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Abstract. A number of different polyhedral decomposition problems have previously
been studied, most notably the problem of triangulating a simple polygon. We are
concerned with the polyhedron triangulation problem: decomposing a three-dimen-
sional polyhedron into a set of nonoverlapping tetrahedra whose vertices must be
vertices of the polyhedron. It has previously been shown that some polyhedra cannot
be triangulated in this fashion. We show that the problem of deciding whether a
given polyhedron can be triangulated is NP-complete, and hence likely to be
computationally intractable. The problem remains NP-complete when restricted to
the case of star-shaped polyhedra. Various versions of the question of how many
Steiner points are needed to triangulate a polyhedron also turn out to be NP-hard.

1. Introduction

Polyhedron decomposition concerns the problem of dividing a d-dimensional
polyhedron into simpler polyhedra. It has applications in robotics, computer-aided
design, computer graphics, and other fields. Two main types of decomposition
have been considered: coverings and partitions. In a covering the simpler polyhedra
may overlap arbitrarily, whereas in a partition overlaps are allowed only in
common faces of dimension < d (for d = 3 this means the only overlaps are
common vertices, edges, and polygonal faces). Usually, only vertices from the
original polyhedron may be used as vertices of the subpolyhedra, although
sometimes we may allow additional “Steiner” points to be used. We may require a
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Fig. 1. The number of tetrahedra in a triangulation of a polyhedron is not unique.

decomposition into polyhedra that are convex, or monotone, or otherwise “sim-
pler” than the original polyhedron. Here, we investigate the problem of partition-
ing a three-dimensional polyhedron into simplices, i.e., tetrahedra. We call this the
polyhedron triangulation problem. Partitioning a two-dimensional polyhedron into
simplices is known as polygon triangulation, and has been well studied. Many
efficient algorithms are known for producing triangulations, with the recent
linear-time algorithm of Chazelle [4] being asymptotically optimal.

In this paper we show that the three-dimensional triangulation problem is
significantly more difficult than the two-dimensional triangulation problem. One
difference between the problems lies in the size of the resulting partitions: every
triangulation of an n-sided polygon produces n — 2 triangles, but the number of
tetrahedra in a triangulation of a given polyhedron is not unique. For example,
a bipyramid with a triangular base may be partitioned into either two or three
tetrahedra (see Fig. 1).

Even more significant is the difference that any (non-self-intersecting) polygon
may be triangulated, whereas there exist simple three-dimensional polyhedra
which cannot be triangulated. The following example is due to Schénhardt [12]
and is referred to in Chapter 10 of [9]. The six-vertex polyhedron P in Fig. 2 is

Fig. 2. A polyhedron that cannot be triangulated.
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constructed as follows. Starting with a triangular prism, “twist” the top face by
a small amount. The three side faces cannot remain planar, so allow them to “bend
in” along the appropriate diagonals to become two triangular faces.

The polyhedron P cannot be triangulated because no tetrahedron formed by
four of its vertices is wholly contained in P. If a tetrahedron was contained in P,
then each pair of vertices of the tetrahedron would be able to “see” each other
within P. In the case of P, the pairs of vertices which can see each other are exactly
those which form edges of P. Since the edge-graph of P contains no complete
subgraph on four vertices, P contains no tetrahedron.

O’Rourke has posed the problem of characterizing polyhedra that cannot be
triangulated [97. We show that it is unlikely that there exists such a characteriza-
tion that is computationally useful. We investigate the related question of deciding
whether a given polyhedron can be triangulated. Our main result states that this
problem is NP-complete. Thus, we cannot expect (unless P = NP, see [8]) to find
an algorithm that can decide whether a given polyhedron can be triangulated and
that has a running time bounded by a polynomial in the number of vertices of
the polyhedron. NP-completeness is shown by transformation from the Satisfi-
ability problem [8, p. 259]. We show how for any Boolean formula in conjunctive
normal form we can construct a three-dimensional polyhedron that can be
triangulated iff the Boolean formula is satisfiable. The main tool in this construc-
tion is a gadget that we call a niche, which, when attached to a polyhedron, restricts
the possible triangulations. In particular, niches can force certain tetrahedra to
appear, and they can prevent certain pairs of tetrahedra from appearing simulta-
neously.

NP-completeness holds even for a fairly restricted class of polyhedra. The
construction produces polyhedra without holes or dangling faces or edges (ie.,
simple polyhedra). These polyhedra will also have triangular faces. The NP-
completeness does not depend on coplanarities of faces or other degeneracies. We
extend the proof to show that the problem is still NP-complete even if we restrict
the input to star-shaped polyhedra. As a corollary of this, we are able to show
NP-hardness for several problems concerning polyhedron triangulation when
Steiner points are allowed.

Most other work in polyhedron decomposition has focused on two-dimensional
problems, a number of which have been shown to be NP-hard [10], [6]. In the
three-dimensional case Chazelle has investigated partitions into convex pieces [3],
and Bajaj and Dey have recently given an algorithm with an improved running
time [2]. Chazelle and Palios have shown that any three-dimensional n-vertex
polyhedron with r reflex edges can be triangulated (if Steiner points are allowed)
using O(n + r?) tetrahedra in time O(nr + r? log r) [5]. Chazelle also showed that
n?) tetrahedra are necessary in the worst case [3]. Triangulation of convex
three-dimensional polyhedra is fairly easy [7]. Von Hohenbalken gives an algo-
rithm that partitions a d-dimensional convex polyhedron into simplices in time
that is linear in the number of simplices produced [13]. The problem of triangula-
ting a set of points in three dimensions is investigated in [7] and [1].

A note about terminology: what we refer to here as the three-dimensional
polyhedron triangulation problem has had a variety of names in the literature. The
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three-dimensional case has been referred to as tetrahedrization, tetrahedralization,
and tetrahedronalization. Triangulation usually refers to the two-dimensional case
or the d-dimensional case. Here we follow [S], and use triangulation for three
dimensions. It will be noted when we are referring to a two-dimensional triangula-
tion. We will, however, always use triangle to refer to a two-dimensional simplex
and tetrahedron for a three-dimensional simplex. The general d-dimensional case
of polyhedron decomposition has also been called simplication and simplicial
decomposition because a simplicial complex is produced.

2. Niches and the Illuminant Lemma

In this section we describe a gadget called a niche, that can be used to force any
triangulation of a polyhedron to satisfy certain conditions. Our construction is
based on the following simple fact: In every triangulation of a polyhedron P every
triangular face of the boundary of P must appear in exactly one tetrahedron. This
tetrahedron will include a fourth vertex that is not in the face. This fourth vertex
must be able to “see” all of the triangular face. We would like to take advantage
of this by specifying certain triangular faces that can only form a tetrahedron with
a certain vertex or one of a small set of vertices.

