
s -_ __ lf!El 
Computational 

Geometry 

Theory and Applications 

ELSEVIER Computational Geometry 5 (1995) 95-114 

Separation and approximation of polyhedral objects 

Joseph S.B. Mitchell a7 *>l, Subhash Suri b 

a Department of Applied Math, SUNY, Stony Brook, NY 11794-3600, USA 

b Bell Communications Research, Room ZQ-358, 445 South Street, Morristown, NJ 07960, USA 

Communicated by Leonidas Guibas; submitted 1 May 1992; accepted 8 February 1994 

Abstract 

Given a family of disjoint polygons P,, P,, . . . , Pk in the plane, and an integer parameter m, it 

is AT-complete to decide if the Pi’s can be pairwise separated by a polygonal family with at 

most m edges, that is, if there exist polygons R,, R,, . . , R, with pairwise-disjoint boundaries 

such that Pi c Ri and C 1 Ri I< m. In three dimensions, the problem is NP-complete even for two 

nested convex polyhedra. Many other extensions and generalizations of the polyhedral separation 

problem, either to families of polyhedra or to higher dimensions, are also intractable. 

In this paper, we present efficient approximation algorithms for constructing separating 

families of near-optimal size. Our main results are as follows. In two dimensions, we give an 

O(n log n) time algorithm for constructing a separating family whose size is within a constant 

factor of an optimal separating family; n is the number of edges in the input family of polygons. 

In three dimensions, we show how to separate a convex polyhedron from a nonconvex polyhedron 

with a polyhedral surface whose facet-complexity is O(log n) times the optimal, where n = 1 P 1 

+ 1 Q 1 is the complexity of the input polyhedra. Our algorithm runs in 0(n41 time, but improves 

to 0(n3) time if the two polyhedra are nested and convex. 

Our algorithm for separating a convex polyhedron from a nonconvex polyhedron extends to 

higher dimensions. In d dimensions, for d > 4, the facet-complexity of the approximation 

polyhedron is O(d log n> times the optimal, and the algorithm runs in O(nd+ ‘1 time. Finally, we 

also obtain results on separating sets of points, a family of convex polyhedra, and separation by 

non-polyhedral surfaces, such as spherical patches. 

* Corresponding author. 

1 Partially supported by grants from Boeing Computer Services, Hughes Research Laboratories, Air Force 

Office of Scientific Research contract AFOSR-91-0328, and by NSF Grants ECSE-8857642 and CCR-9204585. 

0925-7721/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 

SSDIO925-7721(95)00006-2 



96 J.S.B. Mitchell, S. Suri/ Computational Geometry 5 (1995) 95-114 

1. Introduction 

1 .l. Motivation and background 

A polyhedron is one of the most widely used geometric solids in computer-modeling 

applications. In robotic systems, for instance, polyhedra are used to model obstacles that 

must be circum-navigated; in computer-aided design, they might represent automobile 

parts or tools; and in computer graphics or geographical databases, they might model 

real-world objects, such as mountains or buildings. The combinatorial complexity of the 

model polyhedra is a major factor in the efficiency of algorithms that manipulate these 

polyhedral solids. Thus, ad hoc schemes of diverse nature are employed to reduce this 

complexity, either by storing the “scenes”  hierarchically, or by replacing the models by 

simpler polyhedral objects that preserve the critical geometric and topological features 

of the original set. The problem of separating and approximating a family of polyhedral 

solids arises frequently in these schemes. 

A large body of literature exists dealing with variants of the problem of separating a 

collection of geometric objects [1,5-7,9,11,17,18,25]. Much of the research interest has 

focused on linear separability. The problem of determining whether two sets of points in 

d-space are separable by a hyperplane can be formulated as a linear programming 

problem and, therefore, solved in polynomial time. In fact, using the linear programming 

algorithms of Megiddo [17] or Dyer [9], this problem can be solved in linear time, for 

any fixed dimension d. 

