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Abstract

We give new upper bounds for the measure problem of Klee which signifi-
cantly improve the previous bounds for dimensions greater than 2. We obtain
an O(n%/2logn,nlog n) time-space upper bound to compute the measure of
a set of n boxes in Euclidean d-space. The solution requires several new
ideas including application of the inclusion/exclusion principle, the concept
of trellises, streaming, and a partition of d-space.

1 Introduction

Around 1977, Klee [5] posed the ‘measure problem’: given a set of n intervals,
find the length of their union. He gave an O(nlogn) time solution and asked if
this was optimal. This generated considerable interest in the problem, and shortly
after, Fredman and Weide [4] proved that €}(n log n) is a lower bound under the usual
model of computation. Bentley [2] considered the natural extension to d-dimensional
space where we ask for the d-dimensional measure of a set of d-rectangles. He showed
that the O(nlogn) bound holds for d = 2 as well, and for d > 2, the result generalizes
to an upper bound of O(n%logn). Thus the results are optimal for d = 1,2. We
refer to the book [6] for an account. Concerning these results for d > 3, Preparata

and Shamos remarked in their book ([6] pp.328-9):

What is grossly unsatisfactory about the outlined method for d > 3 is
the fact that there is a “coherence” between two consecutive sections in
the sweep that we are unable to exploit. ... Although it seems rather
difficult to improve on this result, no conjecture about its optimality has
been formulated.

The only progress made since was a small improvement by van Leeuwen and
Wood [6,7] who removed the logn factor from Bentley’s upper bound for d > 3.
The test case seems to be d = 3: is O(n?) really necessary for computing the
volume of a set of n boxes in 3-space? In this paper we show that O(nl-®logn)




suffices. This immediately implies that in d-dimensions (d > 3), the bound becomes
O(n4-15logn).

The idea is to use a plane-sweep approach and dynamically maintain the measure
of a set of 2-dimensional rectangles in time O(/n) per update.

Such a result means that we can maintain the area of a set of rectangles implicitly
without having to represent the full boundary structure. This is because any explicit
representation of the boundary of n rectangles requires Q(n?) time in the worst case
because of the simple ‘trellis’ example: it consists of n long vertical rectangles which
are pairwise disjoint, superposed on n long horizontal rectangles also disjoint among
themselves. — "
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Figure 1: Trellis

The first idea is to exploit the regularity of such trellis structures by maintaining
only O(n) amount of information (at the boundary of the box containing the trellis)
to keep track of the area of the trellis rectangles. Of course, a union of rectangles is
too irregular to be consistently exploited in this way, so the next idea is to partition
the plane into a collection of trellises. Using a generalization of the k-d tree of
Bentley[1], we are able to form such a partition with only O(n) trellises each of size
O(4/n). As we shall see, extending this to higher dimensions requires a partition
with interesting properties that might be useful for other applications as well.

The rest of this paper is organized as follows: Section 2 describes the basic space
sweep algorithm we use and introduces the generalized k-d tree for storing the boxes.
Section 3 contains the solution to the 3-dimensional measure problem. Section 4
generalizes this solution to a d-dimensional method, using an interesting partition
scheme of the d-dimensional space. This results in a (O(n%?log n,n?/?) time-space
upper bound. In Section 5 we exploit a streaming technique of Edelsbrunner and
Overmars(3] to reduce the amount of storage required to O(nlogn) only, for any
dimension d. Finally, in Section 6 some conclusions, extensions and open problems
are given.

During the paper we will use the following terminology. A d-box is the carte-
sian product of d intervals in d-dimensional space. An i-boundary of a d-box is a
boundary hyperplane that is perpendipular to the i-th coordinate axis. Each d-box




has two i-boundaries for 1 < i < d. The :-interval is the projection of the d-box on
the z;-axis.

Definition 1.1 A rectangle R, is said to partially cover R; if the boundary of R,
intersects the interior of R,.