The “twisted prism” introduced in Section 1 can be adapted to serve this
purpose. Note that though no vertex of the prism can see all of the “base” (the
bottom triangular face), other points may be able to see all of the base, as for
instance the center point of the top face (see Fig. 3). If the top face of the prism
is removed, then there is a triangular cone of points that can all see the inside of
the base of the prism. In Fig. 4 the cone is determined by the planes containing
the shaded faces q,9,p,, 4245P3, and q;4,p,. This uncapped prism, consisting of
seven triangles on six vertices, which by itself cannot be triangulated, but which
might be triangulated using another vertex, we refer to as a niche. Niches will be
used as parts of the boundaries of larger polyhedra. When a niche is part of a
larger polyhedron, we refer to a point in the polyhedron that can see the entire

visibility cone

Fig. 3. Entire prism visible from the center x of Fig. 4. Visibility cone for a niche.
the top face.
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Fig. 5. A niche attached to a cube.

base of the niche as a viewpoint of the niche. We refer to the set of all viewpoints
as the illuminant of the niche. Figure 5 shows a niche, a viewpoint of the niche,
and the illuminant of the niche. For simplicity, we define the illuminant so that
it does not include any of the interior of the niche. Note that the illuminant of a
niche consists of a single connected portion of the interior of the polyhedron,
incident to the open end of the niche. The illuminant may not be the intersection
of a triangular cone with the polyhedron, as some points may be obstructed by
other faces of the polyhedron, preventing them from seeing the entire base of the
niche.

For our purposes it is important that vertices can be placed so that they can
form tetrahedra with the bases of certain niches, and that we can construct niches
so that their bases can form tetrahedra only with certain vertices. The following
lemma shows that this is relatively easy to achieve. It shows how to construct
niches with prespecified illuminants.

Lemma 1 (The Illuminant Lemma). Let F be a face of a polyhedron P and let C
be a triangular cone that intersects the relative interior of F in a triangle T. Let Cy
be the set of points in P n C that can see all of T. Then it is possible to attach a
niche N to F such that Cy < I < C, where 1 is the illuminant of N. (See Fig. 6.)

Proof. We show how to construct a niche N with the desired properties. Let §,,
P2, D3 be the vertices of the triangle T. Let ¢, ¢,, g5 be the intersections of the
edges of the cone C with a plane parallel to the face F and slightly “outside” F
{see Fig. 7). One at a time, move p,, j,, f; “out” from T on F to produce py, p,,
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Fig. 6. The setting for the Muminant Lemma. Fig.7. Placing q;, 4, q5.
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Fig. 8. Placing p,, p,, Ps. Fig.9. The constructed niche.

ps in the following way: move p, a small positive distance in the direction p,p,,
staying within F. Also move p, in the direction p,p, and move p, in the direction

2’3:5; (see Fig. 8). The amount of movement must be small enough so that the
niche N specified below is well formed, ie., any two of its triangular faces only
intersect in a complete common edge, or a common vertex.

Let the niche N consist of the seven faces 439,41, P14:1P2, 9192P2> P292P3>
42493P3, P3qaP1» 9391P1- Attach N to F by removing the triangle p,p,p, from F,
and triangulate (here we mean a two-dimensional polygon triangulation) the rest
of F in any fashion (see Fig. 9).

Now note that the three faces q,9,p,, 9,93P3, 939,p; of the niche N are
contained in the boundary of the cone C, so every point in C is on the “inside”
of these faces. The other three side faces of the niche, p,q,p,, P2q2P3, P3q3P1, WETE
moved “outward” from the cone C. By assumption every point in Cy can see all
of T, and thus by construction every such point can see the entire base triangle
419295 of the niche N and is therefore in I, the illuminant of N. Thus Cr c I.
(Usually Cr = I, but it is possible that a point in C may be obstructed from seeing
all of T, and still see q,9,95.)

On the other hand, any point not in C will be outside the plane of one of the
faces q,q,P,, 92933, 439:P1> and will thus not be in the illuminant of N. Thus
IcC. O

The illuminant is interesting because any vertex that can form a tetrahedron
with the bottom triangular face of the niche must be contained in it. Often, we
will want to triangulate the entire niche (i.e., form a tetrahedron with each of its
triangular faces) from some vertex. For any given set of vertices in Cy, the niche
can be constructed so that these vertices can see all of the side faces as well as the
bottom face, and hence any of them could triangulate the entire niche. When we
place vertices in illuminants, below, we will make sure to place them in the region
C;.

Niches and groups of niches will be used as “gadgets™ that force any triangula-
tion to have certain properties. For example, if exactly two vertices x, y of the
polyhedron are in the illuminant of a niche that has base ¢,4,4;, then exactly one
of the tetrahedra T, = xq,4,4; or T, = yq,q,q; must appear in any triangulation
(see Fig. 10). Since tetrahedra may not overlap in a triangulation (except in
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Fig. 10. Tetrahedra T, and T, overlap; at most one of them can appear in any triangulation.

common faces), each of T; and T, may obstruct other tetrahedra from appearing
with them in a triangulation. Other more complicated gadgets may be built up in
a similar fashion.

3. NP-Completeness of the Decision Problem

Theorem 1. It is NP-complete to decide whether a given three-dimensional poly-
hedron can be triangulated without using additional Steiner points.

Proof. We use a polynomial-time transformation from instances of the Satisfi-
ability problem. We assume that the Satisfiability instance is a Boolean expression
in conjunctive normal form with n variables and m clauses. For example:
(X1 + X2 + X5 + X)X, + Xa)X5 + X, + Xo)

is an expression with five variables Xy, X,, X3, X4, X and three clauses. The
first clause contains four literals, the negative literals X,, X5, and the positive
literals X, X ,.

Giver. an expression E that is an instance of Satisfiability, we show how to
construct a polyhedron P such that

E is satisfiable <> P can be triangulated.

We at first give a rough outline of the construction of P from which the implication

P can be triangulated => E is satisfiable

can be proved easily. Subsequently we refine this construction significantly so that
the reverse implication

E is satisfiable = P can be triangulated

can also be proved. After stating some construction constraints that this refined
construction must satisfy, we show how these constraints ensure the two-way
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Fig. 11. Clause niches attached to polyhedron P.

implication. Lastly, we show that P can indeed be constructed to satisfy the
constraints.

QOutline of Construction. For the time being imagine the general shape of the
polyhedron P we construct as that of a rectangular box, with tiny niches arranged
on two sides of the box. There will be clause niches that correspond to clauses,
and variable niches corresponding to variables. We also use two special kinds of
vertices: truth-setting vertices and literal vertices.

