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Abstract

We study the problem of routing in three-dimensional
ad hoc networks. We are interested in routing algo-
rithms that guarantee delivery and are k-local, i.e.,
each intermediate node v’s routing decision only de-
pends on knowledge of the labels of the source and
destination nodes, of the subgraph induced by nodes
within distance k of v, and of the neighbour of v from
which the message was received. We model a three-
dimensional ad hoc network by a unit ball graph,
where nodes are points in three-dimensional space,
and for each node v, there is an edge between v and
every node u contained in the unit-radius ball centred
at v.

The question of whether there is a simple local
routing algorithm that guarantees delivery in unit
ball graphs has been open for some time. In this
paper, we answer this question in the negative: we
show that for any fixed k, there can be no k-local
routing algorithm that guarantees delivery on all unit
ball graphs. This result is in contrast with the two-
dimensional case, where 1-local routing algorithms
that guarantee delivery are known. Specifically, we
show that guaranteed delivery is possible if the nodes
of the unit ball graph are contained in a slab of thick-
ness 1/

√
2. However, there is no k-local routing al-

gorithm that guarantees delivery for the class of unit
ball graphs contained in thicker slabs, i.e., slabs of
thickness 1/

√
2+ ε for some ε > 0. The algorithm for

routing in thin slabs derives from a transformation of
unit ball graphs contained in thin slabs into quasi unit
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disc graphs, which yields a 2-local routing algorithm.
We also show several results that further elaborate on
the relationship between these two classes of graphs.
keywords: ad hoc networks, unit ball graph, rout-
ing, distributed algorithms, quasi unit disc graph

1 Introduction

Mobile ad hoc networks (MANETs) have been the
subject of intensive study over the last decade. Com-
munication between different nodes in a MANET
is achieved by means of a multi-hop routing proto-
col, which dictates how a packet from a source node
should be forwarded along the edges of the network to
a given destination node. Although a straightforward
flooding algorithm is possible, such a strategy has
obvious drawbacks, including high traffic loads [30],
repetitive behaviour (if networks nodes are memory-
less), and requiring knowledge of a lower bound on
the diameter of the network to ensure both termina-
tion and delivery. In this paper we consider single-
path routing algorithms.

Many routing algorithms for MANETs model the
network as a two-dimensional geometric graph [17,
24, 25, 30]. This does indeed capture a large num-
ber of possible application scenarios for ad hoc net-
works, where nodes might be vehicles moving through
city streets or some other terrain. However, there
is increasing interest in applications where ad hoc
and sensor networks may be deployed in three-
dimensional space, such as in an ocean, the atmo-
sphere, or in a building [5, 18]. For example, under-
water ad hoc and sensor networks that perform ocean
column monitoring would require nodes to be placed
at different depths in the water, creating a three-
dimensional network [4]. In this paper, we study the
problem of routing in three-dimensional ad hoc net-
works, and the extent to which they differ from two-
dimensional ad hoc networks from the perspective of
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routing protocols. In brief, our results show that the
two settings are indeed quite different.

Two-dimensional ad hoc networks are usually mod-
elled as unit disc graphs (UDG). Every node in a
UDG can be mapped to a point on the plane, in such
a way that any two nodes at distance at most one are
connected by an edge. In other words, a node v is
connected to every node u occurring within the disc
of radius one centred at v. The unit disc centred at a
point represents the transmission range of the corre-
sponding host. In reality, however, the transmission
range of a wireless node is affected by many unpre-
dictable factors, and is unlikely to be a perfect disc.
In [6], the notion of a quasi unit disc graph (QUDG)
was introduced to address the issue of unstable trans-
mission ranges. Roughly, a d-QUDG is a geometric
graph in which any two nodes at distance at most d
are always connected, nodes at distance greater than
one cannot be connected, and nodes at distance be-
tween d and one may or may not be connected.