If, however, the two point sets are not linearly separable, then a natural question is to 

find the minimum number of hyperplanes that together separate the two sets. It was 

shown by Megiddo [18] that this problem is hard unless both the dimension and the 

number of separating hyperplanes are fixed. In an arbitrary dimension, the problem of 

deciding if two point sets can be separated by two hyperplanes is NP-complete. In a 

fixed dimension, separability of two point sets by k hyperplanes is intractably hard, if k 

is not fixed. In particular, it is NP-complete to decide if two planar sets of points can 

be separated by k lines 1181. Of course, separability of two point sets in a fixed 

dimension by a fixed number of hyperplanes can always be decided in polynomial time 

by a brute-force search. 

Results of a positive nature exist for special classes of separators. Edelsbrunner and 

Preparata [ll] give an O(n log n) time algorithm for finding a minimum-vertex convex 

polygon that separates two sets of n points in the plane. Whether similar results are 

possible for separation by convex polyhedra in higher dimensions is an open problem. 

The separation complexity also has relevance to the problem of intersection detection 

between pairs of preprocessed simple polygons-Mount [19] presents an algorithm 

whose time complexity depends on the number of vertices in a minimum-complexity 

separator. 

Separability of polyhedral solids also has received considerable attention. Two 

disjoint convex polyhedra can always be separated by a single hyperplane; again, the 

problem can be formulated as a linear programming problem. Paralleling the separability 
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of point sets, the only positive results known on the polyhedral separation are for special 

classes of separators, and only for two dimensions. Aggarwal et al. [ll give an 

O(n log n) algorithm for finding a minimum-vertex polygon separating two nested 

convex polygons. An algorithm of similar complexity is given by Wang and Chan [25] 

for minimum separation of two nested nonconvex polygons. 

Not surprisingly, most variants of the general polyhedral separability problem are 

also intractable. Let 9 = (P,, P2, . . . , Pk) be a family of pairwise-disjoint polyhedra in 

d dimensions. We say a family 9 = {R,, R,, . . . , Rk} is a separating family for 9 if 

the boundaries of 9 are pairwise-disjoint and P, G Ri, for i = 1,2,. . . , k. A minimum 

separating family is one that has the minimum possible number of facets of any 

separating family. The problem of finding a minimum separating family is NP-complete 

even for a family of convex polygons in two dimensions [5]. If a family consists of only 

two polyhedral solids, we call its separating family a separator. In three dimensions, the 

problem of finding a minimum-facet separator for two polyhedral solids is NP-com- 

plete. The problem remains NP-complete even if only one of the solids is nonconvex, or 

if the two polyhedra are convex nested polytopes [6,7]. 

The problem of finding a minimum separator has natural applications in surface 

approximation. By “fattening”  a surface J$ by an amount 8, one obtains a pair of new 

surfaces P and Q that “sandwich”  2 between them. A minimum polyhedral separator 

of P and Q is a surface of least combinatorial complexity that approximates 2 within a 

tolerance of E. By computing a family of approximate surfaces, corresponding to 

various values of E, one can construct a hierarchical representation of _Y$, allowing the 

user the option to use a sparse representation when the exact shape of 2 is irrelevant 

(e.g., when flying an airplane at 36,000 feet over a terrain), or a more detailed 

representation when the application calls for it (e.g., when flying at 1000 feet over the 

terrain). In two dimensions, if the fattened region is an annulus, the methods of 

Aggarwal et al. [ll or Wang and Chan [25] solve this problem in O(n log n) time. For 

large values of E, the fattening may create holes, in which case, one wants a 

minimum-vertex simpZe polygon surrounding all the holes of the fattened region. 

Guibas et al. 1141 give an approximation algorithm for this problem. The results 

presented in this paper can be used to approximate convex polyhedral surfaces in three 

and higher dimensions. 

1.2. Summary of results 

We present polynomial-time approximation schemes for several NP-complete poly- 

hedral separability problems. We call a separating family 9 an f(n)-approximation if 

the ratio between the number of facets in 9 and the number of facets in a minimum 

separating family is bounded by f(n). 0 ur main results are the following. In two 

dimensions, we give an O(n log n) time algorithm for constructing a 7-approximation 

of the minimum separating family for a set of disjoint polygons, where n is the number 

of edges in the input family of polygons. In three dimensions, we show how to separate 

a convex polyhedron from a nonconvex polyhedron using a polyhedral surface whose 
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facet-complexity is O(log n) times the optimal. Our algorithm runs in O(n4) time, but 

improves to O(n3) time if the two polyhedra are nested and convex. 