The clause niches will be attached to the bottom of the box, and will be
constructed (using the Illuminant Lemma) such that their illuminants form skinny
vertical regions that do not intersect within the polyhedron, as shown in Fig. 11.
There will be one literal vertex for each occurrence of each literal, with each literal
vertex being placed on the top of the box in the illuminant of the corresponding
clause. Each variable’s literals will be arranged in two rows, one for the positive
literals and one for the negative literals. Figure 12 shows a Satisfiability expression
and the resulting clause niches and literal vertex placements.

The idea is that a clause niche may be triangulated only from its corresponding
literal vertices, as they are the only vertices in its illuminant. The literal vertex
that triangulated the niche corresponds to a literal that satisfies the clause in the
expression E. We need a way to enforce a “truth assignment,” to prevent a

literal vertice: X3 X3 X3 Xy X; X3
placed he%

illuminant

clause niche

Fig. 12. Regions of polyhedron corresponding to variables, niche for clause (X; + X, + X3), and
placement of three corresponding literal vertices.
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Fig. 13. Truth-setting vertices are viewpoints of variable niches.

variable’s positive and negative literal vertices from simultaneously being used to
triangulate clause niches. Because of the way we have placed the literal vertices
in rows, we can use a gadget like that of Fig. 10 in which one of two specified
tetrahedra must be present in any triangulation, each of which “blocks” one row
of literal vertices from seeing their corresponding clause niches. For each variable
in the expression, we add to the polyhedron a variable niche along the bak face,
and two truth-setting vertices on the front face, as shown in Fig. 13. We use the
Illuminant Lemma to ensure that only the two truth-setting vertices can be used
to triangulate the variable niche. The use of the TRUE truth-setting vertex will
represent the variable being set true, the FALSE vertex will represent false.

Given a triangulation of the polyhedron P, we can show that the expression E
is satisfiable. We can interpret a truth assignment from the triangulation of the
variable niches, since the base triangle of each variable niche forms a tetrahedron
with either the TRUE truth-setting vertex or the FALSE truth-setting vertex. If
the TRUE truth-setting vertex was used, the variable is set true, and the negative
literals will be blocked from seeing their clause niches. If the FALSE truth-setting
vertex was used, the variable is set false, and the positive literals will be blocked
from seeing their clause niches. We know that this truth assignment is a satisfying
truth assignment because of the following: The base triangle of each clause niche
must have formed a tetrahedron with one of the literal vertices. This vertex must
correspond to a literal set true, since vertices corresponding to false literals are
blocked from triangulating their clause niches. The literal vertex that triangulates
the niche represents a literal that satisfies the corresponding clause. Thus we have
shown that the implication

polyhedron P can be triangulated = expression E is satisfiable
holds for this simple polyhedron construction.

The Refined Construction. We run into difficulties if we use the above construc-
tion and try to show that a satisfying truth assignment for E yields a triangulation
of the polyhedron P. We would like to use the satisfying assignment to guide us
in triangulating the clause niches and variable niches, but this yields a partial
triangulation in which many tetrahedra stretch across the interior of the poly-
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hedron. The remaining untriangulated portion is shaped very irregularly, and it
is unclear whether the triangulation can be completed. Instead of trying to do
this, we refine our construction to produce a polyhedron that is more complicated,
but in which we can describe how to complete the triangulation.

In the refined construction, each variable will correspond to a portion of the
polyhedron. One at a time, the truth setting of each variable is used to determine
how to triangulate that variable’s portion of the polyhedron. When all variables
have been considered, the triangulation will be complete. Things are set up so that
there is minimal interaction between the triangulations of the different portions,
so the overall triangulation proceeds smoothly. By working incrementaily, we also
simplify the explanation, as we need only describe the triangulation of a single
variable’s portion of the polyhedron.

We assume the given Satisfiability expression has m clauses and n variables.
To simplify the construction, we restrict the Satisfiability instances to those in
which each variable appears exactly three times, once as a negative literal, and
twice as a positive literal. Each appearance must be in a different clause. This
restricted version of Satisfiability is easily shown to be NP-complete, by extending
an arggment on p. 259 of [8] (a variable with only one positive and one negative
literal can be eliminated by resolution, i.e, by combining the two clauses that
contain these two literals).

The starting point for our construction will be a sort of “distorted wedge.”
Figure 14 shows an example for the case in which n = m = 2. We sometimes refer
to the (x, y, z) coordinates of points. Figure 14 shows the orientation of the
coordinate axes and gives coordinates for several points. Other coordinates will

variable
variable X
P o
X,

(lnl)}
(0.0.4)

z
(1/20,0)

C

T/
note thin base triangles
(in z=0 plane)

2m+1

Fig. 14, Starting point for the polyhedron construction.
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Fig. 15. The interface sweeping across the polyhedron. After each step, everything to the right of the
interface has been triangulated.

be specified later. In the following we add niches and extra vertices and faces to
this wedge to finish the construction.

The base of the wedge consists of 2m + 1 vertices ¢y, €3,...,Com+1, lying on a
parabola to be specified later. These vertices bound m triangular faces c¢,c¢,c3,
€3C4Css+vs Com—1C2mCam+1- We will later attach a clause niche to each of these
triangles. The top of the polyhedron is a row of n squares, one per variable. To
each of these squares, we will attach a “roof” containing the variable niche and
the variable’s three literal vertices.

Figure 16 shows a single variable’s roof. For reference, we also include the
chain of triangles from the base of the polyhedron. The front gable of the roof is
the face zpz,z;, and the back gable is y;y,y;. Attached to the back gable will be
the variable’s niche, which will have only two vertex viewpoints, z; and z;. On
the rooftop will be the literal vertices x,, x,, and x5, with x, and x, representing
the two positive literals and x; representing the single negative literal (without
loss of generality we assume that x, is contained in a lower-indexed clause than
x,). The idea is that if the variable is set true in the satisfying assignment, then z;
can be used to triangulate the variable niche, and then x, and x, can be used to
triangulate their respective clause niches if needed. Using zy to triangulate the
variable niche will “block” x; (the negative literal, which is false) from triangulating
its clause niche. The case when the variable is set falge is handled symmetrically.

We will attach the superscript i to a roof vertex if we need to specify that it
belongs to the roof of the ith variable. For example, notice that z¥ and z*! are
two names for the same vertex. Vertices y5 and yi*! are also identified. Often,
when referring to a generic variable, we drop the i superscripts.
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Fig. 16. A variable’s roof (seen from the “right”).

