
Discrete Comput Geom 5:485-503 (1990)

G -6i 6try
© 1990 Springer-Verlag New York Inc.

Efficient Binary Space Partitions for Hidden-Surface Removal
and Solid Modeling*

Michael S. Paterson 1 and F. Frances Yao 2

i Department of Computer Science, University of Warwick,

Coventry, CV4 7AL, England

Xerox Palo Alto Research Center, 3333 Coyote Hill Road,

Palo Alto, CA 94304, USA

Abstract. We consider schemes for recursively dividing a set of geometric objects by

hyperplanes until all objects are separated. Such a binary space partition, or BSP, is

naturally considered as a binary tree where each internal node corresponds to a

division. The goal is to choose the hyperplanes properly so that the size of the BSP,

i.e., the number of resulting fragments of the objects, is minimized. For the two-

dimensional case, we construct BSPs of size O(n log n) for n edges, while in three

dimensions, we obtain BSPs of size O(n 2) for n planar facets and prove a matching

lower bound of f~(n2). Two applications of efficient BSPs are given. The first is an

O(n2)-sized data structure for implementing a hidden-surface removal scheme of

Fuchs et al. [6]. The second application is in solid modeling: given a polyhedron

described by its n faces, we show how to generate an O(n2)-sized CSG (constructive-

solid-#eometry) formula whose literals correspond to half-spaces supporting the faces

of the polyhedron. The best previous results for both of these problems were O(n3).

1. Introduction

Recursive partitioning is a basic problem-solving technique which has proven to be

most useful in algorithm design. For geometric problems where the input is a set of

objects in the plane or in space, it is natural for this "divide-and-conquer strategy"

to be employed in such a way that the divide step is accomplished by making a

* This research was done while M. S. Paterson was visiting the Xerox Pato Alto Research Center.
This author is supported by a Senior Fellowship of the SERC and by the ESPRIT IIBRA Program of

the EC under Contract 3075 (ALCOM).

486 M.S. Paterson and F. F. Yao

linear cut of the input, that is, by splitting the objects along a line (in the two-

dimensional case) or along a plane (in the three-dimensional case). This creates two

subproblems which can then be divided recursively, again by linear cuts, until

finally subproblems of some trivial size are obtained. Since each divide step may

split some of the objects into several parts, the process described above can lead to

a proliferation of objects and result in an inefficient algorithm. Thus, we are

motivated to choose the dividing cuts carefully so that fragmentation of the input

objects is kept to a minimum. The recursive partition mentioned above was first

considered by Fuchs et al. [61 and is called a binary space partition (or BSP).

We are interested in the question of constructing BSP trees whose size is not too

large as a function of the original input size. In the three-dimensional formulation

of the problem, we take the input to consist of a set of n nonintersecting convex

polygons in R 3, since polygonal tiling is common for representing surfaces in space.

Let p(n) be the maximum value over all inputs of cardinality n of the size of a

minimal BSP tree. (Precise definitions of binary space partitions and p(n) are given

in Section 2.) A straightforward upper bound for p(n) is O(n3). One of the main

results of this paper is that p(n)= O(n2). A corresponding lower bound of

p(n) = ~')(n 2) follows from an example due to Eppstein [5].

In this paper we prove upper and lower bounds for BSPs in the general case.

Better bounds can be obtained in several important special cases. In [14] we

consider BSPs for orthogonal sets of elements and derive exact bounds of ®(n) and

O(n 3/2) for the two- and three-dimensional cases, respectively.

As applications of efficient BSPs, we describe two well-known problems in

computer graphics and show that solutions better than those previously known

can be obtained readily from our results. The first problem arises in removing

hidden surfaces in real-time. In some graphics applications such as flight simula-

tion and computer animation, it is necessary to generate rapidly images of a three-

dimensional scene as viewed from changing positions. A good strategy is to

preprocess the scene suitably so as to simplify the hidden-surface computation at

runtime. In [6] it was observed that if the objects comprising the scene are

represented as a BSP tree, then traversal of the tree in a symmetric order relative to

the viewing position will produce a correct priority order of (the fragments of) the

objects for achieving the desired obscuring effect. In this scheme, storage space as

well as tree traversal time is proportional to the size of the tree. The only previous

bound known for the tree size is O(n 3) [6]. As a direct consequence of our main

theorem, this bound can be improved to O(n2).

The second application of BSPs is found in converting boundary representa-

tions of three-dimensional objects into constructive-solid-geometry (CSG) repre-

sentations. The boundary representation of an object specifies the surface elements

forming its boundary. In contrast, the CSG representation expresses the interior of

the object by a boolean formula where the operations are intersection and union

and the literals are primitive solids such as boxes, cylinders, etc. It is important in

solid modeling to be able to convert efficiently between the two styles of

representation. In a special type of CSG representation considered by Peterson

[15], the literals correspond to the half-spaces supporting faces of the given object.

A natural question is: given a polyhedron described by its n faces, can a short

Efficient Binary Space Partitions 487

Peterson-style formula be generated? A straightforward upper bound on the size of

the formula is O(n3). We will show that our result on BSPs implies an O(n 2) bound

on formula size.

