
Lower Bounds for Geometric Problems

Subhash Suri

November 30, 2015

1 Model of Computation

• To analyze an algorithm’s performance, or to reason about the intrinsic complexity of
a computational problem, one needs a formal model of computation.

• The model specifies the primitive operations that may be executed and their costs.

• Examples include Turing Machine, or Random Access Model. The primary difference
for our purposes between these models is how the manipulation of individual numbers
is treated. TM uses bits, and so to add two k bits numbers has O(k) cost—namely,
the cost grows in proportion to the operand length.

• RAM allows two numbers to be manipulated in constant time, in line with the hardware
of digital computers, with the implicit assumption that each number fits in a hardware
word.

2 Real RAM

• Geometric computation introduces another level of complexity: even when the in-
put numbers are small integers, their geometric calculations may entail more complex
numbers, including irrationals. Length of the diagonal of a unit square, for instance.

• So, the Real RAM permits the abstraction that dispenses with round-off errors in the
approximate representation of real numbers, but we should make sure our software
libraries provide mechanisms to deal with these overflows and roundoffs, when needed.

• In simple terms, the Real RAM allows each memory location to hold a single real
number, and allows the following primitives at O(1) cost :

1. Arithmetic (+,−, ?, /)

1



2. Comparison (<,≤,=, 6=,≥, >)

3. Indirect addressing with integer addresses

4. kth root, trig functions, analytic functions (exp, log etc).

• This model fairly closely captures the primitives of all modern programming languages.

3 Transformations and Reductions

• The most common technique for proving lower bounds is reduction. Reduce problem
A to B.

1. Input of problem A is converted to a suitable input for B.

2. Solve problem B.

3. Transform the output into a correct solution to problem A.

• If the transformation steps 1 and 3 take time τ(N) on input size N , then we say that
A is τ(N)-reducible to B.

• [Reduction Theorem.] If problem A is known to require T (N) time to solve, and A
is τ(N)-reducible to B, then B requires at least T (N)−O(τ(N)) time.

• In other words, hardness of A proves hardness of B.

• Similarly, if B can be solved in T (N), then A can be solved in T (N) +O(τ(N)).

• In the precious reduction, we only transformed in the direction from A to B. If the
τ(N)-reduction works in both directions, then A and B are called equivalent..

• But to get started, we first need a lower bound on A. How does one prove that some
problem A must require T (N) time no matter what algorithm is used?

4 ADT—Algebraic Decision (Computation) Tree

• While Real RAM is the right model for designing algorithms, it is not terribly well-
suited for proving lower bounds.

• Instead, a slightly different but computationally equivalent model is more convenient.
Essentially, the ADT more closely mimics the way we think about “programs” or
algorithms—as an interleaving of compute and branch instructions.

2



• Specifically, assume the input involves a set of real variables x1, . . . , xn. Then, a ADT
is a program with statements L1, L2, . . . , Lp of the form:

1. Compute a function f(x1, . . . , xn). If f > 0, go to statement Li; else go to Lj.

2. Halt and output YES

3. Halt and output NO

• The function f is an algebraic function (a polynomial of some degree).

• We assume that the program has been “unrolled” so it has no loops. Therefore, it has
the structure of a tree T , where each internal node v is associated with a polynomial
function evaluation and comparison:

fv(x1, . . . , xn) > 0 ?

• Note that we can collapse all the computation that occurs between two comparison
nodes into the next comparison node, without loss of generality.

• The ADT is a dth order tree if d is the largest degree used. 1st order tree is also called
Linear Decision Trees—only linear functions are evaluated.

• (If you recall the comparison-based sorting lower bound, it only used a linear decision
tree.)

• We also assume, wlog, that the tree is a binary tree—comparisons are binary. Any
k-way tree can be simulated by a sequence of k − 1 binary comparisons, if needed.

• It is easy to see that any Real RAM program corresponds to an ADT—each execution
is a root-to-leaf path. Therefore, the worst-case complexity of the program is (at least)
proportional to the longest path in the tree.

• Remark: We are not using/allowing any randomization in our programs. However,
similar but slightly more complicated arguments apply to randomized versions as well.

5 Using ADT for Lower Bounds

• The central idea is simple, but abstract. (Such abstraction is necessary to be able to
subsume all possible algorithms within the model constraints.)

• The idea originated with Steele-Yao and Ben-Or (1982–83).

3



• We will only consider Decision problems, because any optimization problem is at least
as hard as its decision counterpart.

• Let x1, . . . , xn be the variables of the decision problem.

• Each instance of the problem (involving n reals) can therefore be viewed as a point in
the n-dimensional Euclidean space Rn.

• Some instances of the problem evaluate to YES, others to NO (otherwise the problem
is trivial).

• LetW be the subspace ofRn that contains all the YES instances. That is, the algorithm
outputs YES if and only if the input (x1, . . . , xn) ∈ W .

• Let #W denote the number of disjoint connected components of W .

Figure.