A number of geometric details must be dealt with before we can describe the
actual triangulation corresponding to a satisfying truth assignment. We first give
a brief idea of how the triangulation process would proceed. The “interface”
between the triangulated and untriangulated portions of the polyhedron will
“sweep” across the polyhedron, triangulating one variable’s portion at a time (see
Fig. 15).

After the ith step of the triangulation (n steps altogether, one per variable), the
interface will have the following properties:

o It will have the form of a topological disk.

o It will consist of triangles.

e Each triangle contains the vertex zi, which will be called the hub of the
interface. One triangle is z% y5c,, and the other triangles each include z% and
two vertices from ¢y, ¢, ..., C3,n+ 1- a8 specified below.

o The triangulation will include the niches of clauses satisfied so far. Since the
clause niches are attached to triangles in the chain, we have:

o If the jth clause is not satisfied by one of the first i variables, then the
triangle z¥-c,;_ 1¢,;+4 will be part of the interface.

o If the jth clause is satisfied by one of the first i variables, then the triangles
Zip¢yy-1€z; and zipcyie,;, ¢ will be part of the interface.

Thus, the number of triangles in the interface will be m + 1 + j, where m is the
total number of clauses and j is the number of clauses currently satisfied. In
particular, after the last step, the interface will be bounded by the vertices 2%, 5,
Cis €35 C35.-.5 Cameq, Which is part of the boundary of the polyhedron (i.e., the
entire polyhedron will have been triangulated). Writing z% = z} and y3 = y], the
initial interface is bounded by z}, yi, ¢y, C3, Cs, ..., Com+ 1, Which is the opposite
portion of the polyhedron’s boundary.
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The simple structure of the interface makes the triangulation easier. What
happens is that some vertex (z&, x}, x5, x4, or z%) will be able to see all of the
triangles in the interface. Using this vertex as an apex, and the triangles in the
interface as bases, we form new tetrahedra to add to the triangulation, and advance
the interface to the new vertex.

There are a number of things yet to be specified about the construction. We
must lay out the chain of triangles and the clause niches attached to them. We
must also specify the placement of the roof vertices and the variable niches attached
to the roofs. First we list the geometric constraints that must be satisfied.

The Construction Constraints. For each variable, the following constraints must
be satisfied in the construction. These constraints ensure that the truth-setting and
literal vertices can see the appropriate variable and clause niches, or are blocked
from seeing them, as necessary. The fifth constraint guarantees that the successive
variables’ portions of the triangulation will be separated by a nicely behaved
interface. Since each constraint applies to all variables, we omit the i superscripts.

o Variable-niche-filling: Vertices z;, z, must be viewpoints of the variable’s
niche and they must be the only such vertices (i.e., one of them must be used to
triangulate the niche).

o Clause-niche-filling: The vertices x,, x,, X3 corresponding to literals must be
viewpoints of their respective clause niches, but of no other niches.

o Clause visibility: The use of the vertex z; to triangulate the variable niche
should not prevent the positive literals’ vertices from seeing the clause niches.
Thus we require that the tetrahedron z;y,y,y; must not intersect the
tetrahedra x;C - 1C2kCax+ 1 OF X2Cak-1C2xCak+1 fOr 1 < k < m. Similarly, the
tetrahedron z;y,y, y; must not intersect the tetrahedra x;¢y,_ 1€4Cap 41 fOr
I<k<m

o Clause blocking: To guarantee that x, cannot triangulate its clause niche
when the variable is set false, it must be “blocked,” i.e., it must not see all
of the base face of the clause niche. Here we can assume only that z; forms
a tetrahedron with the base face q,q,q; of the variable niche (not the entire
variable niche). We require that the tetrahedron zgq,q,q, intersect every
line segment from x, or x, to any point in the base triangles ¢, 1€ Cor+ 1
for 1 < k < m. Similarly, the tetrahedron z;¢,g,q, must intersect with every
line segment from x, to any point in the base triangles. (This constraint is
slightly stronger than necessary, in that every base triangle is invisible rather
than just the bases of the clause niches within the base triangles.)

o Interface visibility: For the triangulation to “sweep” across the “slice” of the
polyhedron corresponding to a single variable, we require that:

(a) x, be to the “left” (i.e., negative y-direction) of the planes ¢y _ ;€5 2p,
CaxCar+12ps a0d €34 yCq 1 2pfor 1 <k <m.

(b} x, be to the left of the planes ;. ;€24 X1, C2Cop+ 1 X1, NG Cop_1Cap 4 1%
fori<k<m.

(c) x5 be to the left of the planes ¢y, .. 1C2xZp, C2xCoi+ 125> aNd Cop-1Cap 4 12p
fori<k<m
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(d) zr be to the left of the planes c,p. 1€2:X5, C2kCa+1X25 Cok-1Co2k+1X2>
Cak-1€26 X35 C2kCax+1%3, ANA Cop - yCop Xz for 1 <k <m.
o Roof convexity: The roof must be convex, i.e., the convex hull of the points
Zr, 245 275 X1s X25 X35 Vi, V2, ¥3 must include the faces shown in Fig. 16.

We postpone the remaining details of the construction of the polyhedron P.
Instead, we first show that if P satisfies these constraints, then a satisfying
assignment for the expression E can be converted into a triangulation of P.

The Triangulation. Assuming that the six construction constraints can be met in
the refined construction of the polyhedron P, we now show that given the original
Boolean formula E, we can construct a polyhedron P such that

E is satisfiable <> P can be triangulated.

One direction is fairly easy: given a triangulation of P, we can interpret a
satisfying assignment for E just as we did in the rough construction of the
“box-shaped” polyhedron above, by seeing which of the truth-setting vertices (z&
or z) was used to triangulate the niche of the ith variable.

Showing that a satisfying assignment for E yields a triangulation of P requires
listing quite a few tetrahedra, and relies heavily upon the six constraints developed
above. The triangulation proceeds one variable at a time. We need only describe
a single step, relying on the structure of the interface described above as an
invariant that ensures that we can proceed.

We now describe the triangulation step for the ith variable X,;. There are two
cases, depending on whether X, is set TRUE or FALSE in the satisfying
assignment. We handle the TRUE case first. Since we are dealing with the single
variable X;, we drop the i subscripts and superscripts.

Case 1: Variable X set TRUE. Referring to Fig. 17 we see that the “hub” of the
interface starts at zy (the invariant). Intuitively, the hub will “advance” to x,, then
to x,, and finally to z;, establishing the invariant for the next step (see Figs. 18-21).

