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Convex Hulls

1. Convex hulls are to CG what sorting is to
discrete algorithms.

2. First order shape approximation.
Invariant under rotation and translation.

p

3. Rubber-band analogy.

4. Many applications in robotics, shape
analysis, line fitting etc.

5. Example: if CH(P1) ∩ CH(P2) = ∅, then
objects P1 and P2 do not intersect.

6. Convex Hull Problem:
Given a finite set of points S, compute its
convex hull CH(S). (Ordered vertex list.)
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Classical Convexity

1. Given points p1, p2, . . . , pk, the point
α1p1 + α2p2 + · · ·+ αkpk is their convex
combination if αi ≥ 0 and

∑k
i=1 αi = 1.

2. CH(S) is union of all convex combinations
of S.

3. S convex iff for all x, y ∈ S, xy ∈ S.

4. CH(S) is intersection of all convex sets
containing S.

5. CH(S) is intersection of all halfspaces
containing S.

6. CH(S) is smallest convex set containing S.

7. In R2, CH(S) is smallest area (perimeter)
convex polygon containing S.

8. In R2, CH(S) is union of all triangles
formed by triples of S.

9. These descriptions do not yield efficient
algorithms. At best O(N3).
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Efficient CH Algorithms

Gift Wrapping: [Jarvis ’73; Chand-Kapur ’70]

p

a

p

a

b

1. Start with bottom point p.

2. Angularly sort all points around p.

3. Point a with smallest angle is on CH.

4. Repeat algorithm at a.

5. Complexity O(Nh); 3 ≤ h = |CH| ≤ N .
Worst case O(N2).
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Quick Hull Algorithm

Discard
these Discard

these

Initialization Recursive Elimination
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1. Form initial quadrilateral Q, with left,
right, top, bottom. Discard points inside
Q.

2. Recursively, a convex polygon, with some
points “outside” each edge.

3. For an edge ab, find the farthest outside
point c. Discard points inside triangle abc.

4. Split remaining points into “outside”
points for ac and bc.

5. Edge ab on CH when no point outside.
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Complexity of QuickHull

Discard
these Discard

these

Initialization Recursive Elimination
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1. Initial quadrilateral phase takes O(n) time.

2. T (n): time to solve the problem for an
edge with n points outside.

3. Let n1, n2 be sizes of subproblems. Then,

T (n) =
{

1 if n = 1
n + T (n1) + T (n2) where n1 + n2 ≤ n

}

4. Like QuickSort, this has expected running
time O(n log n), but worst-case time O(n2).
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Graham Scan
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1. Sort by Y -order; p1, p2, . . . , pn.

2. Initialize. push (pi, stack), i = 1, 2.

3. for i = 3 to n do
while 6 next, top, pi 6= Left-Turn

pop (stack)
push (pi, stack).

4. return stack.

5. Invented by R. Graham ’73. (Left and
Right convex hull chains separately.)
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Analysis of Graham Scan

p

a

b
c
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1. Invariant: 〈p1, . . . , top(stack)〉 is convex. On
termination, points in stack are on CH.

2. Orientation Test: D =

∥∥∥∥∥∥

1 px py

1 qx qy

1 rx ry

∥∥∥∥∥∥
6 p, q, r is LEFT if D > 0, RIGHT if D < 0,
and straight if D = 0.

3. After sorting, the scan takes O(n) time: in
each step, either a point is deleted, or
added to stack.
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Divide and Conquer

A B
CH(A) CH(B)

Upper Tangent

• Sort points by X-coordinates.

• Let A be the set of n/2 leftmost points,
and B the set of n/2 rightmost points.

• Recursively compute CH(A) and CH(B).

• Merge CH(A) and CH(B) to obtain CH(S).
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Merging Convex Hulls

a

b

CH(A) CH(B)

Lower Tangent

• a = rightmost point of CH(A).

• b = leftmost point of CH(B).

• while ab not lower tangent of CH(A) and
CH(B) do

1. while ab not lower tangent to CH(A)
set a = a− 1 (move a CW);

2. while ab not lower tangent to CH(B)
set b = b + 1 (move b CCW);

• Return ab
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Analysis of D&C

A B
CH(A) CH(B)

Upper Tangent

• Initial sorting takes O(N log N) time.

• Recurrence for divide and conquer
T (N) = 2T (N/2) + O(N)

• O(N) for merging (computing tangents).