Our algorithm for separating a convex polyhedron from a nonconvex polyhedron 

extends easily to higher dimensions. In d dimensions, for d > 4, our algorithm produces 

an O(d log n&approximation of a minimum convex separator in O(nd+ ‘) time. Finally, 

we also obtain results on separating point sets, families of convex polyhedra and on 

separation by non-polyhedral surfaces, such as spherical patches. 

This paper is organized as follows. In Section 2, we consider the separation problem 

for a family of simple convex polygons in the plane. Section 3 describes our approxima- 

tion scheme for separating two three-dimensional polyhedra. In Section 4, we consider 

the problem of separating a family of three-dimensional convex polyhedra. Extensions 

and generalizations to separation of two higher-dimensional polyhedra are discussed in 

Section 5. In Section 6, we briefly consider the polyhedral separation problem using 

non-polyhedral surfaces. Finally, some concluding remarks and open problems are 

discussed in Section 7. 

2. Polygon separation in Rz 

In this section, we propose an approximation algorithm for separating a family of k 

pairwise-disjoint simple polygons. This problem is NP-complete, even if all the 

polygons are convex, or rectilinearly convex [5]. An approximation algorithm for a 

family of convex polygons is given by Edelsbrunner, Robison and Shen [12]. They 

obtain a separating family of size at most 6 k-9. No such result seems to be known for 

nonconvex polygons. In the case of orthogonal nonconvex polygons, Das obtained a 

polynomial-time approximation method that constructs a separating family of size at 

most (n + OPT)/2, where OPT is the size of an optimal separating family for 9 [5]. 

The approximation method of Das [5] does not guarantee a bounded ratio between the 

sizes of the heuristic and the optimal family. 

We present a polynomial-time algorithm for constructing a separating family for a set 

of k arbitrary simple polygons. The algorithm runs in O(n log n) time and produces an 

O(l)-approximation of a minimum separating family; n denotes the total number of 

edges in the input family. The quality of our approximation family can be stated in two 

ways: first, the approximation family has at most 7 times the optimal number of edges, 

and second, the family has no more than the optimal plus 9k edges. In other words, the 

additional number of edges used by our family depends only on k, and not n. 

There are several closely-related definitions of a separating family, depending upon 

such considerations as whether the separating family has the same topology as 9, or 

whether the polygons in the separating family are edge disjoint. (For example, a 

separating family may use nested polygons even if all the polygons in 9 have disjoint 

interiors.) Our approximation holds for all of these definitions; however, we limit our 

discussion to what we consider to be the most natural definition of a separating family, 

and only briefly mention extensions to other definitions of separators. 



J.S.B. Mitchell, S. Suri/ Computational Geometry 5 (1995) 95-114 99 

The definition we adopt is that of a separating subdivision. A separating subdivision 

9 of 9 is a polygonal subdivision of the plane such that any two polygons of 9 lie in 

different cells of 9. The size of 9, denoted I 9 I, is the total number of edges in 9. In 

the following, we show how to compute a 7-approximation of an optimal separating 

subdivision. 

Without loss of generality, we assume that all the polygons in the family 9 lie inside 

a large rectangular box B. We call the set of points B\9 the free space; this is the set 

of points in B that lies in the exterior of all the polygons of 9. The main idea behind 

our method is to partition the free space into a set of O(k) “moats.”  Our separating 

subdivision is derived by computing a minimum-link path for each moat. 

We start by triangulating the free space. Let Y be a triangulation of free space, and 

let 5Ys be the graph-theoretic dual of 7. Observe that 5” has O(n) nodes and arcs, 

and the maximum degree of a node is three. Further, .!YY has k + 1 faces, one for each 

of the k polygons of 9 and one for the rectangular box B. 