Because the variable-niche-filling constraint was satisfied in the construction,
z is a viewpoint of the variable X’s niche. This means that z; can see the base

fa . R 3
chain of triangles
containing clause mches

Com+1

Fig.17. Shaded triangles to form tetrahedra Fig. 18. Shaded triangles to form tetrahedra
with z;. with x;.
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current interface

chain of triangles

- containing clause miches "~ chain of triangles

containing clause niches
Com+1 Comsl

Fig.19. Shaded triangles to form tetrahedra Fig.20. Shaded triangles to form tetrahedra
with x,. with z.

face of the niche. Since z; can see all of the triangle y,y, y; (the triangle T'in the
Iluminant Lemma), z; will also be able to see the other faces of the niche. Thus
we can form tetrahedra with the seven faces of the niche from z;, producing the
tetrahedra z;q3q,4;, 2rP191P2> 21419202, ZrP242P3» Zrd2493P3, ZrP3dsDis
zrq3q,p,- Here the p; and g; are as specified in Fig. 9. In the application of the
Illuminant Lemma that created the niche, the back face y,y, y; of the variable’s
roof got a triangular “hole” p,p,p;, and was retriangulated (two-dimensional
triangulation), producing six new faces that must also form tetrahedra with z .
From z; we also form tetrahedra with the faces z ;x,zp, z (X, Xy, Z4 V2 X2, Z4X3 Y2,
X33 V2, X Y2y, of the variable’s roof (see Fig. 17). The vertex z; can see all of
these triangles because of the roof convexity constraint. Figure 18 shows the
situation after removing these tetrahedra.

The next step is to form tetrahedra between x, and the interface triangles. This
is possible by part (a) of the interface visibility constraint. We also use the
tetrahedron x,z;¢,,,+127. The shaded portion of Fig. 18 shows the triangles that
must form tetrahedra with x,. Since x, is a literal vertex corresponding to a literal
set TRUE in the satisfying assignment, we may use x, to triangulate its correspond-
ing clause niche. We do this only if the clause niche has not been previously
triangulated. The clause-niche-filling constraint ensures that x; can see all of its

(hub)

Coms1

Fig. 21. Final interface after step for variable X.
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clause niche, and all of the base triangle containing the clause niche. Thus we use
x, to form tetrahedra with the seven triangular faces of the clause niche and the
six faces of the original base triangle (which was retriangulated when the niche
was attached, causing a hole).

Now the hub of the interface moves from x; to x,. The shaded portion of Fig.
19 shows the triangles that must form tetrahedra with x,. Part (b) of the interface
visibility constraint guarantees that these triangles can all be seen by x,. Then x,
is used to triangulate its clause niche if necessary.

The situation is now as shown in Fig. 20. This figure shows the triangles that
must form tetrahedra with z;. Note that this includes the rear triangle y,y;c;.
These triangles are visible by part (d) of the interface visibility constraint. After
these tetrahedra are added to the triangulation, the hub of the interface is now at
the vertex z;, as shown in Fig. 21. This re-establishes the invariant for the next
variable’s step of the triangulation.

Case 2: Variable X set FALSE. This case is analogous to Case 1. The variable X
is set FALSE, so we use zy to triangulate the variable niche and the back face of
the roof as well as the back face of the entire slice, and also the faces of the roof
shown in Fig. 22. Figure 23 shows the result. Next, x; is used to triangulate the
faces shown in Fig. 23, as well as its clause niche (if not already triangulated), and
the remainder of the base triangle containing the clause niche. This advances the
hub of the interface from z, to x;, leaving the situation shown in Fig. 24. Then
zy can be used to form tetrahedra with the triangles shown shaded in Fig. 24, to
complete the triangulation of X’s portion of the polyhedron. Just as in Case 1,
the hub of the interface has reached z,, shown in Fig. 21.

Thus we have shown how the triangulation can “sweep” across the polyhedron
P, and thus that

E is satisfiable < P can be triangulated
as long as P satisfies the construction constraints.

Satisfying the Construction Constraints. We now fill in the details of the construc-
tion of the polyhedron P, and show how the required constraints are satisfied. As

Z 7 ﬁ ZF (hub)

~ urrent nterface current interface

Fig.22. Shaded triangles to form tetrahedra  Fig.23. Shaded triangles to form tetrahedra
with z;. with x;.
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%

current interface

Fig.24. Shaded triangles to form tetrahedra  Fig.25. The cone C dehnea by wie 1wo similar
with zp. triangles T, and T,,.

usual, we omit the i superscripts when referring to the vertices of the ith variable’s
roof.

To satisfy the variable-niche-filling constraint, we use the Hluminant Lemma
to construct the variable niche on the back face y,y,y; of the roof. The shaded
region in Fig. 25 shows part of the triangular cone C. We want z; and z; to be
the only vertices in the interior of C. We specify C by giving two similar triangles
T, and T,, the intersections of C with the parallel planes x =0 and x =1,
respectively. The corresponding edges of the two triangles are also parallel.
Suppose the roof is of height C,, to be specified later. That is, the z-coordinate of
z,and y,is 1 + C,.

Figure 26 shows how we choose the triangle T; within the back face y,y,y; of
the roof. Consider the triangle T formed by the midpoints of the edges y,y,, ¥, ¥,
and y,y,. Let T, be this triangle, shrunk by a factor of C, (to be specified later)
around its centerpoint.

Figure 27 shows how we choose the triangle T, within the x = 1 plane. T, will
be similar to T chosen above, with corresponding edges being parallel. The top
edge t,t, of T, is slightly above the z = 1 plane. This height is chosen so that the
plane containing t,t, and the corresponding edge of T; intersects the segment y, z
exactly three-quarters of the way from ¢, to zp (see Fig. 27). This ensures that the

Ty
Y,
/]N intersection
Y3 M) ,
W \ - L
r/ T, t;

Fig. 26. Inthe x = O plane: the back gable of the  Fig.27. Specification of T,. The cone C inter-
roof (top), and the choice of T, within the back sects segment y,z, exactly three-quarters of the
gable. way from y, to zg.
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illuminants

clause niches””

Fig. 28. The shape of the clause niche illuminants. The clause niches themselves are very small, along
the bottom.

literal vertices, placed later, will not be within the illuminant of the variable niche.
We place ¢, at distance one-quarter to the left of z; and ¢, at distance one-quarter
to the right of zp. This determines the position of t;, the third vertex of T,.
Together, the triangles T; and T, determine a cone C. The only vertices in the
interior of C are z; and zg.

Now the Hluminant Lemma can be applied. This constructs a niche on the
back face of the roof, with the two vertex viewpoints z; and zg.