• Recurrence solves to T (N) = O(N log N).



Subhash Suri UC Santa Barbara

Applications of CH

A problem in statistics

• Given a set of N data points in R2, fit a
line that minimizes the maximum error.

• A data point’s error is its L2 norm
distance to the line.
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Line Fitting

d

a

c

b

• Minimizing max error = parallel lines of
support with Min separation.

• Max error D implies parallel lines of
support with separation 2D, and vice
versa.

• Min separation between parallel support
lines is also called width of S.
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Algorithm for Width

d

a

c

b

• Call a, b antipodal pair if they admit
parallel lines of support.

• In R2, only O(N) antipodal pairs.

• If L1, L2 are parallel support lines, with
minimum separation, then at least one of
the lines contains an edge of CH(S).

• We can enumerate all antipodal pairs by a
linear march around CH.
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Noncrossing Matching

• Given N red and N blue points in the
plane (no three collinear), compute a
red-blue non-crossing matching.

• Does such a matching always exist?

• Find if one exists.
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Noncrossing Matching

• A non-crossing matching always exists.

• (Non-constructive:) Matching of minimum
total length must be non-crossing.

M M’

• But how about an algorithm?
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Algorithm

tangent

tangent

• Compute CH(R) and CH(B).

• Compute a common tangent, say, rb.

• Output rb as a matching edge; remove r, b,
update convex hulls and iterate.
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When CH Nest?

• Algorithm fails if CH(R) and CH(B) nest.

• Split by a vertical line, creating two
smaller, hull-intersecting problems.

• [Hershberger-Suri ’92] gives optimal
O(N log N) solution.
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Lower Bounds

x7 x8 x9
x4 x1

x6

x2
x10

x3
x5

Parabola
y = x2

• Reduce sorting to convex hull.

• List of numbers to sort {x1, x2, . . . , xn}.
• Create point pi = (xi, x

2
i ), for each i.

• Convex hull of {p1, p2, . . . , pn} has points in
sorted x-order. ⇒ CH of n points must
take Ω(n log n) in worst-case time.

• More refined lower bound is Ω(n log h). LB
holds even for identifying the CH vertices.
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Output-Sensitive CH

1. Kirkpatrick-Seidel (1986) describe an
O(n log h) worst-case algorithm. Always
optimal—linear when h = O(1) and
O(n log n) when h = Ω(n).

2. T. Chan (1996) achieved the same result
with a much simpler algorithm.

3. Remarkably, Chan’s algorithm combines
two slower algorithms (Jarvis and
Graham) to get the faster algorithm.

4. Key idea of Chan is as follows.

(a) Partition the n points into groups of
size m; number of groups is r = dn/me.

(b) Compute hull of each group with
Graham’s scan.

(c) Next, run Jarvis on the groups.
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Chan’s Algorithm

1. The algorithm requires knowledge of CH
size h.

2. Use m as proxy for h. For the moment,
assume we know m = h.

3. Partition P into r groups of m each.

4. Compute Hull(Pi) using Graham scan,
i = 1, 2, . . . , r.

5. p0 = (−∞, 0); p1 bottom point of P .

6. For k = 1 to m do

• Find qi ∈ Pi that maximizes the angle
6 pk−1pkqi.

• Let pk+1 be the point among qi that
maximizes the angle 6 pk−1pkq.

• If pk+1 = p1 then return 〈p1, . . . , pk〉.
7. Return “m was too small, try again.”
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Illustration

q1

q2

q3

q4

pk−1

pk
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Time Complexity

• Graham Scan: O(rm log m) = O(n log m).

• Finding tangent from a point to a convex
hull in O(log n) time.

• Cost of Jarvis on r convex hulls: Each
step takes O(r log m) time; total
O(hr log m) = ((hn/m) log m) time.

• Thus, total complexity

O

((
n +

hn

m

)
log m

)

• If m = h, this gives O(n log h) bound.

• Problem: We don’t know h.

q1

q2

q3

q4

pk−1

pk
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Finishing Chan

Hull(P )

• for t = 1, 2, . . . do

1. Let m = min(22t
, n).

2. Run Chan with m, output to L.
3. If L 6= “try again” then return L.

1. Iteration t takes time O(n log 22t
) = O(n2t).

2. Max value of t = log log h, since we succeed
as soon as 22t

> h.

