
Locality Sensitive Hashing

Subhash Suri

November 19, 2019

1 Nearest Neighbor Searching in High Dimensions

• The NNS problem is the following. Given a set of points P ∈ Rd, organize them in
some data structure to answer following nearest neighbor queries. For any query point
q ∈ Rd, find the point in P closest to q, namely, the argmin for the following:

min
p∈P

dist(p, q)

We will write p = NN(q).

• Many different distance functions are used in applications, from Euclidean `2 norm to
Manhattan `1 norm, or `∞, or angular distance etc. We will focus mostly on `1, `2 but
the techniques apply broadly.

• Clearly, one can find the NN(q) in O(dn) time by simply searching all the points of P .
(The dim d � 1 is large, and needs to be explicitly factored in the time complexity.)
But in many applications, linear-time per search is unacceptably slow, and we want a
sub-linear query time.

• Two standard approaches for sub-linear query time for NNS are: Voronoi diagrams,
and KD-trees. (Observe that WSPD is not useful here, since that solves off-line version
of NNS.)

1. The Voronoi diagram of P partitions the space into voronoi cells so that finding
NN(q) is equivalent to point locating q in V D(P).

2. The KD-tree of P organizes the points into a binary tree, and to search for
NN(q), we first the leaf node (cell with singleton point) containing q. We then
perform a spiraling search around this cell, until we are guaranteed that none of
the remaining boxes can contain the nearest neighbor of q.

1

• Drawbacks of VoD and KD-tree.

1. The problem with these two approaches is that either the space complexity ex-
plodes exponentially with d, or the search time rapidly approaches O(n).

2. In particular, VoD of n points in d-dim can have size Ω(ndd/2e). We need to store
the VoD in a point-location data structure, and point location in d-space is also
not trivial.

3. The KD-tree search structure has good space bound O(n), but the search has
exponential dependence on d, and so already at d = log n the search time becomes
linear.

4. In fact, for all known approaches, either the space complexity or the search time
grows exponentially with d. This is called the Curse of Dimensionality. Recall
our earlier discussion about subdividing a unit cube into quadtree style children.
Just one round of partition produces 2d children.

• Applications of High Dim NNS. There are many applications that involve solving
NNS problem in fairly high dim. We briefly mention two:

1. Image Processing. Digital images are often divided into smaller regions, and
storing the average values of color intensities for each region. Then the image can
be represented as a vector in Rd, where d is the number of regions. The dim d
can be in millions if regions are at pixel resolution, or in 103–105 for more coarse
partitions. With this representation, Euclidean distance between two vectors is a
good measure of their similarity.

2. Salton’s word model for Document Retrieval. Each English language doc-
ument represented as a vector in Rd, where the ith entry is the frequency of the
ith word in the English language vocabulary database. Typically these databases
have 50K to 100K words. Or, vectors may be just 0-1 vectors, indicating which
words are present. `1 or `2 distances between vectors vi and vj a measure of
similarities between documents i and j.

3. Thus, the dimension of the space over which NNS takes places is quite large in
these applications, in 1000s to 100, 000s, if not millions. For comparison, if one
could do a trillion (1012) ops in one sec, even 221 will require 100 years. 2100 is
incomprehensibly large.

1.1 Approximate NN Search

• Therefore, practical approaches for NNS with sub-linear query time and reasonable
space complexity resort to solving the problem approximately. In stead of trying to

2

compute the exact NN, we are content to find one that is almost as close. In particular,
we define an approximate NN of q as follows: find a point p ∈ P such that

dist(p, q) ≤ c ·min
s∈P

dist(s, q)

That is, the distance from q to p is at most c times the distance to q’s true nearest
neighbor in P . The constant c > 1 is our approximation factor. Our search and data
structure space complexity will be a function of c.

• r–ANNS problem. (Fixed Radius NNS). In fact, we will solve a more specialized
problem, defined as follows. Input is a set of point P ∈ Rd, and c > 1, and r > 0 (our
target distance).

The goal is to construct a data structure on P such that given any query point q, if
there is a point p ∈ P with dist(p, q) ≤ r, then return a point p′ ∈ P with

dist(p′, q) ≤ cr

Otherwise (no point p with dist(p, q) ≤ r), and we are free to return nothing.

In other words, we have a target distance r in mind, and want our data structure to
solve NNS problems for distance ≤ r.

For any query point q satisfying this requirement, our algorithm returns an approximate
NN with distance at most cr; for other, we don’t care.

• From r-ANNS to ANN. It is not hard to see that if we can solve r-ANNS, then we
can solve ANN by repeatedly guessing the values of r. Without loss of generality, by
scaling we assume that diam(P) ≤ 1, and so dist(p, p′) ≤ 1, for all p, p′ ∈ P . Let δ > 0
be the min distance between any two points in our data set.