To satisfy the clause-niche-filling constraint, we again use the Iluminant
Lemma, this time to place a clause niche within each of the triangles ¢, 1€5,C25 41
along the base of the polyhedron. These niches will have very skinny illuminants
(see Fig. 28) that do not intersect within the polyhedron. These will be regions in
which we will later be able to place the literal vertices when we construct the roofs.
For use in later constraints, we add the further requirement that the portions of.
these niches and illuminants that lie within the polyhedron must be between the
planes x =4 and x = 51/100. To do this we must now specify the parabola
containing the base vertices ¢y, ¢5,...,Coms1-

The parabola will be in the xy-plane and will be of the form y = ax? + Bx + 7.
It must pass through the point (3, 0) with slope 0. Thus we need 0 = a/4 + /2 + 7
and a + B = 0. The slope of the parabola should be positive and increasing for
x > 4. It will also be important later that the slope be small, say less than 7 at
x = 51/100. This requires 51¢/50 + B < . It can be checked that the values « = %,

= —1/4, y = & satisfy these requirements. The points ¢,, ¢;,...,Cypm+; aT€
spaced evenly between x = 4 and x = 51/100 on this parabola. Point ¢, is placed
at (a,, b,), where

1 k-1
ak="2‘+

11
200m 4 Be=sa+ et

To construct the clause niches we must specify a cone C for each clause niche,
and then apply the Illuminant Lemma. We do not give the exact specifications of
these cones, just a rough idea. The triangle T needed for the Illuminant Lemma
is as shown in Fig. 29. It is required that the illuminant of the kth niche contains
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S
| base triangle of polyhedron

| triangle T for Illuminant Lemma
(clause niche attaches here)

C

2kt

Fig. 29. Clause niches are attached to base triangles.

the line segment between the points {a,;,0, 1) and (a,, n, 1), where a,; is as
specified in the above paragraph. We can choose a second triangle containing this
segment, which together with T determines the cone C needed to apply the
Illuminant Lemma. These cones should be chosen so that they do not intersect
within the polyhedron.

Constructing the ith Variable’s Roof. Next we show how to construct the roof
for the variable X so that the remaining constraints are satisfied. We pick a height
for the roof (and thus place the vertices z, and y,), and then specify the locations
of x,, x,, and x;. This requires choosing the two values C, and C, mentioned
above. The shape of the roofs depend upon the variable index i, so we choose
different values Ci and Cj for each roof. Since we will be referring to the ith
variable throughout, we omit the i superscripts from the vertices.

If the roof is too tall, then some of x,, x,, and x, might not be able to see
“under” the edge z;y, to the clause niches. To avoid this problem we specify a
point p = (0, $, 3) and require that all vertices of the ith roof lie beneath the plane
containing z, y3, and p (see Fig. 30). This is sufficient since all of the base triangles
lie beneath this plane. Choosing C} = 1/200(n — i + 1) keeps z, and y, well below
this plane, and builds in some leeway we will utilize later.

Next we describe the placement of the roof vertices x,, x,, x3. Vertices x, and
x, are placed slightly above the segment y,zg, in the vertical plane containing the

/4

3/4

Fig. 30. Front view of polyhedron, showing plane (dotted) bounding variable X s roof (not to scale).
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X, X; placed on

segment §,

Fig. 31. Placement of x,, x,, x, (for ith variable, i superscripts omitted).

segment (see Fig. 31). Suppose the literal vertex x, corresponds to a literal
contained in the kth clause. Then x, is placed at x-coordinate a,, (the a,,’s were
specified above, and are between § and 51/100 for all 1 < k < m), at a distance C}
above the segment y,zp. The vertex x, is placed the same distance above this
segment at the appropriate x-coordinate, and x, is placed similarly above the
segment y,zr.

We now show that choosing C% = 1/1000(n — i + 1) will place the literal
vertices such that all the remaining constraints are satisfied.

Since the literal vertices X, x,, x; will have z-coordinate < 1 + C4/2 + C%,
they will be below the segment z, y,, which has z-coordinate 1 + C} (C5 < C%/2).
Thus, x,, X, x3 will not be able to see “over” the top of the roof z,y,, and the
faces of the convex hull of the roof vertices will be those shown in Fig. 16, satisfying
the roof convexity constraint.

The literal vertices x,, x,, x; have been placed above the illuminant of their
variable’s niche, so they will not be viewpoints of the niche, and hence will not
violate the variable-niche-filling constraint.

The clause-niche-filling constraint was satisfied by the choice of x-coordinate
for the literal vertices, which placed them within their respective clause niches (but
within no other clause niches, since the clause niches do not intersect).

Showing that the clause visibility constraint is satisfied is a little trickier. The
X3 case is easy: since it is to the “left” of the tetrahedron z; y, y, 5, the tetrahedron
cannot prevent it from seeing the base triangles, which are even farther to the left.
For x,, x, we must show that they can sece “beneath” the tetrahedron z;y, vy, v;
to the base triangles. The critical thing is that they be able to see beneath the edge
27y, and the worst-case placement of x; or x, is at coordinates (3, n —i + 3,
1 + C4/2 + C%) (the point q in Fig. 31). The most difficult point on the base
triangles to see is ¢,. Thus we need to show that g is beneath the plane c,z;y,.
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This orientation test can be done (see p. 43 of [11]) by computing the sign of the
determinant

11 0 0

11 n—i 1
A(Cl, ZT, yl? q) = 1 0 n - i + 1 1 N
c
1 4 n—i+3 1+71+c‘3

which evaluates to —(986(n — i + 1) + 7)/4000(n — i + 1), which is negative since
i < n. Since the point z} clearly lies beneath the plane ¢,z y,, and the determinant

Aley, 295 Y1, 2 = —1

is also negative, the point ¢ must also be beneath the plane ¢,z,y,.

To show that the clause blocking constraint is satisfied, we show how to choose
the “shrink factor” C,, used in constructing the variable niches, so that x,, x,,
x5 are blocked in the appropriate way. We show this only for the x,, x, cases, as
the x, case is similar. We continue to omit the i superscript from vertices of the
ith variable’s roof. Let R be the smallest rectangle in the z = 0 plane with sides
paralle] to the x and y axes that contains all of the base triangles. Let s, be the
segment on which x; and x, were placed (see Fig. 31). We show that choosing
C, = 99/100 will force every line of sight from s, to R to pass through the interior
of the tetrahedron z;¢,4,4; (4,9, 95 is the base triangle of variable ’s niche). This
means that if the variable is set FALSE, then x; and x, will not be able to see
any of the clause niches at all, and will not be able to triangulate them.

We choose a point w in the x = 0 plane such that the segment z;w is contained
in the tetrahedron zpq,q,4; (see Fig. 32). Then we show that every line of sight
from the segment s, to the rectangle R must pass beneath the segment z,w. Since
these lines of sight also pass above the segment zpq,, they must “pierce” the
triangle zyq,w, and hence must pass through the interior of the tetrahedron
Zpq1q,43, which is what we need to show to establish the clause blocking
constraint.

