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1 Delaunay Triangulation

e The Voronoi diagram of n sites in the plane is a planar subdivision, which is the
embedding of a planar graph. (Use a vertex at infinity as terminus for all half-rays.)

e We now consider another important structure related to VoD, called Delaunay Trian-
gulation. (Assume general position, meaning no four points are cocircular and no three
collinear.)

e Define the graph dual of VoD, as follows:

1. For each face of the primal graph (VoD), we create a vertex, and then we add an
edge between two such vertices if their faces are adjacent in VoD.

2. Since each face of the VoD corresponds to a site, say, p;, we conveniently use p;
as the “vertex” dual of V(p;).

3. Two vertices p; and p; are joined by an edge (drawn as straight line segment) if
V(pi) and V(p;) share a voronoi edge.

4. Observe that each Voronoi vertex corresponds to a ‘face’ of the dual, which will
be a triangle.

5. (One can use the empty circle property to show that in this straightline dual
construction, no two edges cross, so DT is a legal embedding of a triangulation.)

e We observe that the dual graph is a “triangulation” of the input point set P. This
follows because each ‘face’ of the dual corresponds to a Voronoi vertex, which has
degree 3 and so the face corresponding to this voronoi vertex has three edges.

o [f the sites are not in general position, then the dual graph may not be a triangulation—
face dual to a vertex with degree > 4 will be a polygon with 4 or more sides. In that
case, one can either arbitrarily triangulate each of those faces, or simulate general
position using symbolic perturbation.



If P has n points, of which k£ lie on the convex hull of P. Then, Delaunay triangulation
of P (in fact, every triangulation) has (2n — 2 — k) triangles and (3n — 3 — k) edges.

Proof by induction. The k& CH vertices create k — 2 triangles. Each of the remaining
(n — k) points destroys 1 and adds 3 new triangles, giving 2 additional triangles. The
total is (k —2) +2(n —k) = (2n —2 — k).

Properties and Applications

Delaunay triangulations have many nice and surprising geometric properties, which
make them a worthy topic of research on their own, not just an after thought as
Voronoi duals. The triangles and edges of DT'(P) have some nice property.

Empty Circle Property of Triangles: the circumcircle of Apqr does not contain
any other site of P.

A priori, the existence such a triangulation seems too good to be true: every point set
be triangulated so that each of its triangles has the Empty Circle property!

Proof follows from the duality: Ap;p;p; is a triangle of DT if the voronoi regions
V(pi),V(p;),V(px) are pairwise neighbors, meaning they share a voronoi vertex. The
three closest neighbors of this voronoi vertex v are p;, p;, p, and so the circle centered
at v and passing through p;, p;, pi is empty.

Empty Circle Property of Edges: A pair (p;,p;) is an edge of DT if and only if
there exists an empty circle passing through p;, p;.

Proof. To prove this, we show that p;, p,; satisfies the empty circle condition if and
only if V(p;) NV (p;) # 0.

1. First, if V{(p;) NV (p;) # 0, then pick any point = on the shared edge e;; = V' (p;) N
V(p;). By property of the Voronoi diagram, we have d(z, p;) = d(z,p;) < d(z,px),
for any k # i, 7. Therefore, the circle with center at x and radius d(z, p;) satisfies
the empty circle claim.

2. On the other hand, if C' is an empty circle passing through p;, p;, then let x be
its center. Since d(z,p;) = d(x, p;), we must have z € V(p;) NV (p;). Since P is a
finite point set in non-degenerate position, we can move z infinitesimally without
violating the empty circle condition. This shows that = lies on an edge that is on
the common boundary of V(p;) and V(p;).

Closest Pair Property: Given a point set P, if p;, p; are the two closest pair of
points, then (p;, p;) is an edge of DT.



Proof. The circle with diameter p;,p; cannot contain any other point inside, since
otherwise p;, p; cannot be closest, and so the center of this circle is on a Voronoi edge
common to V(p;) and V(p;).

Largest Empty Circle: Given a set of n points in the plane, find the largest empty
circle, with center inside the convex hull. Applications: dump site, location of a new
store, etc.

