step may be compensated for in
another step.

6 Open Problems and Conclusions

For each of the problems discussed in this paper there are three different criteria we could try to
optimize:

e Minimize the maximum distance walked.
e Minimize the average distance walked.
e Maximize the probability that the object is found given that the robot can only walk z steps.

As we saw in the problem of searching for a point on a line, the best average case algorithm can
be different from the best worst case algorithm. This answers a question of Oglivy [17] on whether
the average case and worst case are always the same. What are the best search strategies for the
problems considered in this paper with respect to the second and third criteria? What are the
best search strategies using each of the above criteria assuming that we have £ communicating (or
non-communicating) robots instead of only one? How can we modify our search strategies if there
are obstacles in the plane? Finally, we pose the same search problems in higher dimensions.

To our knowledge search problems in which we have only partial information as to the location of
the searched for object have not been previously studied as a class. We think that they are deserving
of comprehensive study as simple optimality arguments (in particular variants of convexity and
symmetry properties) are often applicable. Further, and more importantly, these problems are
(very simple) models of searching in the real-world. It is very often the case that we do not know
many of the parameters that are usually taken for granted when designing search algorithms.

The results presented in this paper suggest that the relative information of knowing the general
direction of a goal is much higher than knowing just the distance to the goal (in hindsight this
result is intuitively obvious). Of course these are very simple problems and results from the more
comprehensive problems may be more enlightening.
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Problem Knowledge
Direction Distance Nothing

point on line n 3n 9n
point on m-rays n (2m - 1)n (1+2m™/(m—1)™"1)n
point in lattice n In — 2 < 2n? 4+ bn + 2,> o2n2 4+ 4n— 1
7 with parity n < 2n% 4+ 4n + nmod 2 < 2n? + 4n + nmod 2
orthogonal line in plane n 424...n <13.02n,> 12.74n
line in plane n 6.39---n <13.81n,> 12.74n

Table 2: The Advantage of Knowing Where Things Are
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