Fig. 32. Every line of sight from the segment s, to R must pass “beneath” the segment ¢.
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4
vV, 3

z

Fig. 33. The slope of v,v, must be greater than the slope of v,v;.

If we choose the “shrink factor” C, to be 99/100, then the upper left corner
of the triangle T, shown in Fig. 26 will move in slightly toward the center of T.
If the plane containing the points ¢,, q,, g5 used for the Illuminant Lemma (see
Fig. 7) is specified to be at distance 1/100 from the back face y,y, y; of the roof,

then the point
1 1 . C 9 C
—(om—it 1 e
Y (" a0 T3 Yoo 6)

is within the tetrahedron zrq,9,4;. (The point w is four times closer to the center
of T than is the upper left corner of the triangle T, of Fig. 26.) Let t be the
subsegment of z;w between x = 4 and x = 51/100 (i.e., the same x-range as s, and
R, see Fig. 32). We ignore the x-dimension, by projecting to the x = 0 plane (see
Fig. 33).

The most difficult line of sight from s, to R (passing beneath t) is from the
highest, leftmost point of s5,, under the lowest, rightmost point of ¢, to the leftmost
edge of R (“leftmost” means minimum y-coordinate, “highest” means maximum
z-coordinate). Letting v, be a point on the leftmost edge of R, letting v, be the
lowest, rightmost point of ¢, and letting v; be the leftmost, highest point of s, we
have the situation shown in Fig. 33. Since the point v, is 49/100 of the distance
from z; to w, and the point v, is (a distance C% above the point that is) half of
the way from zy to y,, the (y, z)-coordinates of the points are

vy = (Oa 0),

] it 49 y 74 1+49 c"1+9sci1
—1 —l —_ —-’ [P — N
2 100 ~ 100 100\ 3 ' 600

C )
vs=<n—i+1—i,1+—2—1+C'3>.

Showing that the line of sight from v, to v, passes beneath v, is a two-dimensional
orientation test, so we compute the determinant

1 0 0
. 49 74 49 /C,  96C
1 n—i+l—-——x— 14+—|—+
A(vl, 02, 03) = 100 100 100 3 600 s
C )
1 n—i+1-—1% 1+7‘+c'3
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Fig. 34. In the z = ! plane: shaded region shows where interface planes will intersect.

which evaluates to —(824963(n — i + 1) + 7840)/7500000(n — i + 1), which is neg-
ative since i < n. Thus, the lines of sight from s, to R pass beneath t, and hence
through the tetrahedron zpq,q,qs;. Hence, when the variable X; is false, the
tetrahedron zpq,q,q; blocks x; and x, from triangulating the base faces of their
clause niches. It can similarly be shown that the tetrahedron z;q,¢q,45 blocks x5,
so the clause blocking constraint is satisfied.

We only show that part (a) of the interface visibility constraint is satisfied. Part
(b) is similar, and parts (c) and (d) are easier. For part (a), we need to show that
x, is on the “left” side (i.e., lower y-coordinate) of all the triangles in the interface.
It is sufficient to show that x is to the left of the planes zpc ¢,, ZpCamCaom+ 1, and
ZpC1Cam+1- Consider the intersection of these planes with the z = 1 plane (see Fig.
34). Since the maximum slope of the base parabola was chosen to be 45, and the
minimum slope of the parabola is 0, the three planes will intersect the z = 1 plane
in lines with slopes between 0 and 4 (relative to the xz-plane). The vertical
projection of x; to the z = 1 plane will be to the left of these lines, since x, lies
on the segment z;y,, which projects to a segment with slope 3. Since x, is above
the z = 1 plane, and the three planes zx¢,¢;, ZpComComs 1, ANA Z5C Cop 4 ¢ INCTEASE
in y-coordinate as they increase in z-coordinate, x, will be to the left of all three.

Concluding the Proof. In order to ascertain NP-completeness of the triangulation
decision problem, we need to show that the problem is actually in NP. First, a
triangulation can be “guessed” nondeterministically since we can enumerate all
possible collections of tetrahedra. We also need a polynomial-time algorithm to
verify that a given collection of tetrahedra is indeed a triangulation of a given
polyhedron P. This can be done as follows. Compare all pairs of tetrahedra to
make sure that they only intersect in a common triangular face, an edge, a vertex,
or the empty set. Next, compute the sum of their volumes and check that it equals
the volume of P (which can be computed easily without knowing any triangula-
tion). Lastly, check that each tetrahedron T lies within P, by computing the
centroid of T, and performing a point-in-polyhedron test. Also, the intersection of
T and the boundary of P should be a collection of faces, edges, and vertices of T.

We must also verify that the polyhedron construction we have given can be
performed in polynomial time. In particular, the coordinates of all the points
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produced are rational and can clearly be expressed using a polynomial number of
bits, because every coordinate results from a constant number of arithmetic
operations, starting with small integers. Each application of the [lluminant Lemma
can certainly be performed in polynomial time. 0

A Final Remark on the Proof. The polyhedron we have constructed has only
triangular faces, but some of them are coplanar, and many of the vertices are
coplanar. These coplanarities are only incidental to our construction, and the
difficulty of triangulating the polyhedron does not depend on the coplanarities. It
would be fairly easy to modify the construction so that the vertices in the resulting
polyhedron are in a nondegenerate position.

4. Restriction to Star-Shaped Polyhedra

If the polyhedra are restricted to being star-shaped, the problem is still NP-
complete. (A polyhedron is star-shaped if there exists a point inside the polyhedron
that can “see” all of the polyhedron.)

Theorem 2. It is NP-complete to decide whether a given three-dimensional star-
shaped polyhedron can be triangulated without using additional Steiner points.

Proof (Sketch). We modify the construction of the previous section so that the
polyhedron produced is star-shaped and contains a point p that can see all the
polyhedron’s faces. The point p is the same as in Fig. 30, p = (0, 1, J). To ensure
that the point p can see all of the niches’ faces, we must construct the niches so
that the intersection of their illuminants includes p. This is shown in Fig. 35, in
which all of the illuminants are “tilted” slightly so that they intersect in a

Fig. 38. To produce a star-shaped polyhedron: illuminants of clause niches “tilt” slightly so as to
intersect (triple dashed lines).
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Fig. 36. Illuminants of variable niches “stretch” so as to include the point p.

needle-shaped region indicated by the dashed lines. This can be achieved by
rearranging the literal vertices, and by slight modifications to the clause niche
construction. The construction constraints can be maintained since the polyhedron
changes only slightly, and the modified niches will not contain any unwanted
vertices.

