Arrangements of Lines and Hyperplanes

Subhash Suri

October 29, 2019

1 Arrangements and Geometric Duality

- Geometric Duality plays an important role in CG. The connection comes from the Cartesian idea that a point in \mathbb{R}^2 is specified by two coordinates (x, y), as is a line $y = mx + c$, specified by its slope and intercept (m, c).

- Similarly, points and hyperplanes in d-space require d parameters, and therefore can be mapped into each other.

- Often, a problem about points becomes much easier to solve by viewing it as a problem about lines (or hyperplanes), and vice versa.

- Degeneracy Testing: A simple example of the power of duality is deciding whether an input set of points is non-degenerate, meaning no 3 are collinear. What is the most efficient algorithm for it?

- The trivial upper bound is $O(n^3)$, and it is not clear if a better algorithm is possible. We will show that an $O(n^2)$ time algorithm using duality and line arrangements.

- The complexity of this innocent looking problem is a major open problem in theoretical computer science.

- There are many different duality transforms, but a simple one is the following, called standard projective duality.

 - Each point $p = (a, b)$ maps to the dual line $y = ax - b$, and we denote the dual as p^*.

 - Each line L with equation $y = mx + c$ maps to the dual point $(m, -c)$, which we denote as L^*.

 - That is, the x coordinate maps to the slope, and the y coordinate maps to the (negative) intercept.
• Geometric Properties of the Duality.

 – **Incidence Preserving:** Suppose \(p \) is a point, \(L \) a line, and \(p \) lies on \(L \). Then, the dual point \(L^* \) lies on the dual line \(p^* \).

 – **Order Preserving:** Suppose \(p \) is a point, \(L \) a line, and \(p \) lies above the line \(L \). Then, the dual point \(L^* \) lies above the dual line \(p^* \).

• These conditions are easy to check algebraically.

 – Suppose \(p = (a, b) \) and \(L : y = mx + c \). Then, incidence in primal space means that \(b = ma + c \).

 – The dual point for \(L \) is \((m, -c)\), and dual line for \(p \) is \(y = ax - b \). Their incidence in dual means \(-c = am - b\), which implies \(b = ma + c \). Done!

 – Similarly, the “aboveness” in primal space means \(b > ma + c \), while in dual space it means \(-c > am - b\), which are the same.

• Therefore, under the projective transform, if there are \(k \) collinear points in the input, then their “dual” lines must all intersect in a common point.

• We show that checking for multiple lines meeting in a common point can be done in \(O(n^2) \) time.

Line Arrangement.

• The subdivision of the plane induced by a finite set of lines \(\mathcal{L} \) is called the arrangement \(\mathcal{A}(\mathcal{L}) \).

• This subdivision consists of faces (convex polygons), edges (straight line segments, or half-rays), and vertices (points).

• The line arrangement is called **simple** if no two lines are parallel and no three meet in a common point.

• Although lines are unbounded, we can regard the arrangement bounded by conceptually placing them inside a sufficiently large rectangular box. (Such a box can be computed in \(O(n \log n) \) time. How?)

• The arrangement can also be viewed as a planar graph (by adding a vertex at infinity) and for algorithmic purposes we assume a DCEL representation.

• **Size Lemma:** A simple arrangement of \(n \) lines in \(\mathbb{R}^2 \) has \(\binom{n}{2} \) vertices, \(n^2 \) edges, and \(\binom{n}{2} + n + 1 \) faces.
• **Proof.** The number of vertices and edges is easy to count—each vertex involves a pair of lines, and each line is split into n segments or half rays. For the number of faces, we use a sweepline argument. Imagine a vertical sweepline placed at $-\infty$. It intersects exactly $n + 1$ (unbounded) faces, meeting each line exactly once. As we sweep the line, we swap one old face for a new one, exactly when we sweep over a vertex, which happens \(\binom{n}{2} \) times, thus giving the bound for the faces.

• **Non-Simple Arrangements.** The complexity of an arrangement is maximum when it is a simple arrangement.

Other Applications

• The complexity of hyperplane arrangements is also relevant in many other settings, e.g. linear classifiers.

• In data classification and machine learning, we employ linear classifier rules, which geometrically means a hyperplane test: classify a data point x as “+” if $hx > 0$, and “−” otherwise.