The ad hoc nature of the networks under consider-
ation, and the mobility of the nodes implies that the
topology of the network is arbitrary, and moreover,
it changes over time. In the absence of any informa-
tion about the location of nodes, routing protocols
are obliged to flood control packets through the net-
work in order to obtain information about the topol-
ogy of the network [29]. However, in many cases, it
is reasonable to assume that nodes do have access to
information about not only their own locations, but
also the location of their immediate neighbours, and
correspondent nodes, via GPS and location servers.
There is a large body of work on routing protocols
that utilize position information in order to achieve
efficiency in routing (see the surveys [17, 30]). Most
of these are heuristics, and there may be graph in-
stances on which the routing algorithm fails to de-
liver the packet. In greedy routing, for example, a
node transmits the packet to its neighbour that min-
imizes the Euclidean distance to the destination [26].
In compass routing, the next node is chosen to the
neighbour that minimizes the angle between itself,
the current node, and the destination node [21]. In
both these algorithms, the packet can get stuck in a
loop, resulting in a routing failure. The only known
algorithms that are guaranteed to deliver the packet
are based on face routing, in which a planar subgraph
of the unit disc graph is extracted locally, and then
routing proceeds by traversing the faces of this pla-
nar graph that intersect the line segment between the
source and destination [21]. Face routing can be com-

bined with greedy routing [9, 20], and can be limited
in space [22] to achieve faster delivery times. Face
routing can also be simulated on d-QUDGs where
d ≥ 1/

√
2, as shown in [6, 23].

The natural generalization of a UDG to three di-
mensions is the unit ball graph (UBG), which differs
from a UDG only in the fact that nodes correspond
to points in three-dimensional space. Accordingly,
a node v is adjacent to every node within the unit-
radius ball centred at v. Similarly, the quasi unit
disc graph model can be extended to a quasi unit ball
graph model. All algorithms that have been proposed
so far for routing in UBGs are based on heuristics
[1, 2, 3, 15, 19]. As yet, there is no known algorithm
for routing that guarantees delivery in such networks.
In this paper, we address the question of what kinds
of UBGs admit a routing algorithm that guarantees
delivery.

The answer to this question depends on the in-
formation that is available to a routing algorithm in
deciding where next to forward a packet. At one end
of the spectrum are algorithms that have complete
information about the entire graph, and that can
store routing tables that contain next-hop informa-
tion along shortest paths for every possible destina-
tion. At the other end are the so-called online and
memoryless algorithms [8], where a node makes its
forwarding decision based only on the labels1 of it-
self, the destination node, and its neighbours. Bose
et al. show that there is no deterministic memoryless
algorithm that is guaranteed to succeed even if the
graphs are limited to convex subdivisions [7].

Routing algorithms with complete information are
entirely unsuitable for the application domain of mo-
bile ad hoc networks, with their changing topologies,
autonomous nodes, and low-bandwidth wireless links.
On the other hand, memoryless algorithms are far too
restrictive. For example, in practice, when a node
receives a message, it knows which of its neighbours
sent it. Yet, it is precisely the lack of this information
that makes it impossible for a memoryless algorithm
to route on all convex subdivisions; the only informa-
tion outside the memoryless model available to face
routing, which does succeed on all convex subdivi-
sions, is knowledge of the previous node. Similarly,
it would be reasonable to allow a node knowledge of
the topology of its k-hop neighbourhood for small and
fixed values of k. We say an algorithm is k-local if a
node has access to the topology of its k-hop neigh-
bourhood, as well as the previous node on the path,

1In a geometric graph, a node is labelled by its coordinates.
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in making its forwarding decision. There has been in-
creased recent interest in distributed algorithms that
are sensitive to locality; see for example the book
by Peleg [28]. Routing algorithms with information
about O(1) other nodes in the graph are related to k-
local algorithms and have been studied in [21, 22]. In
this paper, we restrict ourselves to routing algorithms
that are k-local. While our algorithm for a restricted
class of unit ball graphs is 2-local, the impossibility
results apply to k-local algorithms for any fixed k.

Our results

In essence, we show that routing in three-dimensions
is harder than routing in two dimensions. As far as
routing is concerned, it is possible to “lift off” the
plane to a certain extent, but not beyond. We con-
sider unit ball graphs where nodes are contained in a
slab of fixed thickness. We show that if the thickness
of a slab is less than 1/

√
2 times the transmission ra-

dius of nodes, then there is a 2-local algorithm that
guarantees delivery in the graph. Conversely, for unit
ball graphs in thicker slabs, we show that if a k-local
routing algorithm were to exist, then a k-local algo-
rithm for routing would also exist for an arbitrary
graph, which we show is impossible.

