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Arrangements and Geometric Duality

Geometric Duality plays an important role in CG. The connection comes from the
Cartesian idea that a point in R? is specified by two coordinates (z,y), as is a line
y = mx + ¢, specified by its slope and intercept (m, c).

Similarly, points and hyperplanes in d-space require d parameters, and therefore can be
mapped into each other.

Often, a problem about points becomes much easier to solve by viewing it as a problem
about lines (or hyperplanes), and vice versa.

Degeneracy Testing: A simple example of the power of duality is deciding whether an
input set of points is non-degenerate, meaning no 3 are collinear. What is the most
efficient algorithm for it?

The trivial upper bound is O(n?), and it is not clear if a better algorithm is possible.
We will show that an O(n?) time algorithm using duality and line arrangements.

The complexity of this innocent looking problem is a major open problem in theoretical
computer science.

There are many different duality transforms, but a simple one is the following, called
standard projective duality.

— Each point p = (a,b) maps to the dual line y = ax — b, and we denote the dual as

p*.
— Each line L with equation y = mx + ¢ maps to the dual point (m,—c), which we
denote as L*.

— That is, the x coordinate maps to the slope, and the y coordinate maps to the
(negative) intercept.



Geometric Properties of the Duality.
— Incidence Preserving: Suppose p is a point, L a line, and p lies on L. Then, the
dual point L* lies on the dual line p*.
— Order Preserving: Suppose p is a point, L a line, and p lies above the line L.
Then, the dual point L* lies above the dual line p*.
These conditions are easy to check algebraically.
— Suppose p = (a,b) and L : y = mx + c¢. Then, incidence in primal space means
that b =ma + ¢

— The dual point for L is (m, —c), and dual line for p is y = ax — b. Their incidence
in dual means —c¢ = am — b, which implies b = ma + ¢. Done!

— Similarly, the “aboveness” in primal space means b > ma + ¢, while in dual space
it means —c > am — b, which are the same.

Therefore, under the projective transform, if there are k collinear points in the input,
then their “dual” lines must all intersect in a common point.

We show that checking for multiple lines meeting in a common point can be done in
O(n?) time.

Line Arrangement.

The subdivision of the plane induced by a finite set of lines £ is called the arrangement

A(L).

This subdivision consists of faces (convex polygons), edges (straight line segments, or
half-rays), and vertices (points).

The line arrangement is called simple if no two lines are parallel and no three meet in a
common point.

Although lines are unbounded, we can regard the arrangement bounded by conceptually
placing them inside a sufficiently large rectangular box. (Such a box can be computed
in O(nlogn) time. How?)

The arrangement can also be viewed as a planar graph (by adding a vertex at infinity)
and for algorithmic purposes we assume a DCEL representation.

Size Lemma: A simple arrangement of n lines in R? has (72‘) vertices, n? edges, and
(5) +n+ 1 faces.



Proof. The number of vertices and edges is easy to count—each vertex involves a pair
of lines, and each line is split into n segments or half rays. For the number of faces,
we use a sweepline argument. Imagine a vertical sweepline placed at —oo. It intersects
exactly n + 1 (unbounded) faces, meeting each line exactly once. As we sweep the line,
we swap one old face for a new one, exactly when we sweep over a vertex, which happens
(;) times, thus giving the bound for the faces.

Non-Simple Arrangements. The complexity of an arrangement is maximum when
it is a simple arrangement.

Other Applications

The complexity of hyperplane arrangements is also relevant in many other settings,
e.g.linear classifiers.

In data classification and machine learning, we employ linear classifier rules, which
geometrically means a hyperplane test: classify a data point x as “+” if hx > 0, and
“—" otherwise.

Figure of classification.

If we have a n such classifiers (hyperplanes), each + on one side and — on the other,
how many “dichotomies” do we get?

In general, n binary rules create 2" size partition.
But if the rules are hyperplanes, then the size (given by the arrangement) is only O(n?).

Linearization of non-linear functions. Discrimination rules of higher order can be
“lifted” linear rules in higher dimension.

For instance, if you order k polynomials in d variables, then there are (kzl) terms. So,

we can linearize this as a O(k%)-dimensional hyperplane.

Horizon Theorem

An important step in finding an optimal algorithm for constructing the line arrangement
is the following Horizon Theorem, which is of independent interest.

Let A(L) be the arrangement of n lines.

Consider some line [ (not necessarily in £), and let h(l) be the total size of all the faces
that intersect /.

The size of a face is the number of edges bounding it (combinatorial complexity).
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The horizon meets O(n) faces, and any single face can have size ©(n), so the naive upper
bound for h(l) is O(n?).

The Horizon Theorem proves that h(l) is in fact O(n), which is optimal.

Horizon Theorem. The total number of edges in the horizon of [ (not necessarily from
L) is at most 6n.