Other applications of BSPs include point location, and the convex decomposi-

tion of polygons and polyhedra. Previous work on BSP trees and their uses in

graphics applications can be found in [11] and [17].

In Section 2 we give the definition and basic properties of binary partitions. In

Sections 3 and 4, partitions of size O(n log n) for the planar case are presented.

Section 5 contains our main result, an algorithm to find partitions of size O(n 2) in

three dimensions, which is complemented by the ~q(n 2) lower bound of Section 6.

The applications are discussed in Section 7, and we conclude with some comments

and open problems in Section 8.

A preliminary version of this paper appeared in [13].

2. Preliminaries

In this section we give the mathematical formulation of the partitioning problem,

and discuss some basic properties of BSPs.

A d-dimensional binary partition P is a recursive partition of d-dimensional

Euclidean space, R a, defined by a set of hyperplanes. Let ~ be a collection of

(oriented) hyperplanes that are organized as a binary tree and labeled accordingly

as Hx, Ho, H1, Hoo, Hot (see Fig. 1). Then ,,~ defines a binary partition P

under which R d is first partitioned by the root hyperplane Hx into two open

half-spaces, H ; , H~', and H~ itself. Recursively, H ; and H~ are partitioned by the

subtrees rooted at Ho and H1, respectively. We refer to the hyperplanes

H i ~ 9~, i ~ {0, 1}*, as the cut hyperplanes (in particular, cut lines when d = 2 and

cut planes when d = 3) of the partition. For any node v of the tree we define R(v) to

be the convex region which is the intersection of all the open half-spaces defined at

the (proper) ancestor nodes of v. The components of the partition P then consist of

R(v) for each leaf node v, and, for every internal node v, the intersection of R(v) with

H v, the hyperplane at v.

Let F be a collection of facets, i.e., convex polytopes of dimension (d - 1) or less,

in R d. One-dimensional facets are line segments and two-dimensional facets are

H o

/ \
H O0 % I

/ \
%00 ~ 001

III

/ \
HtO ~ 11

/ \
vlO0 viOl

Fig. 1

488 M.S. Paterson and F. F. Yao

convex polygons. A binary partition P naturally induces a decomposition of F. For

any node v of P, let F(v) denote the collection of subfacets, F c~ R(v). For a given F,

we are interested in binary partitions P of R d with the property that, at each leaf v,

the set F (v) is empty; we refer to such a P as a BSP ofF. We define the weight of an

internal node v to be the number of subfacets of F(v) that lie within H v- The size,
IP[, of a BSP of F is the total weight of its internal nodes, which is also the total

number of subfacets generated by P. The partition complexity of F, denoted by p(F),

is min{tPl lP is a BSP of F}. Define p(n) = m a x { p (r) l l r l = n}.
Note that if F has no co(hyper)planar facets, then the weight of an internal node

in a BSP is always one or zero. In any case, for simplicity of presentation, we are

not concerned with further partitioning of the subfacets at internal nodes of the

tree. The reduction in dimension allows a simple recursive structure and we

concentrate on the broader complexity issues presented in the top dimension.

We could alternatively define the size of a BSP to be the number of leaves of the

tree, i.e., the number of convex regions of the partition space. This number is at

least [PI + 1, assuming that F has no coplanar facets, and is at most 2[PI if trivial

cuts are avoided so that each leaf region contains at least one subfacet in its

boundary. The measure [PI that we have chosen seems the most convenient to

work with.

Figure 2 shows a BSP where F consists of six edges forming a close polygon. The

BSP has size 8, and decomposes the interior of the polygon into three convex

regions, ~i, %, ~3. For each cut line the positive half-plane is the upper half-plane

in the diagram.

The description size of a facet or set of facets is the total number of boundary

elements of all dimensions for these facets. To simplify our treatment of BSPs we

assume a fixed bound on the description size of each initial facet. In particular, in

R 3 the input facets are polygons with a bounded number of edges. Thus, for all F,

the description size of F is O([Fi). We naturally define the description size of a BSP

-. C

" / / f0 " " ' .

• I " " f I \ "'-

0[! " @2 ~3

d

o(\,
Fig. 2

Efficient Binary Space Partitions 489

to be the description size of the corresponding set of subfacets. In R 3 it is easy to

bound the description size of a BSP.

Lemma 1. Let P be a BSP of F in R 3.

(description size of P) = O((description size o fF) + [P I) = O(1P 1).

Proof. Each division of a subfacet into two introduces four new edges: two by

dividing two existing edges and two from the new boundary edges created. Hence

number of edges of P = number of edges of F + 4(t P l - I FI).

The lemma follows from this and the bound on the description size of F given

above. []

For any facet A, we define hyperplane(A) to be the hyperplane through A with

some definite (but arbitrary) orientation. In two and three dimensions we use the

terms line(A) and plane(A), respectively.