The algorithm for UBGs contained in thin slabs
derives from the fact that such a UBG can be trans-
formed via projection into a d-QUDG with d ≥ 1/

√
2,

for which a 2-local algorithm with guaranteed deliv-
ery was outlined in [23]. We explore the relationship
between UBGs and QUDGs further in Section 4. We
show that neither the class of all UBGs nor the class
of d-QUDGs is contained in the other, for fixed val-
ues of d. In particular, for every d <

√
3/2, we ex-

hibit a d-QUDG that cannot be embedded as a UBG.
While it is straightforward to see that any graph can
be embedded as a d-QUDG for small enough d, we
show that for any fixed d, there are UBGs that can-
not be embedded as a d-QUDG. Finally, our negative
results on routing in UBGs contained in slabs of large
enough thickness imply the non-existence of a k-local
algorithm for d-QUDGs with d < 1/

√
2. This shows

that the results of Barrière et al. [6] and Kuhn et al.
[23] on routing in QUDGs are tight.

2 Definitions

Given a labelled, connected, undirected graph, G =
(V,E), and two vertices, s and t in V , the problem of
routing is to send a packet from s to t via a sequence

of adjacent vertices in G. To this end, an algorithm
for routing is implemented in a distributed manner
at every node in the graph, in such a way that when
the packet arrives at a particular node u, the routing
algorithm implemented at u must deterministically
choose a unique neighbour of u to which the packet
should be forwarded. An algorithm halts once the
message is forwarded to the destination vertex t. In
this case, we say the algorithm delivers the message.
We say routing algorithm A succeeds for a class of
graphs G if, for all G ∈ G, A delivers a message from
any origin s to any destination t in G. Otherwise, we
say A is defeated by some G ∈ G.

Let the k-neighbourhood of a vertex v, denoted
Gk(v), be the subgraph of G induced by vertices
within graph distance k from v (including the corre-
sponding vertex labels). The vertex labelling scheme
should be independent of the graph; in particular,
the labelling should not encode additional informa-
tion about the topology of the graph or the neigh-
bourhood of a vertex. For example, in a geometric
graph, each vertex is labelled by its coordinates.

Let Σ denote the set of possible vertex labels for a
given class of graphs and let P(A) denote the power
set of set A. Given a fixed k, we say a routing algo-
rithm is k-local if it can be defined by a routing func-
tion f : Σ4 × P(Σ2) → Σ with the following inter-
pretation: f(s, t, v, u, Gk(u)) specifies the neighbour
to which node u should forward the packet, provided
(a) the packet was received from its neighbour v, (b)
the source and destination of the packet are s and t
respectively, and (c) Gk(u) is the k-neighbourhood of
u.

A k-local algorithm must therefore make the for-
warding decision at a node u based only on the source
and destination nodes, its k-neighbourhood, and the
previous node on the path. It has no additional in-
formation about the route. In particular, no memory
or state information may be stored in the message
other than s, t, and v, nor may the state of a vertex
be modified after forwarding a message.

Given a set of points P in R2, the unit disc graph in-
duced by P , denoted UDG(P ), is an embedded graph
whose vertices correspond to P and for which edge
(u, v) exists if and only if ||u − v|| ≤ 1. Given a set
of points P in R3, the unit ball graph induced by P ,
denoted UBG(P ), is defined analogously.

Given d ∈ [0, 1], graph G = (V,E) can be real-
ized as a d-quasi unit disc graph, denoted d-QUDG,
if there exists an embedding of G, f : V → R2, such
that for all u, v ∈ V ,
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1. ||f(u)− f(v)|| ≤ d ⇒ (u, v) ∈ E, and

2. ||f(u)− f(v)|| > 1 ⇒ (u, v) *∈ E.

If ||f(u) − f(v)|| ∈ (d, 1], then no conclusion may
be drawn about the membership of edge (u, v) in E:
both (u, v) ∈ E and (u, v) *∈ E are possible. Ob-
serve that a 1-QUDG is a UDG and any graph is a
0-QUDG. See Barrière et al. [6] and Kuhn et al. [23]
for a discussion of quasi unit disc graphs.

Given a fixed d, let UDG, UBG, and d-UBG denote
the classes of graphs that can be realized as a UDG,
a UBG, or a d-QUDG, respectively.

Finally, if P1 and P2 denote parallel planes in R3,
we refer to the closed region between P1 and P2 as
a slab and to the minimum distance between P1 and
P2 as its thickness.

3 Routing in Unit Ball Graphs

In this section we present our main results on rout-
ing in unit ball graphs in Theorems 1 and 2. To-
gether, these two results characterize the class of
UBGs for which a k-local routing algorithm is possi-
ble. Our first observation, stated formally in the fol-
lowing lemma, is that any UBG contained in a slab of
thickness λ < 1 can be transformed into a QUDG by
projecting the points in the UBG to a plane parallel
to the slab.