We solve ANNS(c(1− ε), r) for the following values of r

δ, (1 + ε)δ, (1 + ε)2δ, . . .

and report smallest value of r for which we find a point at distance c(1 − ε) from q.
(The true distance r lies in some range [(1 + ε)j det, (1 + ε)j+1δ], and so we lose one
factor of (1 + ε) in our distance estimate. By using a smaller approximation factor, we
get an estimate that is c(1− ε)(1 + ε)r ≈ cr, ignoring the lower order term.

This reduction introduces a factor log 1/δ overhead in our query algorithm and space
complexity, since we need a separate data structure for each value of r.

3

1.2 Locality Sensitive Hash Functions

• We will solve ANNS using an interesting class of hash functions, called LSH, introduced
by Indyck and Motwani in 1998. First some remarks:

1. In traditional hashing, the goal is to map a set of keys to a hash table, so that we
can perform Lookup, Insert, Delete in O(1) expected time.

2. The size of the input domain N is huge while the hash table size m is quite small,
m� N . (For instance, storing IP addresses or user names to a table of size 103.)

3. There we want the hash function to “spread” our data out randomly, so that
similar keys do not end up hashing to the same location.

4. Interestingly, in LSH we want locality in the sense that we want “nearby points”
to hash to same value, and “far away” points to hash to different values.

• More specifically, we want two points p and q (with high probability)

1. to hash to same value if dist(p, q) ≤ r and

2. to hash to different values if dist(p, q) > cr

• More formally, let H = {h | P → Z+} be a family of hash functions that maps points
of P to the set of positive integers Z+. The integer in Z will be our hash table size.

We say that H is a (c, cr, p1, p2)-LSH if for all p, q ∈ P , the following holds

1. dist(p, q) ≤ r =⇒ Pr[h(p) = h(q)] ≥ p1, and

2. dist(p, q) > cr =⇒ Pr[h(p) = h(q)] ≤ p2,

where p1 > p2 and the probabilities are over random choices of h ∈ H. That is, if we
choose a random hash function h from H, we have these success probabilities.

• Ideally, we want p1 � p2, but as we will see this highly depends on the magnitude of
c. The key idea of Indyck-Motwani is that even if p1 is only slightly larger than p2,
it is possible to use many independent hash functions from H to boost p1 close to 1,
and shrink p2 close to 1/n.

• Before describing the LSH scheme, let us consider some examples.

• Hamming or Manhattan Distance over binary vectors.

1. Suppose P ⊆ {0, 1}d with Manhattan distance function dist(p, q) = ‖p − q‖1.
That is, dist(p, q) is the number of coordinates at which p and q differ.

4

2. Consider the hash function family H = {hi}di=1 where

hi(p) = pi, where pi is the ith bit of p

3. Then, for each pair of points p, q ∈ {0, 1}d, we have

Pr[h(p) = h(q)] =
#bits in common

total bits
=

(d− ‖p− q‖1)
d

= 1− ‖p− q‖1
d

4. Therefore,

Pr[h(p) = h(q)] ≥ 1− r/d ≈ e−r/d if dist(p, q) ≤ r

and

Pr[h(p) = h(q)] ≤ 1− cr/d ≈ e−cr/d if dist(p, q) ≥ cr

5. Hence, H is a (c, cr, e−r/d, e−cr/d)-LSH.

• Jaccard Similarity.

1. Jaccard similarity is used to measure how similar two sets are.

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

2. To define a hash function family for Jaccard, choose a random permutation π on
the universe U (from which sets are drawn).

3. Then, for any set S ⊂ U , the LSH for Jaccard similarity is

h(S) = first element in S according to permutation π

4. Now, it is easy to see that

Pr[h(S1) = h(S2)] = J(S1, S2),

where the prob is over the choice of permutation π.

5. If we define the distance function as

dist(S1, S2) = 1− J(S1, S2),

5

then our hash family is LSH for any r > 0 and c > 1 because

dist(S1, S2) ≤ r =⇒ Pr[h(S1) = h(S2)] ≥ 1− r,

and

dist(S1, S2) ≥ cr =⇒ Pr[h(S1) = h(S2)] ≤ 1− cr

1.3 Reducing the ANN problem to LSH.

• Suppose we are given a hash function family H that is (r, cr, p1, p2)-LSH. Let use first
consider solving the ANN problem assuming an Ideal Probability Gap, namely, that
p1 ≈ 1 and p2 ≈ 0. In that case, we would solve the ANN problem as follows.

1. Choose a hash function h ∈ H uniformly at random, and store h(p) for all points
p ∈ P .

2. Given a query point q, compute h(q), and see if we have h(q) = h(p), for some p.
(This lookup is constant time using standard hashing data structure.)

3. More precisely, what we will show is this: if there is a point p with dist(p, q) ≤ r,
then with prob > 1 − 1/n it will hash to h(q), and for all the points p with
dist(p, q) > cr only O(`) will, in expectation, hash to h(q).