Next we must modify the variable niches so that their illuminants also contain
the point p. Figure 36 gives a rough idea of how the illuminants are “stretched,”
and Fig. 37 gives more detail. We describe the modification of the niche by
modifying the cone C used in the construction of the niche. The cone C is
determined by two similar triangles T, and T, in the x = 0 and x =1 planes,
respectively. Referring now to Fig. 37, these triangles are modified as follows. The
top edge of T, moves down, into the z = 1 plane. Next, the bottom vertex of T,
is moved down and to the left until the cone includes the point p. In doing this,
the corresponding sides of T, and T, must reamin parallel, so fix the top edge of
T,, and allow the bottom vertex of T, to decrease its y-coordinate, remaining
within the back gable of the roof. If we also constrain the top right vertex of T,
then the top left vertex of T, must decrease its y-coordinate to allow the

Original construction Star-shaped construction

back gable , T,

of roof 1

(x=0 planc) - e

front gable o ot - - . — -

of roof L) K i /

(x=1 plane) i - \ anly these

—— sruth-setting varticss

[_. y should be in T2

Fig. 37. More details of variable niche stretching {the roof gables are shown dotted).
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corresponding edges to remain parallel. Finally, slightly rotate both T, and T,
counterclockwise, staying parallel to the yz-plane, so that T, contains the two
appropriate truth-setting vertices, but no others. The rotation should be sufficiently
small so that the point p remains within the cone C and T, remains within the
back gable of the roof.

Next we argue that this modification can be done without violating any of the
construction constraints, and check that p remains within the illuminants of the
variable niches. Recall that being in the cone C does not ensure that p is in the
niche’s illuminant. The point p must also be able to see all of the triangle T;. This
is guaranteed because the entire roof was placed beneath the plane z; y;p (see Fig.
30, which contains the same point p).

In general, the construction constraints are maintained because the shape of
the polyhedron P changes only slightly. The variable-niche-filling constraint is met
because the triangle T, was rotated to include only the desired truth-setting
vertices. None of the vertices of the base triangles along the bottom (z = 0) of the
polyhedron will fall in the variable niche illuminants, because the lowest point in
these illuminants will be above z = 1. The clause visibility constraint is unaffected,
since, for each variable i, either z& or z; will still triangulate the entire back gable
of the roof, exactly as before. The clause blocking constraint depended only upon
the positions of z&, zi, and the upper edge of the triangle T,. The vertices z& and
z& do not move, and the movement of the edge of T; can be made as small as
necessary. The other constraints can easily be seen to hold.

We have modified the niches so that the point p can see all of the niches’ faces.
It remains to show that p can see all of the remaining faces of the polyhedron.
The only worrisome faces are the faces on the variables’ roofs, but p can see these
faces because it is beneath all of their planes as constructed (see Fig. 30). O

Since a star-shaped polyhedron contains a point p that sees every face, it can
be triangulated by allowing this additional point p to be used as a vertex of the
tetrahedra in the triangulation. (Simply triangulate all faces (polygon triangula-
tion), and use each of the resulting triangles as the base of a tetrahedron with the
point p as the apex.) Such additional points are called Steiner points.

The previous theorem has consequences for some triangulation problems that
allow Steiner points to be used. If we take an n-vertex star-shaped polyhedron P
constructed in the proof of Theorem 2 and attach k niches whose illuminants do
not intersect the illuminant of any other niche and do not contain any vertex of
P, we obtain a polyhedron P’ with n + 6k vertices, that can be triangulated using
k Steiner points iff P could be triangulated without Steiner points. This yields the
following theorems.

Theorem 3. For any fixed integer k > 0 it is NP-hard to determine whether a given
polyhedron can be triangulated with at most k Steiner points.

Theorem 4. There exists a real constant C > % so that, for all positive ¢ < C, it is
NP-hard to decide whether an n-vertex polyhedron can be triangulated with at most
cn Steiner points.
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In his book [9, p. 255] O’Rourke describes n-vertex three-dimensional poly-
hedra that require Q(n*?) “guards.” These polyhedra also require Q(n*'?) Steiner
points in order to be triangulated. By attaching such a polyhedron to the
polyhedron we have constructed above, the following stronger theorem can be
proved.

Theorem 5. There exists a real constant C > 0 so that, for all positive ¢ < C, it is
NP-hard to decide whether an n-vertex polyhedron can be triangulated with at most
cn? Steiner points.

Acknowledgments

Several of the figures in this paper were produced using the UNIGRAFIX
geometric modeling system developed at U.C. Berkeley. The authors would like
to thank Antony Ng, who suggested that the three-dimensional triangulation
decision problem might be NP-complete.

References

1. D. Avis and H. ElGindy. Triangulating simplicial point sets in space. Discrete Comput. Geom.,
2:99-111, 1987.

2. C. L. Bajaj and T. K. Dey. Convex Decompositions of Simple Polyhedra. Technical Report
CSD-TR-833, Dept. Comput. Sci., Purdue University, 1989.

3. B. Chazelle. Computational Geometry and Convexity. Ph.D. thesis, Yale University, 1980. Also
available as Technical Report CMU-CS-80-150, Dept. Comput. Sci., Carnegie Mellon University,
July 1980.

4. B. Chazelle. Triangulating a simple polygon in linear time. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, IEEE, 1990, pages 220-230.

5. B. Chazelle and L. Palios. Triangulating a nonconvex polytope. Discrete Comput. Geom.,
5:505-526, 1990.

6. J. Culberson and R. Reckhow. Covering polygons is hard. In Proceedings of the 29th Annual
Symposium on Foundations of Computer Science, IEEE, 1988, pages 601-611.

7. H. Edelsbrunner, F. P. Preparata, and D. B. West. Tetrahedrizing point sets in three dimensions.
Technical Report UIUCDCS-R-86-1310, Dept. Comput. Sci., University of Illinois, 1986.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

9. J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New York, 1987.

10. J. O’'Rourke and K. Supowit. Some NP-hard polygon decomposition problems. IEEE Trans.
Inform. Theory, 29:181-190, 1983.

11. F. P. Preparata and M. 1. Shamos. Computational Geometry—An Introduction. Springer-Verlag,
New York, 1985.

12. E. Schonhardt. Uber die Zerlegung von Dreieckspolyedern in Tetraeder. Math. Ann., 98:309-312,
1928.

13. B. Von Hohenbalken. Finding simplicial subdivisions of polytopes. Math. Programming,
21:233-234, 1981.

Received March 19, 1990, and in revised form January 25, 1991.