Lemma 1 Choose any λ ≤ 1 and let P denote a
set of points in R3 contained in a slab of thickness
λ. Let f : R3 → R2 denote the projection onto a
plane parallel to the slab. Let G = (V,E) denote the
embedded graph such that V = {f(v) | v ∈ P} and
E = {(f(u), f(v)) | ||u − v|| ≤ 1, u, v ∈ P} (V and
E may be multisets). G is a (

√
1− λ2)-QUDG.

Proof. Choose any two points u, v ∈ P . If
||f(u) − f(v)|| > 1 then ||u − v|| > 1 and
(f(u), f(v)) *∈ E. Similarly, if ||f(u) − f(v)|| ≤√

1− λ2 then ||u − v|| ≤ 1 and (f(u), f(v)) ∈ E.
Therefore, the projected graph G is a (

√
1− λ2)-

quasi unit disc graph. !

Kuhn et al. [23] propose a 2-local routing algorithm
for d-quasi unit disc graphs that succeeds for any
d ≥ 1/

√
2. The following theorem is an immediate

consequence of Lemma 1.

Theorem 1 There exists a 2-local routing algorithm
that succeeds for the class of graphs G = {UBG(P ) |
P ⊆ R3 is contained in a slab of thickness 1/

√
2}.

Proof. By Lemma 1, the projection of UBG(P )
onto a plane parallel to the slab is a 1/

√
2-QUDG,

G. Since UBG(P ) and G are isomorphic, the k-
neighbourhood of a vertex v in UBG(P ) determines
the k-neighbourhood of the corresponding vertex in
G. Therefore, a 2-local routing algorithm in UBG(P )
can be achieved by projecting the 2-neighbourhood
of the current vertex v and simulating a 2-local
routing algorithm such as the one in [23] on the
corresponding QUDG. !

Note that Theorem 1 requires knowledge of a nor-
mal to the plane since, in general, this cannot be
determined from the 2-neighbourhood of a vertex.

In the remainder of this section, we show that
the result in Theorem 1 is tight: there is no k-local
routing algorithm that can guarantee delivery on all
UBGs contained in slabs thicker than 1/

√
2. To prove

this, we first show that any such algorithm would im-
ply the existence of a 1-local routing algorithm for
arbitrary graphs (Lemma 2). Next we show the im-
possibility of a 1-local routing algorithm for arbitrary
labelled graphs (Lemma 3).

Lemma 2 If there exists some ε > 0, some k ≥
1, and a k-local routing algorithm that succeeds for
UBG(P ), for every finite set of points P in R3 con-
tained within a slab of thickness 1/

√
2+ ε, then there

exists a 1-local routing algorithm that succeeds for any
connected, labelled graph G.

Proof. Suppose there exists an ε > 0 and a k-local
algorithm A that succeeds in routing on every UBG
contained in a slab of thickness 1/

√
2 + ε. For any

arbitrary graph G, we show how to construct a UBG
G′ such that routing on G can be accomplished by
simulating A on G′. Let G = (V,E) be an arbi-
trary connected labelled graph. Let n = |V |. With-
out loss of generality, assume the vertices are labelled
0, . . . , n − 1; that is, V = {0, . . . , n − 1}. The proof
holds regardless of whether the set of vertex labels is
a contiguous subset of the integers.

We define a transformation from G to a set of
points P (G) in R3. Let ε′ = min{ε,

√
3 − 1/2}.

For each vertex v ∈ V , create two sets Cv =
{(2vk, y ± 1/2, 0) | y ∈ {2k · min(N(v)) − (k −
1), . . . , 2k · max(N(v)) + (k − 1)}} and Rv = {(x ±
1/2, 2vk, 1/

√
2 + ε′) | x ∈ {2k · min(N(v)) − (k −

1), . . . , 2k · max(N(v)) + (k − 1)}}, where N(v) de-
notes the set of labels of neighbours of v and v it-
self. That is, Cv is a column of points in the xy-
plane starting at (2vk, 2k min(N(v))−k+1/2, 0) and
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Figure 1: A graph G and the corresponding graph UBG(P (G)) for k = 1

Figure 2: The region [2ik ± 1/2] × [2jk ± 1/2] ×
[0, 1/

√
2 + ε′] in UBG(P (G)) if i and j are not adja-

cent in G, and the same region if i and j are adjacent
in G

Rv is a row of points in the xy-plane starting at
(2k min(N(v))−k+1/2, 2vk, 1/

√
2+ε′). For each edge

(u, v) ∈ E, add a point pu,v = (2uk, 2vk, (1/
√

2 +
ε′)/2). Finally, for each v ∈ V , add the point pv,v =
(2vk, 2vk, (1/

√
2 + ε′)/2). The graph UBG(P (G)) is

defined in the usual way; every pair of points within
distance one of each other is connected by an edge.
Figure 1 shows a graph G and the corresponding
graph UBG(P (G)) for k = 1.

