
Multi-Dimensional Divide and Conquer

Subhash Suri

September 28, 2015

1 A General Technique for Multi-Dimensional Data

• Article in Communications of the ACM, April 1980, by Jon Bentley.

• A paradigm, as opposed to a single-problem algorithm. A good illustration of the style
of spatial thinking used in design of geometric algorithms.

• Problems dealing with N points in k-dim space. Models “N database records with k
keys each,” “Statistical data: N samples of k-variable data,” etc.

• A few sample problems.

– Ranking, Pareto, ECDF

– Search structures for ECDF, Maxima

– Closest pair, fixed-radius NN searching, etc.

Ranking Problem.

• Consider two k-dim points p and q. We will use pi and qi to denote their ith coordi-
nates. (For ease of presentation, assume all coordinates are distinct; otherwise use an
appropriate tie-breaking rule.)

• We say p > q, that is, p dominates q, if pi > qi, for every dim i, 1 ≤ i ≤ k.

• If neither point dominates the other, we call them incomparable.

• Motivation: Imagine each coordinate being a desirable attribute (cost, distance, quality,
runtime), and the points being alternatives (restaurants, cars, hotels, driving routes,
software performance etc).

• If alternative p is better than alternative q in all attributes (dimensions), then there
is never a good reason to choose q over p. In other words, p is dominant over q.

1



Pareto Optima.

• Given a set S of N points in k-dimensions, the subset of S that is not dominated by
any other have a special status, and is known by various names in different scientific
communities:

1. Maxima (CG),

2. Pareto Set (optimization, economics)

3. Skyline (Databases)

EXAMPLE 1.

Rank Ordering. More generally, we can explore the “extent” to which a point is dominant.

• Given a set S of N points, define the rank(s) to be the number of points in S that are
dominated by s.

• In 1D, the rank is determined by the sorted order: the smallest item has rank 0 the
largest one has rank N − 1.

• But in 2 and higher dimension, there is no natural sorting order, and the best one can
hope is the partial order given by domination.

• In statistics, the ranking describes what is called ECDF (Empirical Cumulative Dis-
tribution Function) and is a very common problem today in data analysis.

The Algorithmic Problem.

• A naive method computes each point’s rank in O(N) time, by brute force comparison
with all other points. This takes O(N2) time to compute all the ranks, and to compute
the pareto set.

• However, the amount of information computed per point is O(1), so can one do this in
better than N2 time?

• In 1D, sorting algorithms accomplish this. What about k-dim?

2



2 Solving the Rank Problem in 2D

The Multi-dimensional D & C algorithm is best illustrated first in 2D. The algorithm has
the following high level structure:

• Divides the input set S into two (roughly equal) halves

• Recursively compute the rank for each subproblem

• Conquer step works on the entire set and corrects the rank (to account for the half not
considered)

Example Figure 2 shows ranks of all points.

• The Divide Step (shown in Figure 3a). Choose a vertical line L with N/2 points on
each side. Call these subsets A and B.

• The Recursive Step (shown in Figure 3b). Compute the rank of each point in A among
just the points of A. Similarly for B.

• The Conquer Step (shown in Figure 3c). Every point in A has smaller x-value than
any point of B, which leads to two important observations.

1. No point in A can dominate any point of B, and

2. A point b ∈ B dominates a point a ∈ A if and only if
b’s y-value is larger a’s y-value.

• By (1), the ranks of all the points in A (recursively computed) are already correct.

• The ranks of points in B need correction but by (2) this update problem is now a 1D
problem:

for each point b ∈ B, we just need to compute how many point in A have
y-value smaller than b’s.

• To do this, we simply project all the points in A and B (together but keeping track of
their type) onto the y-axis (same as projecting on L). Now simply scan all the points
up the line L, and keep track of how many A points we have seen. Whenever we
encounter a B point, we simple increment its rank by the running tally.

See Fig. 3c.

• Correctness (by induction). Assuming the recursive halves A and B are correct, the
conquer step correctly updates the ranks.

3



• The Runtime Analysis.

The recurrence for the algorithm is:

T (N) = 2T (N/2) + O(N) + O(N logN) = O(N log2N)

• An improvement. An easy trick improves the running time. The costly step of the
conquer was the sort. But since all dividing lines will be parallel to L, we can simply
pre-sort S by y-values in the beginning, so that each subset A and B can maintain its
y-sorting during the divide processing.

T (N) = 2T (N/2) + O(N) = O(N logN)

3 3-Dimensional Divide-and-Conquer

• The high level structure is identical. We divide S into A and B using a vertical plane
L. Solve the subproblems A and B recursively. The Conquer step then updates the
ranks of B.

• The Conquer Step has the same special structure as before:

1. the ranks of all the points in A are correct (each of them has a smaller x-value
than B, and therefore cannot dominate a B point).

2. In order for b ∈ B to dominate any a ∈ A, it must be that b dominates a on both
y and z-coordinates.

• But the latter is just a 2-dimensional ranking problem:

for each point b ∈ B, we want to compute how many points of A does it
dominate in both y and z?

• Therefore, project all the point of S onto the plane L (the yz-plane), and run a slightly
modified version of the 2D problem.

• The modification is simply that when computing the rank, we only count the A points
being dominated (although A and B are together projected onto the plane). This
requires just some minor book-keeping.

• The recurrence for the algorithm is (the conquer step solves the 2D problem):

T (N) = 2T (N/2) + O(N logN) = O(N log2N)

4



4 k-Dimensional Divide-and-Conquer

• The method generalizes in straightforward way to k-dimensions. The conquer step
requires solving a (k − 1)-dimensional subproblem, which by induction we know how
to solve in O(N logk−2N) time.

• The general recurrence can be written as:

T (N, k) = 2T (N/2, k) + T (N, k − 1) + O(N)

• Stopping condition: T (N, 2) = O(N logN).

• This solves to

T (N, k) = O(N logk−1N)

5 Pareto Optimal or Maxima Problem

Compute the subset of S that is not dominated by any other point in S.

Figure 7.

• A simple trick reduces this to the ranking problem.

• Transform the input set of points S into a negated set S ′, where each coordinate is
multiplied by −1.

• This simply reflect all the points around the origin.

• A point s is a maxima in S iff the corresponding point s′ has rank 0 in S ′. (If it is
dominated by no point in S, its negation dominates no one in S ′).

5