Proof of the Horizon Theorem (ETH notes)

Assume that [ is horizontal, and none of the other lines are horizontal. (Otherwise,
rotate the coordinate axes.)

Split the boundary of each face in the horizon at its top and bottom vertices, and orient
all edges from bottom to top.

The edges that have a horizon cell to their right are called left-bounding for that cell.
Similarly, define the right-bounding edges.

We will show there are < 3n left-bounding edges, by induction on n.
The base case n = 1 is trivial: 1 < 3. Assume it holds for n — 1.
Consider the rightmost line v € L that intersects [.

By induction, in the reduced arrangement A(L\ ), the horizon of [ has at most 3(n—1)
left-bounding edges.

Adding back r creates at most 3 new left-bounding edges for the horizon of .

1. Two of these edges belong to the rightmost cell in {’s horizon in A(L \ r)—at most
two edges (call them a and b) of the rightmost cell are intersected by r, and split
into two, both of which may be left-bounding.

2. The third edge is contributed by r itself. The line r cannot contribute a left-
bounding edge to any cell other than the rightmost: to the left of r, the edges
induced by r form right-bounding edges only, and to the right of r, all other cells
touched by r are shielded away from [ by a or b.

Thus, the total number of left-bounding edges in the horizon is 3+ (3n —3) = 3n. QED.



Another Proof

We count only the number of edges in the cells that lie above the line [.

For each such cell of the horizon, classify its edges as follows.

— Floor: this is the edge defined by the horizon base line [

— Roof: the two edges incident to the highest vertex of f, where the height is measured
from [.

— The remaining edges of f are divided in two “left walls” and “right walls.”

The total contribution of f to h(l) is (1) floor, (2) roof, and (3) left and right walls.

Lemma: Every line in £ appears at most once as a left wall in h(l) and at most once
as a right wall in A(l).

Proof. By contradiction.
— Suppose there exists a line g that appears at least twice as a left wall, appearing

as edge e in face fi, and es in face fs.

— Since e; is a left wall, consider the “left roof” edge f;, namely, the edge that comes
before the top vertex of f.

— Let g be the line defining this left root edge.

— It is easy to see g must “shield” e, away from [, preventing it from appearing on
the horizon.

Thus, h(l) < 2n+ (n + 1) + (2n — 2), where the first term accounts for left and right
walls (each line appearing at most once), the second term accounts for the floor (at most
n + 1 edges), and the third accounts for the roofs (each of the n — 1 faces have at most
2 roof lines.

Constructing the Line Arrangement

The Horizon Theorem provides an easy “incremental” method for constructing the line
arrangement.

By induction, assume the arrangement for the first n — 1 lines has been built.

We then add the nth line [, modifying the arrangement in time proportional to the
horizon of [.

The arrangement not touching the horizon is unaffected by the new addition.



Since the horizon size is O(n), we can afford to linearly scan it and modify the DCEL
representation of the arrangement in O(n) time.

The total time to add n lines is O(n?).

Applications of the Line Arrangement: Degeneracy Testing.

Dualize the n points, and construct the arrangement A(L).
There are O(n?) vertices and O(n?) edges.

Using the DCEL representation, we can check how many edges incident to each vertex.
If any vertex has more than 4 edges, we have a degeneracy.

Application: Smallest Area Triangle

Given n points, find the smallest-area triangle formed by a triple. (Degeneracy is the
special case of zero area.)

There are ©(n?) distinct triangles. Can we find the smallest of those without inspecting
them all?

We use the projective duality again, and use the fact that duality preserves “vertical
distances” between points and lines.

Suppose p = (a, b) is a point, and L : y = mx + ¢ a line.
The “vertical” distance from p to L is b — (ma + c¢).

In the dual space, the vertical distance from the dual point (m, —c) to the line y = ax —b
is —c — (am —b) = b — (ma + ¢).

Instead of triangles formed by all “triples” of points independently, let’s consider all
triangles formed by triples whose “base edge” is defined by the pair py, ps.

Suppose the apex of one such triangle is z.
Then, the area of this triangle is % X base x height .

If Apipoz is the smallest-area triangle with base pyps, then the strip defined by the lines
p1p2 and its parallel translate through z does not contain any other point of the input.

Therefore, among all the points of the input, the point z must have the minimum vertical
distance to the line defined by pip-.



Our O(n?) time algorithm, therefore, has the following form: (1) consider each of the
O(n?) pairs of points. (2) for each such pair py, p, find the point z (among the rest)
whose vertical distance to the line pipo is smallest. (3) keep track of the smallest area
triangles among these O(n?) candidates.

We do this computation in the dual space. Form the arrangement defined by the dual
lines of the n input points.

Each line defined by an input pair of points (p;, p2) becomes a “vertex” in the arrange-
ment of dual lines.