We contract 59” by repeatedly removing degree-l nodes. More precisely, if .YY 

contains a node of degree 1, we delete it along with its incident edge, and repeat, until 

there are no nodes of degree 1. Observe that at the end of this procedure, the graph still 

has k + 1 faces, but now all nodes have degrees either 2 or 3. Next, we contract all 

degree-2 nodes: if v is a node of degree 2, we delete v and replace its two incident 

edges by a single edge. (Notice that this process might introduce loops, which are arcs 

with both endpoints incident to the same node. In this case, we adopt the convention that 

a loop contributes 2 to the degree of its incident vertex.) 

We denote by g the graph that is obtained at the end of this contraction process. Fig. 

1 shows an example of three polygons, along with their triangulation and graph 5’. We 

observe that S is a 3-regular planar multi-graph, with k + 1 faces. (In order to avoid 

Fig. 1. Triangulation 7 and graph S for a family of polygons (X, Y, Z). Triangulation edges are drawn 

dotted, and arcs of d are drawn in heavy lines. The arc surrounding X is a loop. 
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Fig. 2. A moat between the hubs a and d. 

trivialities, we assume that k > 2; this guarantees that at least one node of 5YY, and thus 

one node also of 9, has degree 3.) The following lemma is an easy consequence of the 

formula of Euler for planar graphs. 

Lemma 2.1. Z? has k + 1 faces, 2k - 2 nodes, and 3k - 3 arcs. 

We now explain how to form “moats” using the graph 5. Consider a node u and let 

t = (x, y, z) be the triangle in 7 that is the dual of v. We introduce a (Steiner) point a 

inside the triangle t, and connect it by straight line segments to the three comers of t; to 

be consistent, we can always choose this point to be the centroid of t (although any 

point interior to t suffices). The point a is called a hub of t and the line segments 

(a, x), (a, y>, (a, z> are called spokes of t. * We do this for all the nodes of 5. The 

set of all spokes induces a partition of the free space into polygonal regions, one per arc 

of .Y. We call these regions moats, and define them more formally in the following. 

Consider an arc (u, v) of the graph ?7. Let a and d, respectively, denote the hubs 

corresponding to u and v. Recall that the arc (u, v) is a contraction of a path in the 

original graph .9”, which in the primal corresponds to a sequence of triangles. (These 

triangles together with the triangles corresponding to ZJ and u form a corridor.) Let 

(b, c) be the triangulation edges among these triangles that is closest to a, and let (e, f > 

be the triangulation edge closest to d. Assume that the triangles (a, b, c) and (d, e, f > 

are oriented clockwise. We note that the points c and e are vertices of a common 

polygon Pi; similarly, b and f are vertices of a polygon Pi. The moat corresponding to 

.the arc (u, v) consists of the path (c, a, b), followed by the (counterclockwise) 

boundary chain of Pi from b to f, followed by the path (f, d, e) and then the 

(counterclockwise) boundary chain of Pi from e to c. Fig. 2 illustrates this construction. 

’ We associate hubs and spokes with both a triangle and its dual node. 
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We remark that degeneracies might arise in the above construction if the arc (u, u) is 

a loop. In that case, the two hub points a and d, as well as two spokes might coincide. 

Thus, the resulting polygon is “pinched”  along the common spoke. A conceptual 

perturbation of d still allows us to treat the moat as a simple polygon. 

In the moat M constructed above, we call a and d the hubs of M, and the polygonal 

chains between b and f, and between e and c, the banks of M. Either of the banks may 

consist of a single vertex. Let 4 denote the family of all the moats; there is one moat 

per arc of g. 

We find our approximate separating subdivision by computing a minimum-link path 

in each moat between its two hubs. If M is a moat, and a and d are its two hubs, then 

we compute a minimum-link path from a to d inside M; observe that in a moat 

corresponding to a loop, this minimum-link path resembles a nested polygon. 

Let 9 denote the union of the minimum-link paths for all the moats. It is easy to see 

that 9 is a subdivision. The following lemma shows that in fact it is a separating 

subdivision of 9. 