3. Autopartitions

A natural class of BSPs can be obtained by imposing the restriction that each cut

hyperplane be hyperplane(A) for some facet A in F. Such a partition will be called

an autopartition.

Note that a minimum partition for F is not always achievable by an auto-

partition.

Example 1. In Fig. 3, F consists of three sets of r parallel segments, where the sets

would cut each other cyclically. It can be verified that any autopartition of F has

size at least 41, but a partition that begins with a cut line such as L shows that

p(F) = 3r.

ssol" Z

o a
s ~

/ o o s ° ' /

~ig. 3

490 M.S. Paterson and F. F. Yao

Fig. 4

In three dimensions we can demonstrate a greater disparity between autoparti-

tions and general BSPs.

Example 2. Consider a configuration with two sets of r parallel squares as

illustrated in Fig. 4. In this case every autopartition has size exactly r 2 + 2r,

but there is a BSP which begins with a plane separating the two sets and has size

only 2r.

The above example generalizes readily to d dimensions.

Theorem 1. For any d > 2, there is a configuration o f size n in R a which has a B S P

o f size n but for which every autopartition is o f size f~(n a- 1).

Proof. We define (d - 1) families of facets where, for i = 1 , . . . , d - 1, family

Fi = {(xi = j , 2i - 1 < x d < 2i)[j = 1 rl} and n =)-'~_--~ ri. Since these families

are easily separable from each other by (d - 1) hyperplanes orthogonal to the

xd-axis, there is a BSP of size n. We can prove by induction on the number of facets

that the size of any autopartition is 1-I~-~ (r~ + 1) -- 1. The first hyperplane of

any autopartition, x k = s say, decomposes the configuration into two smaller sub-

configurations of the same type and

There is a simple yet useful device which could prevent excessive fragmentation

of F during a partition. If a hyperplane H can partition F nontrivially without

dividing any facet of F, then, obviously, H can be used as a cut hyperplane in an

optimal partition. The cut by H is referred to as a f ree cut.

One particular type of free cut presents itself naturally in the course of a

partition. Consider the two-dimensional case. Assume that at some stage of a

partition we have a region S and a segment A which is a chord of S. (See Fig. 5.)

Then A divides S into two regions, S O and $1, and any other segment o f f c~ S must

lie completely within one of these regions. In such a situation, an immediate

partition of S along A is advantageous, since the cut is free and it prevents the

Efficient Binary Space Partitions 491

\

\ So
, / -1 \

' /___.._.. '
I I

I I

Fig. 5

segment A c~ S from ever being cut. More generally, in higher dimensions, the

above observation holds for any region which is completely separated by some

facet A. We term the free cut defined by hyperplane(A) in such a situation a

bounded cut.

4. O(n log n) Partitions in Two Dimensions

In this section and the next we consider the two-dimensional partitioning problem.

The motivation is twofold. Some special forms of three-dimensional objects such as

prisms can be treated as two-dimensional objects directly, and the algorithms

introduced in Section 4 provide useful insight for the higher-dimensional case later.

A recursive procedure which performs binary splitting on the set of endpoints of

the segments and takes advantage of bounded cuts yields our first result.

Theorem 2. For any n disjoint line segments in the plane, there is a BSP of size

O(n tog n), i.e., p(n) = O(n log n).

Proof. Let F be a set of input line segments, and let V be the set of endpoints of F.

Our algorithm initially finds two points Pmin and Pmax of V with minimum and

maximum y-coordinates. Thus all segments of F lie in the strip bounded by the two

horizontal lines Hma~ and Hmin going through P,~ax and Pmin, respectively. In each

stage of the algorithm, we select a point Po of Vwhich has the median y-coordinate

among all points of V. The horizontal line Ho going through Po splits F into two

sets of segments F~ and Fb, which lie above and below Ho, respectively. Let

AI, A2 , As be the segments in F, which intersect both Hma x and Ho. Bounded

cuts using these segments divide the strip between Hmx and Ho into s + 1 regions

ordered from left to right. We use ~i, for 0 < i < s, to denote the region that lies

between Ai and As+ 1. Similarly, if B1, B2 B t are the segments that intersect

both Hmi n and Ho, then bounded cuts with these segments separate F~ into t + 1

disjoint regions ordered from left to right, denoted by B j, for 0 < j < t. (See Fig. 6.)

We then repeat the partitioning for each of the ~i and/~j separately.

492 M. S. Paterson and F. F. Yao

, , -

oo \

IIo - - ~ - - " " ~ ¢ ... "J"--""~'t'-"""''"~-""/-

Fig. 6

The partition scheme given above can be represented by a multiway tree. (See

Fig. 7.) This tree eventually needs to be transformed into a BSP but the analysis is

based on the multiway tree structure.

We show that in the partition defined above, each original segment of F is cut

into at most O(log n) pieces. In any region R(v), let re(v) be the number of endpoints

of F that are in the interior of R(v). Then, since Ho is a median divider, each of the

regions ~i, 0 < i < s, and/~, 0 < j < t, has m < m(o)/2. Thus the multiway partition

tree has depth at most log2 n. If segment E of F is cut into two pieces for the first

time at some node v, then each of the two pieces can be further cut only along the

unique path from v leading to the node v' such that R(v') contains the endpoint of

that piece. Along any other path a subsegment of ~ is eliminated by a bounded cut.