One can show that the center is either a vertex of the Voronoi diagram, or lies where
a Voronoi edges meets the convex hull.

Minimum Spanning Tree. Another nice property of DT is that the minimum
spanning tree of the sites is a subgraph of DT.

The set of n sites induces an Euclidean Graph whose edges are the (;) undirected pairs
of distinct points, and each edge’s weight is its Fuclidean length. The Euclidean MST
of this graph is the connected spanning subgraph with minimum total length.

We could compute the EMST using Kruskal’s or Prim’s algorithm but since the input
graph has O(n?) edges, the time complexity will be O(n?logn).

If EMST C DT, then we could build EMST in O(nlogn) time because DT has only
O(n) edges and can be computed in O(nlogn) time.

MST Theorem: The MST of a set of n points P (in any dimension) is a subgraph
of the DT.

— Proof. Let T be the MST of P, and let w(T') be its weight.
— Let a, b be two sites such that ab € M ST but ab & DT.

— Then, there is no empty circle passing through a, b; in particular, the circle with
diameter ab is not empty, and contains another site c.

— Delete ab from T, which disconnects it into two subtrees T,,T,. Assume, wlog,
that ¢ € Tj,.

— Let T" be the tree T'— {ab} +{bc}, which is also a spanning tree, and whose weight
satisfies:

w(T’) = w(T) + [bel| = [labll < w(T)

because ab is the diameter of the circle, and c lies strictly inside, and therefore bc
is shorter than ab.

— This contradicts the hypothesis that 7" is the MST, and the proof is complete.
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e Minimum Weight Triangulations. The nearest neighbor property of DT suggests
another question: Among all triangulations of P, does DT minimize the total edge
length?

— It was claimed (without proof) in a famous paper on DT, and one still hears
it quoted occasionally. The claim, however, is false. There is a simple 4-point
counterexample, if you want to try.

— The complexity of MWT was an open problem for many years, dating back to
the original development of NP-completeness in 1970s. Only recently (2008),
the problem was shown to be NP-hard; complicated, computer-assisted proof (to
verify some of the constructions used).

e Geometric Spanners.

— Suppose we have an undirected graph G = (V, E,w) with non-negative edge
weights. A subgraph H = (V, E',w) is called an t-spanner of G, if

dy(u,v) < t-dg(u,v), VuveV

— That is, pairwise distances in the subgraph approximate the distances of the
original graph, within a factor of t. The spanners are useful when G is dense and
we want a much sparser graph.

— In our geometric setting, suppose P is a set of cities and we want to build a road
network, with roads connecting city-pairs by straightline segments. The only way
to achieve minimum distance between all city pairs is to construct (g) roads, one
for each pair. Logistically that is too expensive so a natural question is whether
there is a sparse subgraph, say, with only O(n) road segments that approximates
the shortest distances nicely. Specifically, is there a sparse graph on the point set
P such that

dg(u,v) < tlluwvl|, YuveV
— If t =1, G must be the complete graph. The question is if there is a graph with
O(n) edges that is a spanner for some small value of t.
— Spanner Theorem. Delaunay triang. is a spanner with ¢ = 47r\/§/9 ~ 2.418.

— It has been conjectured for many years that DT was a (7/2)-spanner, where
/2 = 1.5708, but this was disproved in 2009, showing a lower bound of 1.5846

— Open Problem: Narrow the gap between upper and lower bounds.



e Maximizing the Minimum Angle. In many applications, “thin” (small angle)
triangles are undesirable—e.g. linear interpolation, finite element method, etc.

e We can, therefore, ask the following question: given a set of points P, find a triangu-
lation of P for which the smallest angle is as large as possible. That is, maximize the
minimum angle.

e A stronger demand can be to maximize the angle sequence. Take any triangulation T’
of the point set P, and order all the angles of T" into the increasing sequence A(T) =
(p < g <...< ). (Observe that all triangulations of P have the same number of
triangles, so this sequence has the same length.)

e Find the triangulation that has the lezicographically largest angle sequence A(T).

e Lex Order Theorem. Among all triangulations, DT'(P) has the lexicographically
largest angle sequence. In particular, it maximizes the minimum angle.

e Proof. We will show that if a triangulation is non-Delaunay, and therefore violates
empty-circle property for at least one of its triangles, then we can perform a local
operation, called edge flip, which increases the lex order of the angle sequence.

e The edge flip a key step in many Delaunay triangulation algorithms. Given two ad-
jacent triangles Aabc and Aabd whose union is a convex quadrilateral, the edge flip
operation swaps diagonal ab with cd. (Note that it can only be performed when the
the quad abed is convex.)

