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The Lifting Transform

• There is a fascinating relationship between Voronoi diagrams and De-
launay triangulations of 2-dimensional points and the convex hulls of a
particular set of 3-dimensional points.

• At first, these structures appear to be quite different. For instance, the
Voronoi diagram uses metric properties (distances) while the convex
hull depends on affine properties (sided-ness, halfspaces).

• The connection between the two is through a Lifting Transform, which
maps a set of d-dim points to a set of objects (points or hyperplanes)
in dimension d + 1. We will demonstrate the connection in dimension
2.

• The basis of the transform is the paraboloid z = x2 + y2, which defines
a surface whose vertical cross sections (constant x or constant y) are
parabolas, and whose horizontal cross sections (constant z) are circles.

• For each point (x, y) in the plane, the vertical projection of this point
onto this paraboloid is (x, y, x2 + y2) in 3 space.

• Given a set of points S in the plane, let S0 denote the projection of the
points in S onto this paraboloid.

• Now, consider the lower convex hull of S0. This is the portion of the
convex hull of S0 which is visible to a viewer standing at z = −1.
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• We claim that if we take the lower convex hull of S0, and project it
back onto the plane, then we get the Delaunay triangulation of S.

• In particular, let (p, q, r) be elements of S, and let p0, q0, r0 denote the
projections of these points onto the paraboloid.

• Then p0q0r0 define a face of the lower convex hull of S0 if and only
if pqr is a triangle of the Delaunay triangulation of S. The process is
illustrated in the following figure.

Delaunay Triangulation The question is, why does this work? To see
why, we need to establish the connection between the triangles of the Delau-
nay triangulation and the faces of the convex hull of transformed points. In
particular, recall that

• [Delaunay condition:] Three points p, q, r, in S form a Delaunay
triangle if and only if the circumcircle of these points contains no other
point of S.

• [Convex hull condition:] Three points p0, q0, r0 in S0 form a face of
the convex hull of S0 if and only if the plane passing through p0, q0,
and r0 has all the points of S0 lying to one side.

Clearly, the connection we need to establish is between the emptiness of
circumcircles in the plane and the emptiness of halfspaces in 3 space. We
will prove the following claim.
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Lemma 1. Consider 4 distinct points p, q, r, s in the plane, and let p0, q0, r0, s0
be their respective projections onto the paraboloid, z = x2 + y2. The point s
lies within the circumcircle of p, q, r if and only if s0 lies on the lower side of
the plane passing through p0, q0, r0.

• To prove the lemma, first consider an arbitrary (nonvertical) plane in 3
space, which we assume is tangent to the paraboloid above some point
(a, b) in the plane.

• What is the equation of this tangent plane? We determine the ‘slopes’
of the plane by taking the derivatives of z = x2 + y2 with respect to x
and y, namely, dz/dx = 2x and dz/dy = 2y, and evaluating them at
the point (a, b, a2 + b2). These evaluate to 2a and 2b. Therefore, the
plane passing through these point has the form

z = 2ax+ 2by + k

• To solve for k we use the fact that the plane passes through (a, b, a2+b2),
and so we can eliminate z by setting:

a2 + b2 = 2a2 + 2b2 + k,

which gives k = −(a2 + b2).

• Thus the plane equation is:

z = 2ax+ 2by − (a2 + b2)

• Next, if we shift the plane upwards by some positive amount ρ2 we get
the plane

z = 2ax+ 2by − (a2 + b2) + ρ2

• How does this plane intersect the paraboloid? Since the paraboloid is
defined by: z = x2 + y2, we can eliminate z, giving

x2 + y2 = 2ax+ 2by − (a2 + b2) + ρ2

which after some simple rearrangements is equal to

(x− a)2 + (y − b)2 = ρ2
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• This is just a circle. Thus, the intersection of a plane with the paraboloid
produces a space curve (which turns out to be an ellipse), which when
projected back onto the (x, y) coordinate plane is a circle centered at
(a, b).

• Furthermore, the squared radius of the circle equals the vertical dis-
tance between the projection of the (a, b) onto the paraboloid and its
projection onto the plane.

• Thus, we conclude that the intersection of an arbitrary lower halfspace
with the paraboloid, when projected onto the (x, y) plane is the interior
of a circle.

• Going back to the lemma, when we project the points p, q, r onto the
paraboloid, the projected points p0, q0, r0 define a plane. Since p0, q0, r0,
lie at the intersection of the plane and paraboloid, the original points
p, q, r lie on the projected circle.

• Thus this circle is the (unique) circumcircle passing through these
p, q, r. The point s lies within this circumcircle, if and only if its projec-
tion s0 onto the paraboloid lies within the lower halfspace of the plane
passing through.

4



Voronoi Diagram

• Given a point p = (a, b), the hyperplane H(p) that is tangent to p’s
lifting, namely, (a, b, a2 + b2), has the equation

z = 2ax+ 2by − (a2 + b2)

• Now, consider an arbitrary point q = (α, β) in the plane. What is the
vertical distance from q to the paraboloid? Just (α2 + β2).

• What is the vertical distance from q to plane H(p)? It is 2aα+ 2bβ −
(a2 + b2).

• Let ∆(p, q) denote the difference between these two vertical distance,
namely, the additional distance that q′ projection on H(p) has to travel
to reach the paraboloid. We get

∆(p, q) = α2 + β2 − 2(aα + bβ) + a2 + b2 = (a− α)2 + (b− β)2

• That is, ∆(p, q) equals precisely the two-dimensional distance between
p and q in their ambient space.

• Now, consider two points p1 and p2 in the plane z = 0.

• We claim that q is closer to p1 if and only if at the position q = (α, β),
the plane H(p1) lies above (closer to the paraboloid) than H(p2). It
simply follows from the vertical distance formula.

• We, therefore, have the following lemma.

Lemma 2. Let p1, p2, . . . , pn be a set of points in the plane z = 0. Then, a
point q belongs to the Voronoi cell of the point pi if and only if H(pi) is the
highest plane (seen from z = +∞) at q.

Therefore, the Voronoi diagram of p1, p2, . . . , pn is simply the vertical
projection, down to plane z = 0, of the point-wise maxima of the down-
ward facings halfspaces H(pi). Or, equivalently, is the uppermost face of the
arrangement defined by these planes.
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Order k Voronoi Diagrams

• We can define order k Voronoi diagram as a partition of the plane
into convex regions where each region has the same set of k nearest
neighbors.

• The ordinary Voronoi diagram is the order 1. (The relative order of
neighbors may change, but the set is the same.)

• By the vertical distance argument it is also clear that if we consider the
kth level in the arrangement formed by the hyperplanes H(pi), where
the topmost level is level 1, then we have the property that for any
point on the level k, the same k planes lie above (and thus are closest
to) the point on the projected space.
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