Definition 1.2 For two d-bozes R, and R; let R be their intersection. We say that
R, ts an i-pile w.r.t. Ry iff for all1 < j < d with j # i the i-interval of R is equal
to the i-interval of R;.

In other words, in each direction, except direction i, R; completely covers R;.
i-piles will play an important role throughout this paper.

2 General framework

The basic method for solving the d-dimensional measure problem is as follows. Let
V be the set of n d-boxes for which we want to compute the measure. Let V' =
{a1,...,an} be the set of all different z4-coordinates of vertices of the boxes, i.e.,
all different endpoints of d-intervals. We sort the boxes both by left and right d-
boundary. We solve the measure problem using a plane sweep approach. We sweep
a hyperplane along the d-th coordinate axis stopping at each value in V’. During
the sweep we maintain the (d — 1)-dimensional measure of the boxes intersected by
the sweep plane. The algorithm looks as follows.

S:=0;
MEAS:=0;
FOR #:=1 TO n'—-1DO
Insert all d-boundaries of boxes that start at a; in S;
M:=(d — 1)-dimensional measure of boxes in S;
MEAS:=MEAS+(ai+1 — a))*M;
Delete all d-boundaries of boxes that end at a; + 1 from S
END;

At termination MEAS will contain the measure of the set of boxes. S will
be a dynamic data structure for maintaining the (d — 1)-dimensional measure. If
insertions and deletions in S can be performed in time Fy_,(n) the method will take
time O(nlogn + nFy_1(n)). This approach is due to Bentley.

To maintain the measure of the set of boxes intersected by the sweep-plane we
introduce a generalized version of the k-d tree.

Definition 2.1 A d-dimensional orthogonal partition tree is a balanced binary tree.
With each internal node § is associated a part Cs of the d-dimensional space, with
the following properties:




o Cyont 18 the whole d-dimensional space.
o For each node § C;s is a (possibly unbounded) d-boz.
o For each node § with sons 6, and 63, Int(Cs,)NInt(Cs,) = 0 and C5,UCs, = Cs.

Cs will be called the region associated with §. When § is a leaf we refer to C; as
a cell. It immediately follows that for each full level of the orthogonal partition tree
all regions are essential disjoint and their union is the d-dimensional space. From
now on we drop the qualifying word “orthogonal” and speak only of “partition
trees”, which is not to be confused with the “non-orthogonal” partition trees of e.g.
Willard[9] and Welzl[8].

To use partition trees for maintaining the measure of a set of d-boxes we store
the following extra information in the partition tree: With each leaf § we store all
boxes that intersect Cs but do not cover the region associated with the father of
6. For each internal node § we store a counter TOT that contains the number of
d-boxes that completely cover Cs but only partially cover Cyapher(s). Finally, with
each node § we associate a field M that is defined as follows: If § is a leaf M contains
the measure of the boxes stored at § restricted to Cs. Otherwise, if TOT > 0 then
M is the measure of Cs, otherwise M = Mj,on(5) + Myson(s)- 1t is easy to verify that
M, o is the measure of the set of d-boxes.

To maintain the measure in a dynamically changing set we have to be able to
insert and delete d-boxes in the partition tree. The basic insertion algorithm is the
following;:

PROCEDURE Insert(boz,6);
IF § is a leaf THEN
Store boz at §;
Compute M;
ELSIF boz covers Cs THEN
INCR(TOT5;);
Mj:=measure of Cs
ELSIF boz partially covers Cs THEN
Insert(boz,lson(6));
Insert(boz,rson(8));
IF TOTs; > 0 THEN
Mjs:= measure of Cj
ELSE
M5:=Mpon(6) + Mnon(ﬁ)
END
END;

The routine is called as Insert(boz,root). The deletion routine will be similar.
Note the similarity with the methods of Bentley[2] and van Leeuwen and Wood([7]
for the 1- and 2-dimensional case. It is immediately clear that the amount of time
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required depends on the number of nodes visited and the amount of time required
for computing the measure at the leaves. In the sequel of this paper we will show
that partition trees exist in which both are small.