Lawson’s Flip Algorithm and Local vs. Global Delaunay.
e Let T be a triangulation of P. We say an edge ab € T' is locally Delaunay if

— either ab is an edge of the convex hull, or
— the apex of each triangle incident to ab lies outside the circumcircle of the other.

e That is, if the triangles incident to ab are Aabc and Aabd, then d must lie outside the
circle defined by abc, and vice versa.

e Globally Delaunay Definition: Triangulation T is globally Delaunay if the circum-
circle of each of its triangles is empty of other sites.

e The important point is that the locally Delaunay condition only checks for empty-circle
property against neighboring triangles, and is applied to individual edges, while DT is
a global property. For instance, all edges of T" may pass the local Delaunay condition
but a triangle may still contain other (non-neighboring) sites.
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But surprisingly the following theorem holds.
Theorem: If all edges of T" are locally Delaunay, then 7' is globally Delaunay.

We skip the proof, which uses power distances of circle geometry. But we show that,
assuming this theorem, we can reach DT through a sequence of flip moves.

Lawson Flip Algorithm

Start with an arbitrary triangulation T of P, and push all edges of T" onto a Stack,
and mark them.

while Stack non-empty, do

— Pop the top edge ab and unmark it
— If ab is not locally Delaunay, then swap it with the other diagonal

— If any of the four edges in {ac,ad,bd,bc} is unmarked and no longer locally De-
launay, mark and push onto the Stack.

We show that the algorithm does not get stuck: flipping is always possible as long as
some edge is non-locally Delaunay.

In addition, we show that each flip also increases the lexical order of the angle sequence,
and so at termination DT must have the largest possible lex order of angle sequence.

We recall a property from Euclidean geometry (called Thales” Theorem):

Suppose ab is a chord in a circle, and p, ¢, r, s are four points lying on the same
side of ab, with p,q on, 7 inside the circle, and s outside the circle. Then, the
angles formed by ab at them have the following ordering:

/r > [/p = [q > /s
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Recall also that opposite pairs of interior angles of an inscribed (cyclic) quadrilateral
sum to 180°.

First, we show that “Hipping is always possible as long there is an illegal edge.” Specif-
ically, if one diagonal is not locally Delaunay, then the other one is.

Suppose ab is not locally Delaunay, and the circumcircle of abc contains point d.

Let x1, 9, x3 be the angles of the Aabc at a,c and b. Similarly, let yq, vy, y3 be the
angles of the Aabd at a,d and b.

By triangle rule, we have 1 + x2 + 23 = 7 and y; + y2 + y3 = 7.

By Facts 1 and 2, we observe that x5 + yo > m. (If d were on the circle, the two angles
would have summed to 7.)

Therefore, we have (x1 +v1) + (x5 + y3) < 7.

Now consider the circumcircle for Aacd. The opposite apex b must be outside the
circle since the angles at a and b sum to (x; + y1) + (23 + y3) < 7. (Apply Thales
theorem for the chord cd!)

Thus, upon termination, the Lawson algorithm has a triangulation that is globally
Delaunay.

How long does it take?
Theorem: Lawson’s flip algorithm terminates in O(n?) steps.
Proof is non-trivial. We will later establish it using a duality transform.

Finally, we need to argue that each flip improves the lexical angle sequence, which then
implies that at termination DT has the max angle sequence.



o We just show that the smallest angle after each flip improves.

Computing DT

e DT can be recovered from the Voronoi diagram in linear time and so can be computed
in O(nnlogn) time in the plane.

e There are direct flip-based algorithms, most notably randomized incremental construc-
tions, which also run in expected time O(nlogn).