For each v ∈ V , the set Cv (similarly, Rv) is a
sequence of points, each at distance one from the
previous point, and therefore, Cv (Rv) corresponds
to a path in UBG(P (G)). For any u *= v, columns
Cu and Cv are at distance at least two apart and
rows Ru and Rv are at distance at least two apart.
If edge (u, v) *∈ E, where u *= v, then the distance
between any point i ∈ Cu and any point j ∈ Rv

is greater than one; therefore, i and j are not adja-
cent in UBG(P (G)). Since ε′ ≤

√
3 − 1/

√
2, if edge

(u, v) ∈ E, then the distance between some point
i ∈ Ru and pu,v is at most one and the distance be-
tween some point j ∈ Cv and pu,v is at most one;
therefore, i and pi,j are adjacent in UBG(P (G)), as
are j and pi,j . See Figure 2.

It is straightforward to see that UBG(P (G)) is con-
tained within a slab of thickness 1/

√
2+ε′ ≤ 1/

√
2+ε

and therefore algorithm A should succeed on it.
We claim that a straightforward simulation of
A in UBG(P (G)) constitutes a 1-local routing
algorithm for G. That is, upon reaching a vertex
v ∈ V , it suffices to simulate A on the subgraph of
UBG(P (G)) that corresponds to vertex v and its 1-
neighbourhood in G. The simulation begins at point
pv,v with the goal of reaching the destination vertex
pt,t. When the simulation moves to a point outside
Cv ∪ Rv ∪ {pv,v} in UBG(P (G)), it must reach a
point pv,u or pu,v for some u *= v. This corresponds
to forwarding the message to vertex u, which must
be a neighbour of v in G. The computation of the
k-local subgraph of UBG(P (G)) around any vertex
in Cv ∪ Rv ∪ {pv,v}, and hence the simulation, can
be performed completely locally for any vertex v,
given the 1-neighbourhood of v in G. Furthermore,
knowledge of the number of vertices in G is not
required to simulate the local neighbourhood of v
in UBG(P (G)). Since the simulation results in a
1-local routing algorithm guaranteed to succeed on
an arbitrary graph G, the lemma follows. !

We proceed to show that no 1-local routing algo-
rithm succeeds on all labelled graphs.

Lemma 3 For any 1-local routing algorithm A, there
exists a connected labelled graph for which A is de-
feated.

Proof. Suppose A is any 1-local routing algorithm
defined on all unembedded labelled graphs for some
set of vertex label Σ and let f denote the corre-
sponding routing function. Function f must be de-
fined for all valid combinations of input. In par-
ticular, f(s, t, vi, u, {(u, v1), . . . , (u, vj)}) must be de-
fined for all i ∈ {1, . . . , j}, where s denotes the ori-
gin, t denotes the destination, vi denotes the last
vertex visited, u denotes the current vertex, and
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Figure 3: Any routing algorithm is defeated by G1 or
G2 if all local routing functions are derangements.

{v1, . . . , vj} denotes the set of neighbours of u. Let
f ′u(vi) = f(s, t, vi, u, {(u, v1), . . . , (u, vj)}) for a given
s, t, u, and its set of neighbours. We refer to f ′u as a
local routing function.

Consider the properties of f ′u when the 1-
neighbourhood of u is a tree. Function f ′u :
{v1, . . . , vj}→{ v1, . . . , vj} is one of jj possible func-
tions. Function f ′u must be bijective. Suppose oth-
erwise. Without loss of generality, say f ′u(vi) *= v1

for all i ∈ {1, . . . , j}. Function f ′u is defeated by a
tree with t in the subtree of u rooted at v1 and s in
any other subtree of u. Furthermore, if j > 1 then
f ′u must be a derangement. Suppose instead that
f ′u(vi) = vi for some i ∈ {1, . . . , j}. Function f ′u is
defeated by a tree with s in the subtree of u rooted
at vi and t in any other subtree of u. Therefore, it
suffices to consider local routing functions f ′u that are
derangements.

A set of cardinality two has a unique derangement.
Therefore, f ′u is uniquely defined when u has degree
two. A set of cardinality three has two possible de-
rangements. Therefore, f ′u is one of two functions
when u has degree two. Observe that f ′u is also
uniquely defined when u has degree one.