Lemma 2.2. 9 is a separating subdivision of 9. 

Proof. The graph ~9~ can be embedded in the plane (in the obvious way) to yield a 

separating subdivision, YY, of 9. Since g is obtained from .Y7 by removing degree-l 

nodes and doing edge contractions, 9 has an embedding in the plane that is homotopi- 

tally equivalent to the separating subdivision 5$. By its definition, 9 is homotopi- 

tally equivalent to such an embedding of g?, and hence to the separating subdivision 

PY. 0 

It remains to show that 1 9 I is within a constant factor of the size of an optimal 

separating subdivision. We start by defining a canonical separating subdivision. A 

polygonal subdivision is called a canonical separating subdiuision if (1) its edges are 

partitioned among the moats of A, and (2) for each moat, there is a path between its 

two hubs, using only the edges of the subdivision, and the vertices of the subdivision 

include all the hubs. 

Clearly, our subdivision 9 is a canonical separating subdivision. We prove that an 

optimal separating subdivision can be transformed into a canonical separating subdivi- 

sion by the addition of O(k) edges. 

Consider a moat M E_+Y with hubs a and d. We say that a polygonal chain C 

separates M if a subchain of C lies within M and joins a point on the spokes incident to 

a to a point on the spokes incident to d. The following lemma shows that a separating 

subdivision must separate all the moats of 4. 

Lemma 2.3. If 9 is a separating subdivision for 9, then for every moat M EM, there 

is a chain of edges in 9 that separates M. 



102 J.S.B. Mitchell, S. Suri/Computational Geometry 5 (1995) 95-114 

\ 
Moat M 

Fig. 3. Transforming a separating subdivision into a canonical separating subdivision. 

Proof. Suppose that 9 does not have a chain that separates M. Then the two (different) 

polygons, Pi and P,, of 9 that form the banks of M can be connected by a path 

without crossing an edge of 9. But this contradicts the fact that Pi and Pi must lie in 

different cells of 9, by the definition of separating subdivision. 0 

The following lemma shows how to transform a separating subdivision into a 

canonical separating subdivision, by adding O(k) new edges. 

Lemma 2.4. Let 9 be a separating subdivision of 9. For each moat M ~4, there 

exists a polygonal chain that joins the two hubs of M within the moat and all but four 

edges of the chain are in W. 

Proof. By Lemma 2.3, there exists a chain C that joins a spoke incident to one hub of 

M to a spoke incident to its other hub. Furthermore, all edges of C, except perhaps the 

two extreme ones, lie completely in M. We can modify C by adding four edges, two on 

each end, so that the new chain joins the two hubs. Fig. 3 shows an example. In the 

figure, the chain C is shown by solid lines, and the modified chain is shown by dotted 

lines. 0 

It follows from Lemma 2.4 that, by adding at most four vertices per moat (two at 

hubs and two at spokes), we can transform 9 into a canonical separating subdivision. 

Among the newly added vertices, 2k - 2 are hub vertices, each of which has degree 3 in 

the final subdivision, and 2(3k - 3) are spoke vertices, each of which has degree 2. The 

total increase in vertex-edge incidences in the subdivision is 

3x(2k-2)+2X(6k-6)=18k-18. 

Thus, the total number of newly added edges is (18k - 18)/2 = 9k - 9. Thus, an 

optimal separating subdivision 9 can be converted into a canonical separating subdivi- 

sion by the addition of 9(k - 1) edges. 

Finally, observe that 9, by construction, is an optimal canonical separating subdivi- 

sion; we used a minimum-link path in each moat. Thus, by comparing 9 with an 

optimal subdivision 9, we obtain 

)5+&%‘l++(k-l)=OPT+9(k-1). 
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In order to obtain a ratio-bound, we note that any subdivision of the plane with k 

faces has at least 3k/2 edges. Thus, OPT 2 3k/2, and our approximation bound is 

IYI 9k-9 
f(n) = E d 1+ 3k/2 <7. 