• Suppose T is the ADT corresponding to an algorithm that solves this problem. Each
execution of T traverses a unique path v1, . . . , vl, where v1 is the root, and vl the leaf
node.

• Each node vj of this path is associated with a function fvj(x1, . . . , xn) so that (x1, . . . , xn)
satisfies

fvj = 0, or fvj > 0, or fvj ≥ 0 for all nodes of the path

6 Argument for the Linear Functions

• The intuitive part of the proof technique is best understood for the linear decision
model. This is the (easier) framework introduced in Dobkin-Lipton (1979).

• Let T be the binary linear decision tree embodying the algorithm A that solves the
membership in W .

• Associated with each leaf of T is a region of Rn, and each leaf is either “accepting”
or “rejecting.” (This is the final node in the tree, so the algorithm must output the
answer.)

• Suppose

1. W1, . . . ,Wp are the (connected) components of W ,

2. l1, . . . , lr the set of leaves of T , and

4



3. Dj ⊂ Rn is the domain associated with leaf lj.

• By definition of the algorithm’s correctness, lj is accepting if and only if Dj ⊂ W .

• The lower bound is shown by proving that r ≥ #W . That is, T must have as
many leaves as connected components of W .

• Define Y (Wi) to be the minimum index j ∈ {1, 2, . . . r} such that Dj ∩Wi 6= ∅.

• That is, Y (Wi) is the smallest index leaf whose domain intersects with the ith compo-
nent of W .

• We show that two different regions Wi,Wj must have different Y indices.

1. Suppose not, and assume (for the sake of contradiction) that Y (Wi) = Y (Wj) = h.

2. The algorithm A solves the membership of an instance (point) q ∈ Wi, leaf lh
must be accepting.

3. By definition of Y , we must have Wi ∩Dh non-empty. Similarly, for Wj.

4. Pick two points q′ ∈ Wi ∩Dh and q′′ ∈ Wj ∩Dh.

5. Since T is a linear decision tree, the region Dh is the intersection of halfspaces in
Rn, and therefore a convex set.

6. Therefore, any convex combination of q′ and q′′ must also lie in Dh. In particular,
the entire line segment q′q′′ lies in Dh.

7. But since q′ and q′′ lie in disjoint components Wi and Wj, there is at least one
point q′′′ on this segment such that q′′′ 6∈ W .

8. A contradiction: the segment cannot lie in Dh ⊂ W and still have a point outside
W .

9. Thus, T has at least as many leaves as number of components in W .

• Thus, the height of T is at least log2 #W .

7 Extension to Algebraic Functions (ADT)

• The main difficulty with the previous argument is that if the functions f are non-linear,
the domain associated with a leaf is no longer convex or (most importantly) connected.

• The joint result of degree d polynomial inequalities can be quite complex and highly
disconnected. How many pieces?

5



• To make progress on this question requires ideas from algebraic geometry, and builds
on important results proved by Milnor and Thom (1960s).

• The intuitive idea is this: suppose we take a number of polynomial functions, each of
degree at most d, in m-dimensional space: gi(x1, x2, . . . , xm) = 0. Then the number of
connected components in the solution set of these equations is upper bounded as

d(2d− 1)m−1

• In order to import this ideas to our lower bound, we need to make sure we can handle
polynomial inequalities and not just equations, and that was done by Steele-Yap and
Ben-Or.

• What SY and Ben-Or show is this: Suppose h is the depth of the ADT tree T , corre-
sponding to our algorithm A, operating on a problem with n variables, using degree
d polynomial functions. Then, T has at most 2h leaves, and each leaf accounts for at
most d(2d− 1)n+h− components of W .

• Therefore, following the same line of logic as before, we get

#W ≤ 2hd(2d− 1)n+h−1

• In simplified form, it gives the lower bound on the height of T (running time of A):

h ≥ log2 #W

1 + log2(2d− 1)

8 Element Distinctness

• We now show a concrete problem and a lower bound on its complexity under the ADT
model.

• Given a set of n numbers x1, . . . , xn, decide if they are all distinct. That is, xi 6= xj,
whenever i 6= j.

• This should be “easier” than sorting. Is it?

• Let W ⊂ Rn denote the set of all YES instances of the problem, namely, instances
where elements are all unique.

• How many connected components does W have?

6



• Claim: #W = n!.

• Proof. Recall that n! is the number of distinct permutations of {1, 2, . . . , n}.

1. Each instance {x1, x2, . . . , xn} ∈ W can be identified with the unique permutation
of its numbers.

2. We claim that each connected component contains only points identified with
the same permutation. If not, then let p, p′ be two instances with difference
permutations, but within the same connected component.

3. Without loss of generality, suppose that permutations p, p′ differ in ordering of
elements i and j. In other words, xi < xj in p but xi > xj in p′.

4. Since p, p′ are in the same component, there is a “path” connecting them, and
each point on this path is also a valid YES instance of the problem.