• Figure of classification.

• If we have a n such classifiers (hyperplanes), each + on one side and − on the other, how many “dichotomies” do we get?

• In general, n binary rules create 2^n size partition.

• But if the rules are hyperplanes, then the size (given by the arrangement) is only $O(n^d)$.

• **Linearization of non-linear functions.** Discrimination rules of higher order can be “lifted” linear rules in higher dimension.

• For instance, if you order k polynomials in d variables, then there are $\binom{k+1}{d}$ terms. So, we can linearize this as a $O(k^d)$-dimensional hyperplane.

Horizon Theorem

• An important step in finding an optimal algorithm for constructing the line arrangement is the following Horizon Theorem, which is of independent interest.

• Let $\mathcal{A}(\mathcal{L})$ be the arrangement of n lines.

• Consider some line l (not necessarily in \mathcal{L}), and let $h(l)$ be the total size of all the faces that intersect l.

• The size of a face is the number of edges bounding it (combinatorial complexity).
• The horizon meets $O(n)$ faces, and any single face can have size $\Theta(n)$, so the naive upper bound for $h(l)$ is $O(n^2)$.

• The Horizon Theorem proves that $h(l)$ is in fact $O(n)$, which is optimal.

• **Horizon Theorem.** The total number of edges in the horizon of l (not necessarily from \mathcal{L}) is at most $6n$.

Proof of the Horizon Theorem (ETH notes)

• Assume that l is horizontal, and none of the other lines are horizontal. (Otherwise, rotate the coordinate axes.)

• Split the boundary of each face in the horizon at its top and bottom vertices, and orient all edges from bottom to top.

• The edges that have a horizon cell to their right are called *left-bounding* for that cell. Similarly, define the right-bounding edges.

• We will show there are $\leq 3n$ left-bounding edges, by induction on n.

• The base case $n = 1$ is trivial: $1 \leq 3$. Assume it holds for $n - 1$.

• Consider the *rightmost line* $r \in \mathcal{L}$ that intersects l.

• By induction, in the reduced arrangement $\mathcal{A}(\mathcal{L} \setminus r)$, the horizon of l has at most $3(n - 1)$ left-bounding edges.

• Adding back r creates at most 3 new left-bounding edges for the horizon of l.

 1. Two of these edges belong to the rightmost cell in l’s horizon in $\mathcal{A}(\mathcal{L} \setminus r)$—at most two edges (call them a and b) of the rightmost cell are intersected by r, and split into two, both of which may be left-bounding.

 2. The third edge is contributed by r itself. The line r cannot contribute a left-bounding edge to any cell other than the rightmost: to the left of r, the edges induced by r form right-bounding edges only; and to the right of r, all other cells touched by r are shielded away from l by a or b.

• Thus, the total number of left-bounding edges in the horizon is $3 + (3n - 3) = 3n$. QED.
Another Proof

- We count only the number of edges in the cells that lie above the line \(l \).
- For each such cell of the horizon, classify its edges as follows.
 - Floor: this is the edge defined by the horizon base line \(l \)
 - Roof: the two edges incident to the highest vertex of \(f \), where the height is measured from \(l \).
 - The remaining edges of \(f \) are divided in two “left walls” and “right walls.”
- The total contribution of \(f \) to \(h(l) \) is (1) floor, (2) roof, and (3) left and right walls.
- **Lemma:** Every line in \(L \) appears at most once as a left wall in \(h(l) \) and at most once as a right wall in \(h(l) \).
- **Proof.** By contradiction.
 - Suppose there exists a line \(g \) that appears at least twice as a left wall, appearing as edge \(e_1 \) in face \(f_1 \), and \(e_2 \) in face \(f_2 \).
 - Since \(e_1 \) is a left wall, consider the “left roof” edge \(f_1 \), namely, the edge that comes before the top vertex of \(f_1 \).
 - Let \(g \) be the line defining this left root edge.
 - It is easy to see \(g \) must “shield” \(e_2 \) away from \(l \), preventing it from appearing on the horizon.
- Thus, \(h(l) \leq 2n + (n + 1) + (2n - 2) \), where the first term accounts for left and right walls (each line appearing at most once), the second term accounts for the floor (at most \(n + 1 \) edges), and the third accounts for the roofs (each of the \(n - 1 \) faces have at most 2 roof lines).