Finally, let us analyze the time complexity of our algorithm. A triangulation 7 can 

be computed in time O(n log n) [21], or in time O(n + k log’+ ‘k), for an arbitrary 

E > 0, using a recent result of Bar-Yehuda and Chazelle [2]. We can compute and 

contract the dual graph in linear additional time. Finally, finding minimum-link paths in 

moats also takes linear time; this can be done using an algorithm of Suri [24]. (Notice 

that the moats are disjoint, and hence their combined complexity is linear). We 

summarize our result in the following theorem. 

Theorem 2.5. Given a family SJ of k pair-wise-disjoint simple polygons, with a total of n 

edges, one can compute in time O(n log n) a separating subdivision of L? with at most 

9(k - 1) plus the optimal number of edges. The ratio between the sizes of the computed 

separating subdivision and an optimal subdivision is bounded by 7. 

Remark. If instead of a separating subdivision, we consider a separating family of 

polygons, then a straightforward modification of our analysis shows that a canonical 

family obtained from minimum-link paths through moats gets within an additive term 

18(k - l), or a multiplicative factor 7, of optimal. These bounds apply regardless of 

whether or not we allow nested polygons in the separating family. If a separating family 

has nested polygons, then its homotopy class will be different from that of 9, but it is a 

separating family nonetheless. 

3. Polyhedral separation in R3 

3.1 Preliminaries 

A polyhedron P in three dimensions is a set of points whose boundary consists of a 

union of a finite number of (closed) planar pieces, called facets. The facets of P meet 

along straight line segments, called edges, and its edges meet at points, called vertices. 

We assume that our polyhedra have genus zero, meaning that they are simply connected. 

The number of vertices V(P), edges E(P) and facets F(P) of P are related by the 

well-known formula of Euler: 

V(P) -E(P) +F(P) =2 

We will be concerned mainly with the number of facets of a polyhedron. We use the 

shorter notation ) P 1 to denote the number of facets, or the facet complexity, of the 

polyhedron P. To simplify the presentation, we restrict our discussion to bounded 

polyhedra, although all our results hold for unbounded polyhedra as well. 
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A convex polyhedron P can be represented either as the convex hull of its vertex set, 

or the common intersection of halfspaces determined by its facets. In this paper, we will 

primarily use the halfspace-intersection form. Given a convex polyhedron P, we let 

k?(P) denote the family of hyperplanes that bound the facets of P; thus, 1 P I= I Z(P) I. 

(Each member of AT(P) contributes a facet to P.) A hyperplane h E X(P) bounds two 

halfspaces, denoted h+ and h-, and we adopt the convention that the halfspace 

containing P is positive: 

P= (-j h+. 

hs‘mP) 

The family A?(P) will be referred to as the intersection form representation of P. 

In the following two sections, we develop our approximation algorithm for separating 

a convex polyhedron from a nonconvex polyhedron. For technical reasons, we assume 

that the two given polyhedra, P and Q, are nested, namely, Q c P. This results in no 

loss of generality, since we can easily modify one of the polyhedra to surround the 

other. (Without loss of generality, assume that P is the nonconvex polyhedron. We put 

a suitably large box B around P U Q, and consider a vertex p E P that is also a vertex 

of CH(P U Q), the convex hull of the two polyhedra. The vertex p sees at least one 

corner, say b, of the box B. We add a thin “tube” having a constant number of faces 

between p and b, thus connecting P to B. Now, B 1’7 PC plus the tube connecting p 

and b is a polyhedron P’ that contains Q, where PC is the complement of P. It is easy 

to see that any polyhedron separating P and Q can be modified, by the addition of at 

most one face, into a polyhedron nested between P’ and Q.) Thus, a separator of P and 

Q is a polyhedron K such that Q c K c P. We say that K is a minimum separator if K 

has the minimum possible facet-complexity. Clearly, if M is a minimum separator, then 

I M I G min0 P I, I Q II. W e say that a separator K is an f(n)-approximation of a 

minimum separator if I K l/I M I <f(n). 0 ur algorithm finds an O(log nkapproxima- 

tion of the minimum separator, where it = I P I + I Q I is the input complexity. 