3 Dynamic measure problem in two dimensions

To illustrate the general solution we will develop in the next section, we first con-
centrate on the 3-dimensional measure problem. Solving the 3-dimensional problem
means that we have to design a 2-dimensional partition tree with good performance.
To obtain such a partition tree we first define a subdivision of the plane in rectan-
gular cells with some interesting properties.

Let V be the set of the rectangles that will be inserted and deleted in the partition
tree. Let Vi be the set of different z;-coordinates of 1-boundaries of rectangles.
First we split the z;-axis into \/n intervals such that each interval contains < 2,/n
coordinates. This defines /n slabs in the plane. Each slab s will be split by
horizontal line segments into a number of cells. Let V! be the set of rectangles
that have a 1-boundary inside s. Let V? be the set of rectangles that only have a
2-boundary in s. (Note that the size of V! is bounded by 2,/n but the size of V2 can
be almost n.) We draw a line segment through each 2-boundary of a rectangle in V1.
Moreover, we draw a line segment through each y/n-th 2-boundary of a rectangle in
V2. In this way s is partitioned into < 64/n rectangular cells.

Lemma 3.1 The partition has the following properties:

1. There are O(n) cells.
2. Each rectangle of V partially covers at most O(y/n) cells.
3. No cell contains vertices in its interior.

4. FEach cell has at most O(y/n) rectangles partially covering it.

Proof. Can easily be verified. O

We will use the cells of this partition as leaves of the partition tree. It is easy
to see how the rest of the tree can be built on top of it. As long as there are more
than one cell in a slab, merge neighbouring cells into one (creating the father of the
two cells). After that merge neighbouring slabs. Hence, in the resulting tree, the
regions associated with nodes in the upper levels are split on z;-coordinate. The
regions associated with nodes in the lower levels are split on z3-coordinate. Details
are left to the reader.

Lemma 3.2 Let V be a set of n rectangles in the plane. There exists a partition
tree for storing any subset of V such that

1. The tree has O(n) nodes.




2. Each rectangle is stored in O(,/n) leaves.
3. Each rectangle influences O(y/nlogn) TOT fields.
4. No cell of a leaf does contain vertices of rectangles in the inside.

5. Each leaf stores no more than O(/n) rectangles.

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma. The
third property follows from the first two. If the tree has O(n) nodes its depth is
bounded by O(logn). When a rectangle influences the TOT field of a node § it
intersects Cfather(s), and there must be a leaf below father(§) that is intersected
by the rectangle. Hence, the number of internal nodes intersected by a rectangle is
bounded by O(logn) times the number of leaves where the rectangle is stored. As
a result the rectangle can only influence that number of TOT fields. O

It remains to show how the measure at a leaf is maintained when inserting and
deleting rectangles. To this end we use the inclusion/exclusion principle. Note
that, due to property 4, the rectangles stored at a leaf § are 1-piles or 2-piles w.r.t.
Cs. In other words, they form a trellis. The measure of such a trellis can be
maintained in the following way. Let V; be the projection of the 1-piles on the
z1-axis and let V, be the projection of the 2-piles on the z,-axis. Let M; be the
(1-dimensional) measure of V; and M, the (1-dimensional) measure of V3. Assume
that the cell Cs has size Ly X L. Now it is easy to see that the measure of the trellis
is My x Ly 4+ My x Ly — M, * M;. Hence, we just have to maintain the 1-dimensional
measure of V; and V,. For this we can use a simple segment tree that uses linear
storage and maintains the measure in time O(logn) per insertion and deletion.

Theorem 3.3 The measure of a set of n 8-boxes in 3-dimensional space can be
computed in time O(n+/nlogn) using O(n\/n) sterage.

Proof. We use the plane sweep approach and maintain the partition tree de-
scribed above. To insert or delete a rectangle we have to update O(y/nlogn) TOT
fields. This takes time O(y/nlogn). Next, we have to insert or delete the rectangle
at O(4/n) leaves. At each such leaf this causes an insertion or deletion in a segment
tree which takes O(logn). Hence, the total update time of the partition tree is
O(+/nlogn).