Constructing the Line Arrangement

- The Horizon Theorem provides an easy “incremental” method for constructing the line arrangement.
- By induction, assume the arrangement for the first \(n - 1 \) lines has been built.
- We then add the \(n \)th line \(l \), modifying the arrangement in time proportional to the horizon of \(l \).
- The arrangement not touching the horizon is unaffected by the new addition.
• Since the horizon size is $O(n)$, we can afford to linearly scan it and modify the DCEL representation of the arrangement in $O(n)$ time.

• The total time to add n lines is $O(n^2)$.

Applications of the Line Arrangement: Degeneracy Testing.

• Dualize the n points, and construct the arrangement $A(\mathcal{L})$.

• There are $O(n^2)$ vertices and $O(n^2)$ edges.

• Using the DCEL representation, we can check how many edges incident to each vertex. If any vertex has more than 4 edges, we have a degeneracy.

Application: Smallest Area Triangle

• Given n points, find the smallest-area triangle formed by a triple. (Degeneracy is the special case of zero area.)

• There are $\Theta(n^3)$ distinct triangles. Can we find the smallest of those without inspecting them all?

• We use the projective duality again, and use the fact that duality preserves “vertical distances” between points and lines.

• Suppose $p = (a, b)$ is a point, and $L : y = mx + c$ a line.

• The “vertical” distance from p to L is $b - (ma + c)$.

• In the dual space, the vertical distance from the dual point $(m, -c)$ to the line $y = ax - b$ is $-c - (am - b) = b - (ma + c)$.

• Instead of triangles formed by all “triples” of points independently, let’s consider all triangles formed by triples whose “base edge” is defined by the pair p_1, p_2.

• Suppose the apex of one such triangle is z.

• Then, the area of this triangle is $\frac{1}{2} \times \text{base} \times \text{height}$.

• If $\triangle p_1p_2z$ is the smallest-area triangle with base p_1p_2, then the strip defined by the lines p_1p_2 and its parallel translate through z does not contain any other point of the input.

• Therefore, among all the points of the input, the point z must have the minimum vertical distance to the line defined by p_1p_2.
Our $O(n^2)$ time algorithm, therefore, has the following form: (1) consider each of the $O(n^2)$ pairs of points. (2) for each such pair p_1, p_2, find the point z (among the rest) whose vertical distance to the line p_1p_2 is smallest. (3) keep track of the smallest area triangles among these $O(n^2)$ candidates.

- We do this computation in the dual space. Form the arrangement defined by the dual lines of the n input points.
- Each line defined by an input pair of points (p_1, p_2) becomes a “vertex” in the arrangement of dual lines.
- The apex z with minimum vertical distance to a line (p_1, p_2) is the “line” in the dual space whose vertical distance to the “vertex” dual of (p_1, p_2) is minimum.
- We can do this by simple finding the line-directly-above-each vertex and the line-directly-below-each vertex of the arrangement.
- The arrangement has size $O(n^2)$, and the entire computation takes $O(n^2)$ time.

Levels in Arrangements and Ham Sandwich Theorem

- Let R and B be two disjoint point sets in the plane, in general position.
- There exists a line l that simultaneously bisects both R and B, that is, each (open) halfplane defined by l contains at most half the points of each color.
- We may assume that both R and B contain an odd number of points; otherwise, arbitrarily discard one point, and the bisector of the reduced set remains a valid bisector for the original.
- Assume that no two points in $R \cup B$ have the same x-coordinate; otherwise, perform an appropriate rotation of the plane.
- Let R^* and B^* denote the dual lines corresponding to our points.
- In the arrangement of the red lines $\mathcal{A}(R^*)$, consider the median level. this is the level containing an equal number of lines above and below it.
- By the order-preserving property of the duality, each point on this level is dual to a line that bisects the red point set R.
- The duality maps x-coordinates of points to the slopes of lines, and so the median level records the bisection lines as the slope of the line goes from 0 to π.
Clearly, at the two extremes, $0 = \pi$, the bisection line is the same, and thus the median level belongs to the same line in R, namely, one whose x-coordinate is the median in the input set.