5. Therefore, there is a sequence of valid instances that starts at p (where xi < xj)
but ends at p′ (where xi > xj).

6. But in order for the order to switch, at least two elements must become equal at
some intermediate point.

7. But having two equal items means the instance is not a valid YES instance, and
thus not in W . Contradiction!

• Using our ADT Theorem, therefore any algebraic decision tree algorithm for Element
Distinctness of n numbers must take Ω(n log n) time.

• The lower bound assumes that the number of reals. What if numbers are rationals or
integers?

• The ADT argument doesn’t work. However, even for integer numbers, the Ω(n log n)
lower bound holds, by an extension proved by Lubiw and Racz (1991).

9 Geometric Problem Lower Bounds

• The Element Distinctness Problem turns out to be key to proving similar lower bounds
on many other problems.

• Set Disjointness. Given two sets of numbers {a1, a2, . . . , an} and {b1, b2, . . . , bn},
decide if ai = bj for some i, j.

– Element Distinctness is a special case, with a and b sequences being the same.

7



• Maximum Gap. Given a set of n (unsorted) numbers x1, x2, . . . , xn, what is the
maximum gap between two consecutive numbers (in sorted order)?

– Element Distinctness is a special case: the gap is non-zero precisely when elements
are unique.

• Diameter of 2D Set. Given a set of n points in 2D plane p1, p2, . . . , pn, find the
maximum distance between any two points.

– First, how difficult is this problem in 1D?

– In 2D, we reduce the Diameter problem to the Set Disjointness.

– Let {a1, a2, . . . , an} and {b1, b2, . . . , bn} be the input.

– For each ai, produce a point in the 2D plane where the line y = aix intersects the
unit circle on the right (positive x) side.

– Specifically, each ai maps to the point pi = (xi, yi) such that yi = aixi, xi > 0,
and x2i + y2i = 1.

– For each bi, produce a point in the 2D plane where the line y = bix intersects the
unit circle on the let (negative x) side.

– Diameter of this collection of 2n points is 2 if and only if the sets are NOT disjoint;
otherwise the diameter is strictly less than 2.

– The entire transformation (input to diameter and back) takes O(n) time.

– So, diameter in 2D requires Ω(n log n) time.

10 N 2-Hardness

• Unfortunately, for most geometric problems ADT at best yields an Ω(n log n) lower
bound.

• Using very different techniques and model, Chazelle, Fredman etc. have shown lower
bounds for range searching, but that’s an entirely different topic.

• Within computational geometry, there are many problems where we have not been
able to beat the quadratic O(n2) algorithmic barrier, and it seems unlikely that it’s
even possible. But no lower bound technique is known.

• As partial progress, we have been able to show an equivalence class of many problems
that are mutually Ω(n2)-Hard, meaning if you can devise a sub-quadratic algorithm
for any one of them, we can solve all of them in sub-quadratic time bound.

8



11 3-Sum Problem

• Given a set S of n integers, is there a triple a, b, c ∈ S such that a+ b+ c = 0?

• We can solve the problem in O(n2) time. (How?)

• The ACT model gives only an Ω(n log n) lower bound.

• In spite of significant effort, no sub-quadratic time algorithm is known, under the
standard model of computing.

• Imitating the NP -completeness model of problem equivalence classes, the 3-sum prob-
lem can be used to show n2-hardness of other problems.

• “On a class of O(n2) problems in computational geometry,” by Gajentaan and Over-
mars, CGTA 1995.

• A problem is 3SUM-Hard if an o(n2) time algorithm for the problem implies an o(n2)
time algorithm for 3SUM .

12 Degeneracy Testing

• Given a set S of n points in the plane, are three of them collinear?

• We have often conveniently assumed that the points are in non-degenerate position.
How complex is to check that condition?

• Theorem. 2D degeneracy testing is 3SUM -hard.

• Proof. Three numbers a, b, c sum to 0 if and only if (a, a3), (b, b3), (c, c3) are collinear.

• Suppose the 3 points lie on a line y = µx + γ. Then, for the first two points, we can
infer that:

a3 − b3 = µ(a− b) which implies µ = a2 + ab+ b2

• Similarly, for the 2nd and 3d point, we get

b3 − c3 = µ(b− c) which implies µ = b2 + bc+ c2

• Thus, a2 + ab+ b2 = b2 + bc+ c2, which gives a+ c = −b, or a+ b+ c = 0.

9



13 Other 3SUM-hard Problems

• Using similar ideas, one can show that all of the following problems are 3SUM -hard.

• Given a set of n lines in the plane, are there three that pass through the same point?

• Given a set of (non-intersecting, axis-parallel) line segments, is there a line that sepa-
rates them into two non-empty subsets?

• Given a set of (infinite) strips in the plane, do they fully cover a given rectangle?

• Given a set of triangles in the plane, compute their measure.

• Given a set of horizontal triangles in space, can a particular triangle be seen from a
particular viewpoint?

• See ??? for many more.

10