The bound on the amount of storage required follows from the fact that the tree
itself takes O(n) storage and each leaf stores O(4/n) information. [

4 Dynamic measure in multi-dimensional space

We will now generalize this method to d-dimensional space. To this end we will
describe a d-dimensional partition tree, based on a cell decomposition of the d-
dimensional space.




Let V be the set of all d-boxes that will be inserted or deleted in the partition
tree. Let Vi be the set of different z;-coordinates of 1-boundaries of boxes. We
split the z,-axis in /n intervals, each containing < 2,/n coordinates. This splits
the d-dimensional space in /n slabs. For each slab s let V, be the set of d-boxes
that partially cover s. We split V, in two subsets: V! of d-boxes that have a 1-
boundary inside s and V? of d-boxes that do not have a 1-boundary inside s. Note
that |V}!| < 2/n. Each cell (slab) s we now split with respect to second coordinate.
We split it at the 2-boundaries of each d-box in V! and we split it at every {/n-th
2-boundary of d-boxes in V2. As a result we split each slab s into O(1/n) cells. For
each cell c let V, be the set of d-boxes that partially cover ¢. We again split V, into
two subsets: V! of boxes that have a 1- or 2-boundary inside ¢ and V.2 of boxes that
do not have a 1- or 2-boundary inside c. (Note that there are no boxes that have
both a 1- and 2-boundary inside ¢.) Again |V}| = O(y/n). We split ¢ into subcells
with respect to the third coordinate. Again, we split at each 3-boundary of boxes
in V! and at every \/n-th 3-boundary of boxes in V2. In this way we continue for
all coordinates.

Lemma 4.1 The partition has the following properties:

1. There are O(nd/?) cells.
2. Each d-boz of V partially covers at most O(n(4-1/2) cells.
3. Each cell only contains piles in its interior.

4. Each cell has at most O(y/n) d-bozes partially covering it.

Proof. See the full paper for a precise proof. O

We will use the cells of this partition as leaves of the partition tree. It is easy
to see how the rest of the tree can be built on top of it. See the full paper for a
detailed description of the structure.

Lemma 4.2 Let V be a set of n d-bozes in d-dimensional space. There exists a
partition tree for storing any subset of V such that

The tree has O(n?/?) nodes.

Each d-boz is stored in O(n4-1)/2) leaves.

Each d-boz influences O(n'9-1)/2logn) TOT fields.
Each cell of a leaf only contains piles.

FEach leaf stores no more than O(y/n) d-bozes.

Sud e o

Proof. Properties 1, 2, 4 and 5 follow immediately from the above lemma. The
third property follows from the first two as the depth is again bounded by O(log n).
0




It remains to show how the measure at a leaf is maintained when inserting
and deleting d-boxes. To this end we again use the inclusion/exclusion principle. As
stated in property 4, the d-boxes stored at a leaf é are piles and form a d-dimensional
trellis. Let V; be the projection of the i-piles on the z;-axis for each 1 < i < d. Let
M; be the 1-dimensional measure of V;. Let L; be the length of Cs in direction z;.
The following result is easy to proof:

Lemma 4.3 The measure of the trellis is

2 (_1)k+lsk

1<k<d

where
Sk = > II M, II L

1< <...<jp<d 1<i<k 1#5; for any 1

Although this might look quite complicated it is simply the inclusion/exclusion
principle. When M; is known for each ¢ the measure can be computed in constant
time (assuming d is a constant).

Hence, we just have to maintain the 1-dimensional measure of V; for each :. For
this we use d segment trees, one for each dimension.

Lemma 4.4 Updates in the d-dimensional partition tree take time O(n@-1/21og n)
and the tree uses O(n(@+1)/2) storage.

Proof. Follows from the above lemma’s. 0

Theorem 4.5 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n%/?logn) using O(n%?) storage.