Hence ~ is cut into at most 2 log2 n fragments. []

A specific example F which achieves the worst-case bound O(n log n) under the

above procedure can be easily constructed.

Although our major concern is to minimize the size of the partition, the

construction time and, in some applications, the depth of the corresponding tree

may also be important. Both concerns are addressed in the following strengthening

of Theorem 2.1

AI'A2'A3)
/ /

Fig. 7

A referee has pointed out that our construction is similar to that used by Preparata [16] for planar

point location.

Efficient Binary Space Partitions 493

Theorem 3. There is an O(n log n)-time algorithm which,for n disjoint line segments

in the plane, produces a complete BSP of size O(n log n) and depth O(log n).

Proof. We outline an algorithm which has the stated bounds. In the scheme used

in the proof of Theorem 2, we can achieve logarithmic depth by constructing a

balanced BSP after applying bounded cuts to some horizontal strip. Suppose the

number of endpoints in ~ is m i, then using the balancing algorithm due to Gilbert

and Moore [7] (see Section 6.2.2 of [10]) on the sequence of weights m 1, m 2 the

depth of ~i in the binary expansion of the multiway branch is at most 2 +

log/(Emj) - log2(mi). In the worst case the depth of the resulting partition is at

most 3 log 2 n + O(1). The running time of this step is O(Y.i(log(Y_,mj) - log(m~))),

and contributes a total of only O(n log n) to the running time.

The entire construction can be completed in O(n log n) time by an algorithm of

the following kind. Since the median splitting is done with respect to the original

endpoints, if these points are sorted initially by their y-coordinates, then all the

splits can be made by index calculations on the sorted list. The separation of

segments and subsegments by the bounded cuts is more of a problem; for example,

segment u may lie entirely to the left of segment v but a slanting cut can put u into a

region to the right of that containing v.

The latter difficulty can be overcome by using a total "right-to-left" ordering, ~-,

of all the segments with the property that if u ~ v, then no subsegment of u can ever

be in a region in the same horizontal slice as, and to the left of, a region containing a

subsegment of v. The partial order "xdom," introduced by Guibas and Yao [8], is

defined by "u xdom v" if some point of u has the same y-coordinate as, but a larger

x-coordinate than, some point of v. It can be verified that any extension of xdom to

a total order will serve our purpose. Such a total order can be found in O(n log n)

time by using a plane-sweep algorithm [8].

While our partitioning procedure is working on some slice, it will have available

the restriction to this slice of the " ~ - " relation. When a horizontal cut is made, the

two resulting restrictions can be produced in linear time; and when a sequence of

bounded cuts is made the restrictions to each subregion are found by partitioning

the total order with respect to the cutting segments.

Our claim that the total running time is O(n log n) is proved by showing that,

after an initial O(n log n) preprocessing stage, each level of the depth-O(log n)

partition tree is generated in only O(n) time. []

5. Probabilistic Methods for Planar Partitions

In this section we begin by presenting two randomized algorithms for planar

partitions; while the first is somewhat simpler, the second generalizes more readily

to higher dimensions. For each algorithm an O(n log n)-size bound will be proved

using probabilistic arguments. We also give a corresponding deterministic algo-

rithm for finding an O(n log n) autopartition.

We define a special form of autopartition in which the facets of F are used as

cutting hyperplanes according to some specified linear order.

494 M.S. Paterson and F. F. Yao

Let the facets in F be denoted by {ul, u2 un}, and let n be a permutation of

{ 1, 2 n}. A unique BSP based on n is obtained by the following construction.

Procedure for P~

F o r k = 1 t o n d o

Stage k: For each

hyperplane(uk).

region intersected by u k, make a cut with

The resulting partition is the autopartition with respect to n, written as P~.

The size of the autopartition P~ on n line segments in the plane for a random

choice of rt is shown below to be O(n log n).

Theorem 4. The expected size of the autopartition P~ for n segments in R 2 when n is

chosen uniformly over all n! possibilities is O(n log n).

Proof For line segments u, v, we define index(u, v) = i if line(u) intersects i - i

other segments before hitting v, and index(u, v) = oo if line(u) c~ v = ~ . Since a

segment u can be extended in two directions, we may have index(u, v) = i for two

different v's. (See Fig. 8 where index(u, v) = 3.) We say for short that "u cuts v"

when line(u) divides segment v in the partition.

First we show that the probability that u cuts v in P, for a random n is at most

1/(index(u, v) + 1). Assume index(u, v) = i, and let u 1, u2 u~_ 1 be the segments

that line(u) intersects before hitting v, The event "u cuts v" can happen only if u is

chosen as a cut line before any of {ul, u2 ui-1, v} is chosen. The probability of

the latter event is 1/(i + 1).