A surface separates P from Q if and only if every path from a point on aP to a point 

on aQ meets the surface. This notion of separation, though clearly sufficient, is 

algorithmically not very attractive. In order to formulate the separation problem as a 

discrete problem, we partition the boundary aP into a polygonal cell complex, and then 

use the hyperplanes from the set X(Q) to separate portions of this complex from Q. A 

set of hyperplanes that together separates the entire cell complex will be used to form a 

separator polyhedron. We use a greedy approach to select the hyperplanes, and then 

show that the facet-complexity of the resulting separator is not too far from the optimal. 

The performance analysis of our algorithm mimics the analysis of a well-known greedy 

set covering heuristic. 

We first consider the special case of two convex nested polyhedra. 

3.2. Separating nested convex polyhedra 

The problem of minimally separating two nested convex polyhedra is one of the 

simplest forms of polyhedral separation problem in 3-space. In this problem, we are 
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given two nested convex polyhedra P and Q, that is, Q c P, and we want to find a third 

polyhedron K with a minimum number of facets such that Q G K E P. This problem in 

a dual form arises in the study of sequential stochastic automata [23], where a minimum 

vertex nested polyhedron is desired. In this application, the number of vertices in a 

polyhedron corresponds to the number of states in a given machine, and the geometric 

containment of one polyhedron by another corresponds to the covering of the state space 

of one machine by another. As mentioned in the introduction, this problem is NP-com- 

plete [7], but our approximation algorithm produces a solution having O(log n) times 

the optimal number of vertices. (The problems of minimizing the number of vertices and 

the number of facets are duals of each other, under a standard geometric transformation.) 

3.2.1. Canonical separators and covering of P 

We start by defining the canonical form of a separator polyhedron. Let X(Q) = 

(41, q2,. . .Y q,,), where m =G n, be the intersection form of the inner polyhedron Q. We 

say that a separator K is canonical if Z”(K) GZ(Q>; in other words, the hyperplanes 

bounding the facets of K also bound facets of Q. Our first observation is that we can 

find an approximately minimum separator by searching only the space of all canonical 

nested polyhedra. This reduces the search space from infinite to finite. 

Lemma 3.1 (Canonical Form). There exists a canonical separator of P and Q whose 

facet-complexity is at most three times the facet-complexity of a minimum separator. 

Proof. Let M be a minimum separator of P and Q, and let S?(M) = {m,, m2,. . . , mP) 

be its intersection form. We can translate each m, towards Q until becomes tangent to 

Q and, thus, assume without loss of generality that each facet of M is incident with a 

vertex of Q. Given a hyperplane m E X(M), let u E Q be a vertex incident to it, and 

let q,(u), q2(u), . . . , q,( u> be the hyperplanes of S?‘(Q) passing through u. Observe that 

m+ 2 n f= 1 q+(u), which implies that m- c lJ f= 1 qi (u). By Caratheodory’s Theorem 

(see [3,22]), there exist three hyperplanes qi( u), qk(u), q,(u) such that m-G q,: (u> U 

q;(u) U q;(u). We replace m by the triple of hyperplanes q,(u), qk(u), and qr(u). Let 

Then, it is easy to see that Q c M’ CM c P. By applying this procedure to all the 

hyperplanes of X(M), we obtain a new family of hyperplanes, say, S?(K), such that 

(i> Z@(K) ~Z<Q>, (ii> Q CK 5 P, and (iii> 1 K ( Q 3 ( M 1. Now, K is a canonical 

separator and the proof is complete. !!

We now discuss the discretization of 8P, which is a partition of the boundary into a 

family of polygonal cells. Let ‘Z(p) denote the cell complex formed on the boundary 

JP by the family of hyperplanes 2 = Z(Q). This cell complex is a subdivision of the 

surface 8P into convex polygonal cells, with disjoint relative interiors. The edges of 

S(Z) are either the portions of edges of P or they are contributed by the intersection 

between a hyperplane of 3 and a facet of P. The vertices of @?(X’) are formed by an 



106 J.S.B. Mitchell, S. Suri / Computational Geometry 5 (1995) 95-l 14 

intersection between three hyperplanes in the family Z(P) U h?(Q), such that at least 

one of the hyperplanes is from Z’(P). Thus, a vertex can either be a vertex of P (all 

three planes from Z(P)), or it can arise from an intersection between a plane of G%?(Q) 

and an edge of P, or it can arise from an intersection between a plane of S?(P) and two 

planes of X(Q). We use the notation &%?> to also denote the set of all cells in the 

complex. 