Similarly, we have the median level for the blue line arrangement $A(B^*)$, also with a same blue line defining the start and the end of the median level.

However, since no two points in $R \cup B$ have the same x-coordinate, these two lines l_r, l_b are not parallel, and must intersect.

As a result, we can conclude that the median levels of $A(R^*)$ and $A(B^*)$, which are piecewise linear continuous functions, also intersect.

Any point in their common intersection is dual to a line that simultaneously bisects both R and B.

2 Ham Sandwich Theorem d Dimensions

Given d measurable objects in d-dimensional Euclidean space, there always exists a $(d - 1)$-dim hyperplane that simultaneously bisects each of the objects. That is, each side of the halfplane contains exactly half the volume of each object.

In 3-dim, single knife cut split bread, ham, and cheese evenly.

Proof using Borsuk–Ulam theorem, which says that any continuous function $f : S^d \rightarrow R^{d-1}$ has two antipodal points $p, q \in S^d$ such that $f(p) = f(q)$.

Let A_1, A_2, \ldots, A_d denote the d objects that we wish to simultaneously bisect.

Let S be the unit $(n-1)$-sphere embedded in d-dimensional Euclidean space R^n, centered at the origin.

For each point p on the surface of the sphere S, we can define a continuum of oriented affine hyperplanes (not necessarily centred at O) perpendicular to the (normal) vector from the origin to p, with the positive side of each hyperplane defined as the side pointed to by that vector (i.e. it is a choice of orientation).

By the intermediate value theorem, every family of such hyperplanes contains at least one hyperplane that bisects the bounded object A_d: at one extreme translation, no volume of A_d is on the positive side, and at the other extreme translation, all of A_d’s volume is on the positive side, so in between there must be a translation that has half of A_d’s volume on the positive side.
• If there is more than one such hyperplane in the family, we can pick one canonically by choosing the midpoint of the interval of translations for which \(A_d \) is bisected.

• Thus we obtain, for each point \(p \) on the sphere \(S \), a hyperplane \(\pi(p) \) that is perpendicular to the vector from the origin to \(p \) and that bisects \(A_d \).

• Now we define a function \(f \) from the \((n-1)\)-sphere \(S \) to \((n-1)\)-dimensional Euclidean space \(\mathbb{R}^{d-1} \) as follows:

\[
f(p) = (x_1, x_2, \ldots, x_{d-1}),
\]

where \(x_i = \text{vol of } A_i \) on the positive side of \(\pi(p) \).

• This function \(f \) is continuous. By the Borsuk–Ulam theorem, there are antipodal points \(p \) and \(q \) on the sphere \(S \) such that \(f(p) = f(q) \).

• Antipodal points \(p, q \) correspond to hyperplanes \(\pi(p), \pi(q) \) that are equal except that they have opposite positive sides.

• Thus, \(f(p) = f(q) \) means that the volume of \(A_i \) is the same on the positive and negative side of \(\pi(p) \) (or \(\pi(q) \)), for \(i = 1, 2, \ldots, d-1 \).

• Thus, \(\pi(p) \) (or \(\pi(q) \)) is the desired ham sandwich cut that simultaneously bisects the volumes of \(A_1, A_2, \ldots, A_d \).

2.1 Generalizations

• The original theorem works for at most \(d \) collections, where \(d \) is the number of dimensions. If we want to bisect a larger number of collections without going to higher dimensions, we can use, instead of a hyperplane, an algebraic surface of degree \(k \), i.e., an \((d-1)\)-dimensional surface defined by a polynomial function of degree \(k \). We then have the following generalization:

• Given \(\binom{k+n}{n} - 1 \) measures in an \(d \)-dim space, there exists an algebraic surface of degree \(k \) which bisects them all.

• The generalization is proved by mapping the \(d \)-dim plane into a \(\binom{k+n}{n} - 1 \) dimensional plane, and then applying the original theorem.

• For instance, if \(d = 2 \) and \(k = 2 \), then the 2-dim plane is mapped to a 5-dim plane via \((x, y) \rightarrow (x, y, x^2, y^2, xy)\).