The size of an autopartition is equal to the number of fragments generated, i.e., n

plus the number of intersections. Therefore the expected size, E(P~), of P~ satisfies

E(P~) = n + ~ Prob(u cuts v in P~)
tl~ t~

I

< n + ~ (index(u, v) + 1)
U, O

n-1 1

< n + 2 ~ ~ i + 1 , - - 1

< n + 2nlnn . []

Fig. 8

Efficient Binary Space Partitions 495

Note that the autopartition P~ did not make use of possible free cuts. In the

following alternative partition, P*, bounded cuts are made wherever possible. For

definiteness, when there are several possible bounded cuts we choose the one which

is earliest according to n.

Procedure for P*

F o r k = l t o n d o

Stage k: For each nonempty region, make a cut with hyperplane(uk).

While there is some bounded cut, make that bounded cut which is

earliest in the ordering n.

In comparison with P~, although P* benefits from bounded cuts, it also allows a

region to be cut by hyperplane(u) even when u does not intersect the region.

We analyze P* in the two-dimensional case as a precursor to the three-

dimensional case in the next section.

Theorem 5. The expected size o f the autopartition P* fo r n segments in R 2 when ~ is

chosen uniformly over all n! possibilities is O(n log n).

Proof. For a given segment v, consider the set of all segments whose extensions

can intersect v, and label these segments as ul, uz , uk, based on the order in

which the intersections occur on v from left to right.

The effect of bounded cuts can be illustrated in the configuration shown in Fig.

9. Suppose that the ordering induced by rc is ul, u3, u4, u2, v. Then v is cut by ul, ua,

and u4, but not by u z. As soon as the cuts by u 1 and u 3 are made the subsegment of

v between these cuts is removed by a bounded cut using line(v). In other words, an

intersection of v with some line(u) results in an actual cut in P* only if u's

intersection point on v is not sandwiched between two earlier intersections.

Thus, in an autopartition P*, ui can cut v only if either ui precedes all of

v, ul, u2 u~_ t in the ordering ~, or u~ precedes all of v, u~+ 1, u2 u k. (Both

conditions hold when u~ is the first of all of v, u~, u2 Uk, which has a probability

O f 1/(k + 1).) Therefore,

1 1 1
Prob(u~ cuts v) _< ~ + k _ i + 2 k + l '

S

u l /

Fig. 9

496

and so

M. S. Paterson and F. F. Yao

e (e D _< n + ,=1 F+- i k - i + 2 k + l

_<n+ 2 + . . . + k + l

< n + 2nlnn. []

A specific permutation rc which achieves the O(n log n)-size bound can be easily

constructed.

Theorem 6. For any n disjoint line segments in the plane, an autopartition of size

O(n log n) can be found in O(n 2) time.

Proof A permutation rc is constructed in reverse order. We first choose n(n)

arbitrarily. Now suppose that n(k + 1) n(n) have been chosen. For each of

u,tk+~) u~t,), we find the ordered set of intersection points with the lines

through the remaining k segments. There are at most 2(n - k) extreme intersection

points on the segments u,t k + ~ u,t,), so for one of the k remaining segments, u~

say, its line accounts for no more than 2(n - k)/k of these. We choose rt(k) = j, and

continue in this way until n is complete. Summing the number of cuts, we have

size(P*) < n + ~ 2(n ~- k)

k=l

< 2 n l n n - n .

A fairly simple O(n 2 log n)-time algorithm would find all O(n 2) line intersections

and then sort the intersections which occur on each segment. After this stage, the

selection and updating required for the construction described above can be easily

accomplished in O(n) time per step. To reduce the total time to O(n 2) we perform

the first stage in the following manner. The line graph of the n lines can be set up in

the O(n 2) time [1], and then, for each segment, to find the ordered sequence of

intersections with the other lines takes only O(n) time. []

6. Partitions of Size O(n 2) in Three Dimensions

The ideas of the previous section can be extended to three dimensions to yield both

randomized and deterministic algorithms for constructing et~cient BSPs.

Let F = {ul u,} be n facets in R 3. We consider the expected size of the

autopartition P* of F when rc is a random permutation. Let Irk be the number of

additional facets created at the kth stage of P*, i.e., by plane(u~tk~) after the cuts by

unto, . . . , u~ k_ ~ have been made.

Efficient Binary Space Partitions 497

L e m m a 2. E(Yk), the expected size of Yk, is O(n).