Let G1 and G2 denote the graphs illustrated in
Figure 3. Graphs G1 are G2 are automorphic upon
permuting vertices f and g. Both G1 and G2 are
triangle-free; that is, the 1-neighbourhood of every
vertex is a tree. As discussed, the local routing
function is uniquely defined for all vertices of degree
two or less. There are two vertices of degree three:
a and e. Let f ′a(v) = f(s, t, v, a, {(a, b), (a, c), (a, d)})
and f ′e(v) = f(s, t, v, e, {(e, f), (e, g), (e, h)}) denote
the local routing functions for vertices a and e,
respectively. Each of f ′a and f ′e may be defined by

routing function 1 routing function 2
u f ′a(u) u f ′e(u) u f ′a(u) u f ′e(u)
b c f g b d f g
c d g h c b g h
d b h f d c h f

routing function 3 routing function 4
u f ′a(u) u f ′e(u) u f ′a(u) u f ′e(u)
b c f h b d f h
c d g f c b g f
d b h g d c h g

Table 1: The four combinations of derangements for
local routing functions f ′a and f ′e

one of two derangements, resulting in four possible
routing functions for graphs G1 and G2, given in
Table 1. As shown in Figure 4, each of the four
routing functions is defeated by either G1 or G2. !

Lemma 4 For any fixed k ≥ 1 and any k-local rout-
ing algorithm A, there exists a labelled graph for
which A is defeated.

Proof. The result follows by an argument analogous
to the proof of Lemma 3, upon replacing the edges
in graphs G1 and G2 by paths of length k. !

Furthermore, by replacing the edges with paths of
length max(k, l), it is straightforward to generalize
Lemma 4 such that it remains true even if a routing
algorithm has knowledge of the previous l nodes on
the route, for any fixed l ≥ 1. In this case, a routing
function has the form f : Σ2×Σl×Σ×P(Σ2) → Σ.

The following theorem is an immediate conse-
quence of Lemmas 2 and 4.

Theorem 2 For every ε > 0, every k ≥ 1, and every
k-local routing algorithm A, there exists a finite set
of points P in R3 contained within a slab of thickness
1/
√

2 + ε such that A is defeated by UBG(P ).

Theorem 2 and Lemma 1 also give the following
corollary:

Corollary 1 For every ε ∈ (0, 1/
√

2], every k ≥ 1,
and every k-local routing algorithm A, there exists a
(1/
√

2− ε)-QUDG, G, such that A is defeated by G.

In [6] and [23], algorithms for routing in d-QUDGs
for d ≥ 1/

√
2 are given. Corollary 1 implies that these

results are tight: it is impossible to extend the range
of d for which the class of d-QUDGs would admit a
k-local algorithm.
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Figure 4: Four routing functions are possible for graphs G1 and G2 such that each local routing function is
a derangement. Each routing function is defeated by G1 or G2 when delivering a message from s to t. A
defeat is denoted by X.

4 Unit Ball Graphs and Quasi
Unit Disc Graphs

In Section 3 we showed that any UBG contained
within a slab of thickness λ ≤ 1 is isomorphic to
some (

√
1− λ2)-QUDG. In this section we present

additional observations on unit ball graphs and their
relationship to quasi unit disc graphs and more gen-
eral graphs. We show the following general result
which follows from Lemmas 5 and 6.

Theorem 3 (1) Given any fixed d > 0, UBG *⊆ d-
QUDG. (2) Given any fixed d′ <

√
3/2, d′-QUDG *⊆

UBG.

We first show that the class UBG is not contained
within the class d-QUDG for any fixed d:

Lemma 5 For every d > 0, there exists a finite set of
points P in R3 such that UBG(P ) is not isomorphic
to any d-QUDG.

Proof. Choose any d ∈ (0, 1] and any integer k >
5/d2. Let P = Z3∩[−k, k]3. Set P is contained within
a slab of thickness 2k + 1 and has cardinality (2k +
1)3. UBG(P ) is the grid graph G2k+1,2k+1,2k+1. Let
P ′ denote the subset of P consisting of alternating
vertices in the grid such that P ′ does not include the
origin, i.e., (px, py, pz) ∈ P ′ if and only if p ∈ P and
px + py + pz is odd. Any two vertices in P ′ are a
distance greater than one apart. Consequently, P ′

is an independent set of UBG(P ) with cardinality
.|P |/2/.