The apex z with minimum vertical distance to a line (p,ps) is the “line” in the dual
space whose vertical distance to the “vertex” dual of (py,p2) is minimum.

We can do this by simple finding the line-directly-above-each vertex and the line-directly-
below-each vertex of the arrangement.

The arrangement has size O(n?), and the entire computation takes O(n?) time.

Levels in Arrangements and Ham Sandwich Theorem

Let R and B be two disjoint point sets in the plane, in general position.

There exists a line [ that simultaneously bisects both R and B, that is, each (open)
halfplane defined by [ contains at most half the points of each color.

We may assume that both R and B contain an odd number of points; otherwise, arbi-
trarily discard one point, and the bisector of the reduced set remains a valid bisector for
the original.

Assume that no two points in R U B have the same z-coordinate; otherwise, perform an
appropriate rotation of the plane.

Let R* and B* denote the dual lines corresponding to our points.

In the arrangement of the red lines A(R*), consider the median level. this is the level
containing an equal number of lines above and below it.

By the order-preserving property of the duality, each point on this level is dual to a line
that bisects the red point set R.

The duality maps z-coordinates of points to the slopes of lines, and so the median level
records the bisection lines as the slope of the line goes from 0 to 7.



Clearly, at the two extremes, 0 = m, the bisection line is the same, and thus the median
level belongs to the same line in R, namely, one whose z-coordinate is the median in
the input set.

Similarly, we have the median level for the blue line arrangement A(B*), also with a
same blue line defining the start and the end of the median level.

However, since no two points in U B have the same x-coordinate, these two lines ., [,
are not parallel, and must intersect.

As a result, we can conclude that the median levels of A(R*) and A(B*), which are
piecewise linear continuous functions, also intersect.

Any point in their common intersection is dual to a line that simultaneously bisects both
R and B.

Ham Sandwich Theorem d Dimensions

Given d measurable objects in d-dimensional Euclidean space, there always exists a
(d — 1)-dim hyperplane that simultaneously bisects each of the objects. That is, each
side of the halfplane contains exactly half the volume of each object.

In 3-dim, single knife cut split bread, ham, and cheese evenly.

Proof using Borsuk—Ulam theorem, which says that any continuous function
f: 54— R has two anitpodal points p, q € S¢ such that f(p) = f(q).

Let Ay, As, ..., Ay denote the d objects that we wish to simultaneously bisect.

Let S be the unit (n—1)-sphere embedded in d-dimensional Euclidean space R", centered
at the origin.

For each point p on the surface of the sphere S, we can define a continuum of oriented
affine hyperplanes (not necessarily centred at O) perpendicular to the (normal) vector
from the origin to p, with the positive side of each hyperplane defined as the side pointed
to by that vector (i.e. it is a choice of orientation).

By the intermediate value theorem, every family of such hyperplanes contains at least
one hyperplane that bisects the bounded object A;: at one extreme translation, no
volume of Ay is on the positive side, and at the other extreme translation, all of A;’s
volume is on the positive side, so in between there must be a translation that has half
of Ay’s volume on the positive side.



2.1

If there is more than one such hyperplane in the family, we can pick one canonically by
choosing the midpoint of the interval of translations for which Ay is bisected.

Thus we obtain, for each point p on the sphere S, a hyperplane 7(p) that is perpendicular
to the vector from the origin to p and that bisects A,.

Now we define a function f from the (n — 1)-sphere S to (n — 1)-dimensional Euclidean
space R as follows:

flp) = (z1,29,...,24-1),

where x; = vol of A; on the positive side of 7(p).

This function f is continuous. By the Borsuk—Ulam theorem, there are antipodal points
p and ¢ on the sphere S such that f(p) = f(q).

Antipodal points p, g correspond to hyperplanes 7(p), m(q) that are equal except that
they have opposite positive sides.

Thus, f(p) = f(q) means that the volume of A; is the same on the positive and negative
side of 7(p) (or w(q)), fori=1,2,...,d— 1.

Thus, 7(p) (or m(q)) is the desired ham sandwich cut that simultaneously bisects the
volumes of Ay, Ao, ..., Ay

Generalizations

The original theorem works for at most d collections, where d is the number of di-
mensions. If we want to bisect a larger number of collections without going to higher
dimensions, we can use, instead of a hyperplane, an algebraic surface of degree k, i.e.,
an (d — 1)—dimensional surface defined by a polynomial function of degree k. We then
have the following generalization:

Given ((k:")) — 1 measures in an d-dim space, there exists an algebraic surface of degree
k which bisects them all.

The generalization is proved by mapping the d-dim plane into a ((k:”))

plane, and then applying the original theorem.

— 1 dimensional

For instance, if d = 2 and k = 2, then the 2-dim plane is mapped to a 5-dim plane via
('r7 y) % (':C7 y? x27 y27 xy)'