Proof Let Y~.~ be the contribution to Yk from facet u E F, i.e., Yk,, is the number of

extra subfacets created on facet u by cut plane u,~). We will show that E(Yk.,) =

O(1). Consider the arrangement L~,k of the set of lines, {l~(lp . . . , l~k)}, where the

line l~(0 is the intersection of plane(u~ti)) with facet u for 1 < i < k. To calculate Yk.,,

consider the subfacets of u which are cut by plane(u~ck)) in P*. In P~, i.e., without

bounded cuts, these subfacets would correspond exactly to those regions of L~.~_ 1

which are intersected by I~(k). However, in P*, any of the regions of L~, k_ 1 which

are internal, i.e., are bounded entirely by cuts, would have been eliminated earlier

by bounded cuts, so that Yk,, is just the number of external regions intersected by

l~(k). For any arrangement H ofk lines, hi, h 2 hk, on facet u and any i, 1 < i < k,

define x(H, i) to be the number of external regions in the line arrangement H - {hi}

that are intersected by h~, and denote the average (l/k) ~ = 1 x(H, i) by ~(H). Note

that the sum ~ = ~ x(H, i) is equal to the total number of edges of those regions in

the arrangement H which are intersected by the boundary of the facet u. (In Fig. 10

the edges bounding these regions are marked by dashed lines.) It is known [2], [4]

that the number of bounding edges corresponding to any segment, such as side AB,
is O(k). (This is the point where the constant bound on the number of edges for

each original facet is needed.)

Thus the sum ~ = i x(H, i) is bounded above by O(k), hence ~(H) < O(1). Now,

E(Yk.~) = I ~ x(L~, k,

= ~ ~ ~(L.,k).

= o(1).

Thus E(Y~) = O(n). []

A

C

Fig. 10

498 M.S. Paterson and F. F. Yao

Theorem 7. The expected size of the autopartition P ' f o r n facets in R 3 when rc is

chosen uniformly is O(n2). There are sets of n facets in R3 for which the size of every

autopartition is fl(n2).

Proof. From Lemma 2, it follows that the total number of facets created by P* is

given by ~ ,= x E(Yk) = O (n 2) . Example 2 yields the lower bound. []

Theorem 8. An autopartition of size O(nZ) for n facets in R 3 can be constructed in

O(n 3) time.

Proof. The existence of such an autopartition P* follows from Theorem 7. We

must consider both the time required to find a suitable permutation n and the time

to construct P*.

By Lemma 2, the following iterative procedure generates an appropriate

ordering, n, in reverse order.

Choose n(n) arbitrarily.

F o r k = n - 1 2 , 1 d o

Select: Assume n(k + 1) rffn) have been chosen. For each of

U~k + ~ U~t~, find the line arrangement on that facet generated by

its intersections with the planes of the remaining k facets. Examine

the boundary regions in each arrangement and find which of the

unselected k facets generates the smallest total number of bounding

edges summed over all the (n - k) arrangements. Choose this for the

kth cut.

In each Select we have to construct one new line arrangement for O(n) lines and

update O(n) other arrangements by the removal of the line corresponding to the

most recently chosen facet. Hence each Select takes time O(n 2) (see [2] and [4]).

Once the permutation ~ has been determined, we can construct the BSP tree P*

in O(n 3) time as follows. The facets are initially sorted according to zt, and this list of

facets is associated with the roof node of the BSP tree we will construct. Assume

now that we have constructed some initial subtree of the BSP, and at any frontier

node v we have a representation of F(v), the collection of subfacets F n R(v),

arranged in two sorted lists. The first list contains the "bounded" subfacets, i.e.,

those whose boundary contains no part of an original edge from F, and the second

list contains the other subfacets. Each list is sorted according to n and the first list is

regarded as preceding the second.

One step of the algorithm consists of the following procedure. Choose any

frontier node v such that F(v) is nonempty, and suppose that u is the first subfacet

associated with v. We set Hv to be plane(u) and proceed to "cut" F(v) by Hr. In

sorted order, each subfacet w of F(o) is processed in turn, by testing each of its edges

or vertices against H v. If w is contained in Hv it remains associated with v. If w does

not intersect H~, then it is assigned to the appropriate new successor node (Vo or v~)

of v. If w is cut by Hv, then it is divided into two new subfacets Wo, wl, which are

assigned to v o and vl, respectively. (When u is a bounded facet no such division can

Efficient Binary Space Partitions 499

occur.) If wi is a bounded subfacet it is appended to the first list at v,, otherwise it is

appended to the second list.

The algorithm terminates when, for all frontier nodes v, the set F(v) is empty.

The running time can be bounded by the depth of the BSP tree multiplied by the

description size of P since each edge or vertex is tested at most once at each level of

the tree. By Lemma 1, the total time is O(n ! n2). []

The previous theorem can be generalized to higher dimensions.

Theorem 9. An autopartition P* o f size O(n d- 1)for n facets in R d can be constructed

in time O(nd+1). There are sets of n facets in R d for which the size of every

autopartition is f~(n d- 1).

Proof. The proof of the size bounds is analogous to that of Theorem 8. We use the

following fact, proved in [4], regarding an arrangement A of n hyperplanes in R a

where d >_ 2. The total number of boundary hyperplanes summed over all regions

of A that are intersected by any other hyperplane is O(n d- 1). The lower bound is

given by Theorem 1.

We have relaxed the time bound to O(n a+ L) since, for d > 3, the facial structure

of subfacets is more complex and the simple algorithm for R 3 described above is

not adequate. We would therefore maintain the complete arrangement for each

facet at each node instead of just keeping the external regions. []

We expect that the time bound in the above theorem can be improved to O(n d)

by the use of a more elaborate data structure.