For any vertex u ∈ P , the graph distance between
u and the origin in UBG(P ) is at most 3k. Conse-
quently, any realization of UBG(P ) as a d-quasi unit
disc graph must be contained within a disc of radius

3k. Furthermore, all vertices of P ′ must be a distance
greater than d apart from each other. Consequently,
|P ′| non-intersecting discs of radius d/2 must be con-
tained within a disc of radius 3k+d/2. Summing the
areas of the |P ′| discs gives the following constraint:

π

(
d

2

)2 ⌈
(2k + 1)3

2

⌉
< π

(
3k +

d

2

)2

. (1)

It is straightforward to show that (1) is false for
any k > 5/d2. Therefore, G2k+1,2k+1,2k+1 cannot be
realized as a d-QUDG. !

If d is not fixed, however, then any graph can be
realized as a d-QUDG for some d:

Proposition 1 For every finite labelled graph G,
there exists a d > 0 and a d-QUDG, G′ such that
G is isomorphic to G′.

Proof. Choose any graph G. Embed all vertices of
G at distinct points in a disc of radius 1/2 in the
plane. Add the edges of G. Choose d > 0 such that
d is less than the minimum distance between any
two points. The resulting graph is a d-QUDG since
all edges have lengths in the range [d, 1]. !

By Lemma 1, any UBG contained in a slab of
thickness λ < 1 is isomorphic to some quasi unit
disc graph. The converse is not true; as we show
in Lemma 6, there exist quasi unit disc graphs that
are not isomorphic to any UBG.

Lemma 6 K3,3 is forbidden as an induced subgraph
of a UBG but can be realized as a (

√
3/2− ε)-QUDG

for any ε > 0.
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Figure 5: Illustrations in support of Lemma 6. left:
R ∩H ⊆ 1-H({a, b, c}) ⊆ D. right: A realization of
K3,3 as a (

√
3/2− ε)-QUDG for any ε > 0.

Proof. Let {a, b, c} and {p, q, r} denote sets of points
in R3 that correspond to the two partitions of K3,3.
The distance between any two points in a partition
must be greater than one in any realization of K3,3

as a UBG. Let R denote the intersection of three unit
balls with respective centres a, b, and c. Assume R
is non-empty, since p, q, and r must be contained
in R. Let H denote the plane through points a, b,
and c. Let H+ and H− denote the closed half-spaces
induced by H. Let R+ = H+ ∩ R and R− = H− ∩
R. At least two points of p, q, and r must both lie
in R+ or R−. Without loss of generality, assume
{p, q} ⊆ R+. We derive a contradiction by showing
that ||p− q|| ≤ 1.

Observe that the projection of p and q onto H re-
mains in R+. Therefore ||p − q|| is maximized when
at least one of p or q lies on H. Without loss of gen-
erality, assume q lies on H. Since p ∈ R, a unit ball
centred at p must contain a, b, and c. Let D de-
note the disc defined by the intersection of this unit
ball with H. The boundary of R ∩ H consists of
three arcs of unit circles. Observe that R ∩H must
be contained within the 1-hull of {a, b, c}, denoted
1-H({a, b, c}) (i.e., the intersection of all unit discs
that contain {a, b, c}). See Figure 5. Since the ra-
dius of D is at most one and {a, b, c} ∈ D, it follows
that q ∈ R ∩H ⊆ 1-H({a, b, c}) ⊆ D. Since q ∈ D,
q is contained within the unit ball centred at p and,
therefore, ||p− q|| ≤ 1.

K3,3 can be realized as a (
√

3/2 − ε)-quasi unit
disc graph for any ε > 0 by positioning vertices in
alternating partitions uniformly on a circle of radius
1/2. See Figure 5. !

Therefore, d-QUDG ⊆ UBG when d = 1 but d-
QUDG *⊆ UBG when d ≤

√
3/2. It remains open to

determine for which range of values of d ∈ (
√

3/2, 1)

the predicate d-QUDG ⊆ UBG remains true.
The definition of a d-quasi unit disc graph has a

natural generalization to three dimensions as a d-
quasi unit ball graph, denoted d-QUBG. We note the
following straightforward relationship between quasi
unit ball graphs and quasi unit disc graphs:

Proposition 2 For every d ≤ 1, every λ < d, and
every d-QUBG, G, contained in a slab of thickness
λ, there exists a (

√
d2 − λ2)-QUDG G′ such that G

is isomorphic to G′.

Proof. The result follows by an argument analogous
to the proof of Lemma 1. !