3. Running time (ignoring constant factors)

lg lg h∑
t=1

n2t = n

lg lg h∑
t=1

2t ≤ n21+lg lg h = 2n lg h

4. 2D convex hull computed in O(n log h)
time.
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Convex Hulls in d-Space

• New and unexpected phenomena occur in
higher dimensions.

e1

cross polytopecube

V = 8,  F = 6 V = 6,  F = 8

8
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e2

e3
e4

• Number of vertices, faces, and edges not
the same.

• How to represent the convex hull?
Vertices alone may not contain sufficient
information.
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Faces

• In d-dimensions, a face can have any
dimension k, where k = 0, 1, . . . , d− 1.

• Special names: Vertices (dim 0), Edges
(dim 1), and Facets (dim d− 1).

• In general, a k-dim face.

e1

cross polytopecube

V = 8,  F = 6 V = 6,  F = 8
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• In 4-dimension, faces are 3d subspace, 2d
faces, edges and vertices.
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Facial Lattice

e1

cross polytopecube

V = 8,  F = 6 V = 6,  F = 8
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• Complete description of how faces of
various dimension are incident to each
other.

Face lattice of f

e1 e2 e3 e4

5 6 7 8

f
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Complexity

Cubes of dim 1, 2, 3....

• How many vertices does d-dim cube have?

• How many facets does d-dim cube have?

• So, already as a function of d, there is
exponential difference between V and F .

• But, for a fixed dimension d, how large
can the face lattice be as a function of n,
the number of vertices?
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3 Dimensions

e1

cross polytopecube

V = 8,  F = 6 V = 6,  F = 8
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• Steinitz: The facial lattice of a 3-d convex
polytope is isomorphic to a 3-connected
planar graph and vice versa.

• By Euler’s formula, V − E + F = 2.

• Verify this for cube: V = 8, E = 12, F = 6.

• In 3D, E and F are linear in n.
E ≤ 3n− 6, and F ≤ 2n− 4.
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Higher Dimensions

• Convex polytopes in higher dimensions
can exhibit strange and unexpected
behavior.

• In 4D, there are n points in general
position so that the edge joining every
pair of points is on the convex hull!

• That is, a 4D convex hull of n points can
have Θ(n2) edges!

• In d dimensions, the number of facets can
be nbd/2c.

• Thus, explicit representation of convex
hulls is not very practical in higher
dimensions.

• But this does not mean they are useless:
after all linear programming is
optimization over convex polytopes.
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Cyclic Polytopes

y = x2

• Discovered in 1900’s, their importance
comes from the Upper Bound Theorem by
McMullen and Shephard 1971).

• Moment curve: γ = {(t, t2, . . . , td) | t ∈ R}.

• A point p = (u, u2, . . . , ud) is given by the
single parameter u.

• Consider n values u1 < u2 < · · · < un. Let
p1, p2, . . . , pn be the corresponding points
on the moment curve.

• Then, any k-tuple of points, where k ≤ d/2,
is a face of their convex hull.
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4D Example

y = x2

• Moment curve is γ = {(t, t2, t3, t4)}.

• Fix any two i, j. Consider the polynomial

P (t) = (t− ui)2(t− uj)2

• This polynomial can be written as:

P (t) = t4 + a3t
3 + a2t

2 + a1t + a0

• Clearly, P (t) ≥ 0, for all t. Furthermore,
the only zeros of the polynomial occur at
t = ui and t = uj.
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4D Example

Moment Curve

pi

pj

• But x4 + a3x3 + a2x2 + a1x1 + a0 = 0 is the
equation of a hyperplane. This evaluates
to zero when x = pi or pj.

• Since for all other points, the polynomial
evaluates to ≥ 0, it means that the
moment curves lies on the same side of
this plane.

• Thus, this plane is the witness that pipj is
on the convex hull.

• We chose i, j arbitrarily, so all pairs are on
the convex hull.
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Upper Bound Theorem

• Among all d-dim convex polytopes with n
vertices, the cyclic polytope has the
maximum number of faces of each
dimension.

• A d-dim convex polytope with n vertices
has at most 2

(
n

d/2

)
facets and at most

2d+1
(

n
d/2

)
faces in total.

• Thus, asymptotically, a d-dim convex
polytope has Θ(nbd/2c) faces.

• A worst-case optimal algorithmn of this
complexity is by Chazelle [1993].