7. A Lower Bound

Under the restriction to autopartitions, Theorem 9 already gives matching upper

and lower bounds for all d > 2. For the unrestricted case, we present a lower bound

on the partition complexity in three dimensions which is due to Eppstein [5].

Example 3. Consider first a planar square grid formed by n parallel red lines

segments intersecting n parallel green lines at right angles. Next we skew the square

arrangement a little to form part of a hyperbolic paraboloid, with the red and green

lines belonging to its two families of generators. Finally, the red lines are all moved

"up" very slightly so that the surface containing the red lines is above that

containing the green lines (and the lines no longer intersect).

A coordinate representation of this configuration is

{y = j , z = x j l l <<.j <_ n} w {x = i , z = iy + ~11 < i <_ n}

and an impression of the configuration with a close-up view of one of the "squares"

is given in Fig. 11.

500 M.S. Paterson and F. F. Yao

-SZ-

Fig. 11

Theorem 10. In R 3, p(n) = fl(n2).

Proof. Consider Example 3. Provided that the separation distance between the

two families of lines is sufficiently small, any complete partitioning of the

configuration by planes must cut at least one of the four line segments in the

neighborhood of each skew square. Hence the total number of cuts made by

the partition is [')(n2), and our lower bound is proved. []

An example by Thurston giving a lower bound of fl(n 3/2) for orthogonal line

segments in three dimensions is presented in [14].

8. Applications

We describe how BSPs can be applied to give O(n 2) solutions to the two problems

mentioned in the Introduction.

8.1. Hidden-Surface Removal

To speed up hidden-surface removal when a three-dimensional scene is viewed

from different positions, Fuchs et al. [6] proposed preprocessing the scene into a

BSP tree. The fact that finding efficient BSPs for general three-dimensional scenes

remained an open problem served as our initial motivation for studying BSPs.

We first outline the relation between visibility computation and BSPs as

presented in [6], and then state the new result.

Definition. Let F = {ul, u2 un} be n facets in R 3, and let w E R 3 be a

viewpoint. A permutation ~ of { 1, 2 n} is said to be a visibility ordering of F

with respect to w if, for any i, j with ~(i) _< n(]) and any point q ~ u~¢~, we have

d(w, q) c~ u,o ~ = ~ where d(w, q) is the line segment connecting w and q, i.e., facet

u,{ 0 cannot obstruct the view of u~¢j} from w.

A visibility ordering is a prerequisite for many hidden-surface removal algo-

rithms. For example, the "painter's algorithm" paints each facet in low-to-high

priority order onto the screen's image buffer, whereas the output-sensitive algo-

rithm of Overmars and Sharir [12] processes the facets in the opposite order. Note

that a visibility ordering depends on the viewing position; also such an ordering

Efficient Binary Space Partitions 501

may not always exist, as we can easily find an example where three facets block

each other cyclically. However, if a BSP of the input is made then the resulting set

of subfacets always permits a visibility ordering for any viewing position w.

Furthermore, the desired ordering can be computed quickly for any given w via a

tree traversal.

Definition. Let P be a BSP tree of F. For any point w e R 3, an in-order traversal of

P with respect to w is an (otherwise conventional) in-order traversal where at each

internal node v with cut plane Hv, the half-space of H~ containing w is visited after

the half-space not containing w. (In the case that w lies on Hv, either half-space may

be visited first). Let F' denote the set of subfacets produced by P.

Lemma 3. Let P be a BSP of F with output F'. A visibility ordering of F' with

respect to any viewing position w can be generated in time O([P[) via an in.order

traversal of P with respect to w.

Proof. If w lies in a half-space H +, then no subfacet which lies completely in H -

can obstruct any subfacet lying completely in H ÷. This justifies assigning larger

visibility numbers to facets in H ÷ than to those in H- . The time required for the

tree traversal is clearly O([P[). []

For the BSP illustrated in Figure 2 the visibility ordering generated for the

indicated viewpoint is e, fo, d, f l , al, c, b, ao.

Thus, in applying the scheme of [6] to solve hidden-surface removal for real-

time graphics systems, both the storage space and the tree traversal time are

proportional to the size of the partition tree. Previously, only an O(n 3) upper

bound on tree size was known [6]; our results reduce this to O(n2).

8.2. Constructive Solid Geometry

Another application of BSPs is to generate a constructive-solid-geometry (CSG)

representation of an object from its boundary representation. For polyhedral

objects, Peterson 1-15] considered CSG formulae where the literals are half-spaces

supporting the faces of the polyhedron and the operations are intersection and

union; we call such a formula a Peterson-styleformula. A natural question is: given

a polyhedron described by its n faces, can a short Peterson-style formula be

generated? In two dimensions, it is known that a formula of size O(n) can be found

for a simple polygon of n sides ([3]; also see [15]). In three dimensions, it remained

an open problem [see [3]) whether the straightforward O(n 3) bound on formula

size could be improved.