• So, we first show that we can approach the Ideal Prob. Gap even if we only have
(r, cr, p1, p2)-LSH, where we only have p1 > p2.

• Boosting. We do the boosting in two steps. Intuitively, we will use logical AND to
reduce p2, and then logical OR over many copies to improve p1.

1. First, we just try to make p2 small. It suffices to take k independent hash functions
from H, and hash each point p ∈ P to a k-dim vector:

h(p) = [h1(p), h2(p), . . . , hk(p)]

2. Then, by the independence of h1, . . . , hk, for any two points p and q, we have

dist(p, q) ≥ cr =⇒ Pr[h(p) = h(q)] ≤ pk2

So, we can drive down p2 arbitrarily close to 0, by increasing k.

3. But this does not help us boost p1 towards 1. In fact, this k-wise hash function
maps two close points to the same vector with prob. only pk1.

6

4. To improve p1, we use multiple such families. Specifically, we choose ` independent
copies of the above k-dim hash functions: f1, . . . , f` where each fi is one of the
k-dim hash function.

5. Then, if ` is sufficiently large and dist(p, q) ≤ r, we get fi(p) = fi(q), for some i
with high prob. More specifically,

Pr[∃i, fi(p) = fi(q)] = 1− Pr[∀i, fi(p) 6= fi(q)]

= 1− Pr[fi(p) 6= fi(q)]
`

≥ 1− (1− pk1)`

1.4 LSH Algorithm

1. Preprocessing.

(a) Choose k, ` and hash functions h1,1, . . . , h`,k uniformly from H
(b) Construct ` hash tables.

(c) For i = 1, 2, . . . , `, store fi(p) = (hi,1(p), . . . , hi,k(p)) in the ith hash table

2. Query.

(a) for i = 1 to ` do

i. compute fi(q)

ii. scan all points p with fi(p) = fi(q), and if anyone has dist(p, q) ≤ cr, output
p.

1.5 LSH Design Parameters and Analysis

• How should we choose the parameters k, `?

1. We choose k so that pk2 ≈ 1/n.

2. Now write p1 = pρ2, for some ρ < 1

3. This ρ determines the time/space bounds of LSH algorithm.

4. We choose
` ∝ nρ lnn

• Consider a query point q. By the linearity of expectation, for any i we have

E[p | dist(p, q) > cr and fi(p) = fi(q)] ≤ npk2 ≤ 1

7

1. Summing over all i, in expectation, there are O(`) points in our data set which
map to the same hash function as q for some i. We may need to examine these
points to check if any of them is really within distance cr from q. This implies an
overhead of O(`) distance calculations in our query time.

2. On the other hand, if dist(p, q) ≤ r, for some p ∈ P , then

Pr[∃i, fi(p) = fi(q)] ≥ 1− (1− pk1)`

= 1− (1− pρk2)`

= 1− (1− n−ρ)`

≈ 1− e−`n−ρ

using (1− x) ≤ e−x

= 1− 1/n using ` = nρ lnn

3. In summary, if there is a point p with dist(p, q) ≤ r, then with prob > 1 − 1/n
we get fi(p) = fi(q), for some i = 1, 2, . . . , `. On the other hand, there are only
O(`) points with dist(p, q) > cr for which we get fi(p) = fi(q), for some i..

• Space and Time Complexity Analysis.

1. The space complexity is O(`nk), since we have O(`) hash tables, each with n
points and for each point we store a k-dim hash vector.

2. Ignoring lower order terms, the space complexity is O(n1+ρ).

3. The query time is O(`k) for computing fi(q), for all 1 ≤ i ≤ `. For each candidate
close to q, we spend O(d) time to compute the distance dist(p, q).

4. Let x be the size of the output, the number of points at distance ≤ cr form q.
Plus, in expectation, we examine O(`) faraway points that we don’t output.

5. So the total query time is O(d(`+x+`k)). This works out to O(nρ(d+log(n/p2))+
xd).

6. Ignoring lower order terms, the query time is O(nρ).

• Example analysis for binary vector case.

1. Let us calculate the performance of LSH for the binary vectors example. Recall
that ρ is chosen so that p1 = pρ2. Thus,

ρ = logp2 p1 =
log p1
log p2

=
−r/d
−cr/d

=
1

c

2. If we choose c = 2, we need O(n1.5) memory to achieve O(
√
n) query time.

3. If we choose c = 4, we need O(n1.25) memory to achieve O(n1/4) query time.

8

1.6 References

1. Approximate Nearest Neighbor: Towards removing the curse of dimensionality. P.
Indyk and R. and Motwani. In Proceedings of the Symposium on Theory of Computing
(STOC), 1998.

2. Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimen-
sions. Alexandr Andoni and Piotr Indyk. Communications of the ACM, Jan 2008.

9