Proposition 2 and the 2-local routing algorithm of
Kuhn et al. [23] give:

Corollary 2 There exists a 2-local routing algorithm
that succeeds for any d-QUBG, G, such that d ≥√

λ2 + 1/2 and G is contained in a slab of thickness
λ.

Finally, we show that any independent set of the set
of neighbours of any vertex in a UBG has cardinality
at most 12. That is, K1,12 can be realized as an
induced subgraph of a UBG but K1,13 cannot.

Proposition 3 There are no induced stars with de-
gree greater than 12 in any unit ball graph.

Proof. The kissing number in dimension d is defined
to be k if k is the maximum number of d-spheres of
radius r that can be packed around a central d-sphere
of radius r such that each d-sphere kisses the central
d-sphere (i.e., the boundaries of the two d-spheres
intersect in a point) and the intersection of the in-
teriors of any two d-spheres is empty. The kissing
number in three dimensions is 12 [13]. Furthermore,
realizations exist such that twelve spheres kiss a thir-
teenth sphere and all pairwise intersections for the
first twelve spheres are empty [13] (e.g., the spheres
kiss at the vertices of a regular icosahedron). It fol-
lows that for r = 1/2, such an embedding gives a
realization of K1,12 as a UBG.

Suppose there exists an embedding of K1,13 as
a UBG. Let V ⊆ R3 denote the vertex set of such
a graph G. Observe that no two vertices in V
may coincide. Let c denote the vertex of degree
thirteen in V and let u and v denote two different
vertices in V − {c}. Let u′ denote the point that
lies at unit distance from c on the ray −→cu. Since
||u− c|| ≤ 1, ||v− c|| ≤ 1, and ||u− v|| > 1, therefore,
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∠ucv > 2π/3. Consequently, ||u′ − v|| ≥ ||u − v||.
That is, each vertex w in V − {c} can be moved
to unit distance from c along the ray −→cw without
altering adjacencies in the corresponding UBG. Cen-
tring a sphere of radius 1/2 at each of the resulting
vertices gives thirteen mutually non-intersecting
spheres kissing a fourteenth central sphere. This
derives a contradiction; our assumption must be
false and no such graph G can exist. !

In R3, the bound from Proposition 3 matches the
kissing number. In R2, the cardinality of the inde-
pendent set of the neighbours of a vertex in a UDG
is strictly less than the kissing number: a unit disc
graph has no induced stars with degree greater than
5 [11] whereas the kissing number for unit circles is 6
[13].

5 Discussion

We have shown the impossibility of routing algo-
rithms that guarantee delivery in three-dimensional
ad hoc networks, modelled by unit ball graphs, when
nodes are constrained to have information only about
their k-hop neighbourhood. This result is in direct
contrast to the two-dimensional case, where a 1-local
algorithm such as face routing guarantees delivery on
all unit disc graphs.

The results from the planar case do “lift off” the
plane to a limited extent. We showed that unit ball
graphs for which the nodes are contained in a slab
of thickness 1/

√
2 admit a 2-local routing algorithm

that guarantees delivery. On the other hand, we also
showed that for any fixed k, there is no k-local rout-
ing algorithm that is guaranteed to succeed on all unit
ball graphs, even if the nodes are contained in a slab
of thickness of 1/

√
2 + ε for arbitrarily small ε > 0.

An interesting question would be to characterize pre-
cisely the class of unit ball graphs in thicker slabs
that do have routing algorithms. Since distributed
algorithms for routing in unit ball graphs remain an
urgent necessity, the question of the kind of informa-
tion with which a routing algorithm might be aug-
mented in order to circumvent the negative results
in this paper would be useful to answer. Shortly be-
fore submitting the final version of this manuscript,
the authors learned of recent results helping achieve
this goal, including using randomization [16] and al-
lowing nodes to read and write to a small number of
additional bits passed along with the message [10].

In this paper, we have begun an exploration of the

relationship between unit ball graphs, quasi unit disc
graphs, and quasi unit ball graphs. Many questions
remain open. For example: does there exist a δ > 0
such that any (1 − δ)-QUDG is isomorphic to some
UBG? If so, what is the supremum of all such δ? By
Lemma 6, δ < 1−

√
3/2. Several graph problems that

are NP-complete are efficiently approximable (e.g.,
maximum independent set, graph coloring, and min-
imum dominating set [27]) or tractable (e.g., max-
clique [12]) on unit disc graphs. A similar investi-
gation of which graph problems are tractable or ap-
proximable on unit ball graphs and the other classes
of graphs studied here might be a fruitful avenue of
research.
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