We observe that an autopartition P for the facets of a polyhedron D naturally

leads to a Peterson-style formulaf(D) of size O([P[) for the polyhedron. If D is a

half-space, thenf(D) is a single literal. Recursively, if D is divided into two parts by

a cut plane H (corresponding to some facet of D) at an internal node v of P, then let

f~(D) = (H ÷ r~ f l) u (H- c~ f2), where f1 and f2 a re the formulae corresponding

502 M.S. Paterson and F. F. Yao

to the two subtrees of v. For the polygon shown in Fig. 2 the given BSP yields the

formula

(d + n ((c + cab- n a -) w (c - c~a- ca f +))) w (d - w e - ca f+).

Theorem 8 implies the following result.

Theorem 11. Every polyhedron in R 3 with n facets has a Peterson-style CSG

formula of size O(n2).

9. Conclusion and Open Problems

Our principal results are summarized here.

Main Theorem. The worst-case BSP complexity p(n) is bounded in different

dimensions as foUows:

(i) in R 2, p(n) = O(n log n),

(ii) in R 3, p(n) = O(n2),

(iii) in Ra, f o r d >_ 3, p(n) = O(na-1).

Several important questions remain open. Example 3 does not extend immedia-

tely to higher dimensions, and we have no good lower bounds for p(n) in

dimensions greater than three. Also we have no tight lower bound for the CSG

application, so here too a gap remains.

The technical requirement of a fixed bound on the number of boundary

elements of each facet could be removed if the following question were resolved.

Question. Given an arrangement of n hyperplanes and a convex region C in R d,

what is the total number of bounding facets summed over all those regions of the

arrangement which intersect the boundary of C?

It is easy to see that, in two dimensions, the sequence of boundary edges

corresponds to a Davenport-Schinzel sequence of order 3, and hence the total

number of such edges is at most O(nct(n)) (see 1"4] and [9]).

In two dimensions our bounds for p(n) are given by f~(n) < p(n) <_ O(n log n).

Progress could be made by extending the construction for orthogonal sets given in

1-14], or by finding linear-size partitions for other special situations.

Conjecture. In R 2, p(~n) = O(n).

Acknowledgments

We thank Marshall Bern, Dan Greene, Ketan Mulmuley, and Bruce Naylor for

helpful discussions on binary partitions. We are also grateful to Jack Snoeyink for

calling our attention to the application to constructive solid geometry.

Efficient Binary Space Partitions 503

R e f e r e n c e s

1. B. Chazelle, Intersecting is easier than sorting, Proc. 16th Ann. ACM Syrup. on Theory of Computing,

1983, 125-134.
2. B. Chazelle, L. Guibas, and D. Lee, The power of geometric duality, BIT 25, 1985, 76-90.

3. D. Dobkin, L. Guibas, J. Hershberger, and J. Snoeyink, An efficient algorithm for finding the CSG

representation of a simple polygon, Computer Graphics 22, I988, 31-40.

4. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Vedag, New York, 1987.

5. D. Eppstein, Private communication.

6. H. Fuchs, Z. Kedem, and B. Naylor, On visible surface generation by a priori tree structures,

Computer Grahics (SIGGRAPH '80 Conference Proceedings), 1980, 124-t33.

7. E. Gilbert and E. Moore, Variable-length binary encoding, Bell System Technical Journal 38, I959,

933-968.

8. L. Guibas and F. Yao, On translating a set of rectangles, in Advances in Computing Research,

Vol. 1, edited by F. Preparata, JAI Press, Greenwich, CT, 1983, 61-77.

9. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of a generalized path

compressioa scheme, Combinatorica 6, 1986, 151-177.

10. D. Knuth, The Art of Computer Programming. Vol. 3, Addison-Wesley, Reading, MA, 1973.

11. B. Naylor, A priori based techniques for determining visibility priority for 3-d scenes, Ph.D.

dissertation, Univ. of Texas at Dallas, 1981.

12. M. Overmars and M. Sharir, Output-sensitive hidden surface removal, Proc. 30th IEEE Syrup. on

Foundations o f Computer Science, 1989, 598-603.

13. M. Paterson and F. Yao, Optimal binary partitions with applications to hidden-surface removal

and solid modelling, Proc. 5th Ann. ACM Syrup. on Computational Geometry, 1989, 23-32 (also

Dept. of Computer Science Research Report RR139, Univ. of Warwick, March 1989).

14. M. Paterson and F. Yao, Binary space partitions for orthogonal objects, Proc. 1st Annual

ACM-SIAM Syrup. on Discrete Algorithms, 1990, 100-106.

15. D. Peterson, Halfspace representations of extrusions, solids of revolution, and pyramids, SANDIA

Report SAND84-0572, Sandia National Laboratories, 1984.

16. F. Preparata, A new approach to planar point location, SIAM Journal on Computing 10, 1981,

473-482.

17. W. Thibault and B. Naylor, Set operations on polyhedra using binary space partitioning trees,

Computer Graphics 21, 1987, 153-162.

Received June 1, 1989, and in revised form March 19, 1990,