Proof. We use the plane sweep approach and maintain a (d—1)-dimensional par-
tition tree. So we have to perform O(n) updates, each taking time O(n(4-1-1/2log n).
The time bound follows. According to the preceeding lemma, the structure uses
O(n(d-1+1)/2) storage. O

5 Reducing the amount of storage

In this section we will show how the amount of storage required can be reduces to
O(nlogn). To this end we use an instance of the streaming technique introduced in
Edelsbrunner and Overmars[3]. We will only briefly describe the ideas and results.
See the full paper for a more extensive description.

The idea of streaming is the following: Beforehand we know what updates have to
be performed and in what order. We can view the space sweep method as traversing
in time (being the d-th coordinate). Each update in the structure has to be per-
formed at a specific moment in time. Before each update we check what the current




measure is and we multiply it by the time passed since the last update. Rather
than building the structure and performing the updates one after the other, we will
perform them simultaneously and construct parts of the data structure when we
need them.

To formalize this, at any moment we are given a sequence of updates L over time
and a region of the space C. This region corresponds to some node in the tree and
L is the sequence of updates that will pass through this node. With each update in
L we have stored the time at which it has to be performed. In the beginning C is
the whole d-space and L is the complete list of updates. A counter MEAS will be
used to collect all the measure found. In the beginning it will be set to 0.

The technique now works as follows: When all d-boxes in L are piles with respect
to C (i.e., we are at a leaf in the partition tree) we construct d segment trees. We
perform all the updates on the segment trees and compute the measure in the cell
after each update. These measures we multiply with the time passing to obtain the
total measure in C over time. This measure we add to MEAS. This will take time
O(|L|logn).

When not all boxes are piles (i.e., we are at an internal node) we first compute
during which periods of time C will be completely covered by one box. (This cor-
responds to the time when TOT # 0.) We multiply the measure of C' with this
total amount of time and add it to MEAS. Next we change time by collapsing the
covered periods into a single moment, performing all the updates in that period at
the same moment. (This is neccessary to avoid that measure will be reported in
these periods later again.) Boxes that are now inserted and deleted at the same
moment are removed from L. Next we split C into two cells C; and C; in the same
way in which it would have been split in the partition tree. (How to split can be
determined by presorting. We won’t go into details here.) We make two lists L,
and L; out of L containing the updates that influence C; and C,. We discard C
and L and call the routine recursively with C; and C;. The work can be performed
in O(|L|) time.

The method does essentially the same work us the original technique in which
all updates are performed one after the other. In fact, it is more efficient because of
two reasons. When the whole list consists of piles we immediately solve the problem
rather than splitting till the list contains less than /n boxes. Secondly, we don’t
consider boxes anymore when during their whole period of existance they are covered
by some other box.

Theorem 5.1 The measure of a set of n d-bozes in d-dimensional space can be
computed in time O(n?/?logn) using O(nlogn) storage.

Proof. The amount of time used is essentially the same as in the case we
performed the updates one after the other.

To estimate the amount of storage, note that the depth of recursion will be
bounded by O(logn). At each level we use O(n) storage. The bound follows. O




6 Conclusions

We have given a new solution to Klee’s measure problem that is much more ef-
ficient than previously known results, improving the time bound from O(n?-!) to
O(n%?logn). The technique uses many new ideas, including a result on partitioning
space, a generalization of k-d trees and the use of the inclusion/exclusion principle.
Streaming was used to reduce the amount of storage used to O(nlogn).

The dynamic data structure we presented for dynamically maintaining the mea-
sure can be used for other problems as well. It is very simple to maintain e.g. the
perimiter. The method can also be used for computing contours and e.g. i-contours.
Moreover, the structure gives a compact representation of the shape of the set of
d-boxes. In the full paper some of these applications will be described.

Some open problems do remain. First of all, it should be possible to shave off
the factor of logn. But, in fact, there is no guarantee that the method is even near
optimal. Improvements or lowerbounds should be worked on.
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