Lemma 3.2. The cell complex ‘Z:(X’> has O(n*) vertices, edges and faces. 

Proof. A plane qi E 2’ intersects the boundary 8P in a convex polygonal curve, y(qi), 

which has at most n vertices and edges. Two such curves, y(qi) and y(qj), i # j, can 

intersect (cross) in at most two points. This follows since the points of crossing must lie 

both on aP and on the line qi n qj; but a line can cross the boundary of a convex 

polyhedron in at most two points. Finally, the number of edges and vertices contributed 

by P itself is at most n. Thus, the total number of vertices, edges and faces in the cell 

complex Z?(Z) is O(n*). 0 

Consider a hyperplane qi E Z(Q). It divides the cells of &%?‘) into two sets: those 

contained in the positive halfspace q,? and those contained in the negative halfspace 

qi . (Observe that since qi E X(Q), it does not properly intersect the interior of any cell 

in 5?(Z). Let S(q,) denote the set of cells contained in the negative halfspace bounded 

bY qi: 

We say that qi covers the cells in S(qi), in the sense that qi separates any cell in S(qi) 

from Q, and we call S(q,) the cover set of qi. We show that a subfamily of hyperplanes 

that covers all the cells of @(X> forms a separator of P and Q, and that the following 

algorithm based on a greedy strategy produces a good approximation of a minimum 

separator polyhedron. 

3.2.2. The algorithm and its analysis 

The following procedure computes a separator polyhedron for P and Q. 

Separate (P, Q> 

1. k?+t(G%? 

2. Z(K)+@ 

3. while ‘Z # fl do 

4. Select a plane qi E %<Q> that maximizes 1 g n S(qi) 1 

5. S(K) + z(K) u Iqil 

6. V+GY-SS(qJ 

7. end while 

8. return 2?(K) 
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First, we show that the polyhedron K returned by the algorithm is, indeed, a 

separator of P and Q; then, we provide an analysis of the running time of the algorithm; 

and, finally, we analyze the performance of our algorithm and show that K is a 

O(log n)-approximation of a minimum separator. 

Lemma 3.3. The polyhedron K returned by the algorithm Separate satisfies Q c K c P. 

Proof. A cell c E g(Z) is removed from the list G? only after we add a plane qi to 

A?‘(K) such that c E qi . Since the cells of g(X) cover the boundary of P and since 

K=n 4 E zCKjq+, it follows that K C P. Further, since X(K) c Z(Q), clearly Q c K. 

This completes the proof. 0 

A straightforward implementation of the algorithm Separate would require O(n4) 

time: n iterations of the while loop, each requiring 0(n3> for updating the cover sets 

S(q) of all the hyperplanes q E X(Q). By exploiting the fact that the total number of 

“incidences” between the cells of L&P’) and the cover sets is 0(n3), we establish the 

following lemma. 

Lemma 3.4. The algorithm Separate can be implemented to run in time O(n3). 

Proof. We build the arrangement ‘&??‘), and compute the cover sets S(q), for all 

q E Z’(Q). For each cell c E g(X), we also maintain the list L(c) of all the planes 

q E 2’ such that c E S(q). These steps take 0(n3) time. Observe that 

The bound in Eq. (2) follows from the facts that the total number of cells is O(n*) and 

that the maximum size of each list is n. 

During the algorithm we maintain the sets G?‘n S(q,>, for all qi. Initially, these sets 

are given by our preprocessing step. After a plane q, is selected by the algorithm and 

added to the set Z’(K), we remove each of the cells c E %? II S(q,) from the cover sets 

of other planes. In particular, given a cell c E ‘Z II S(qi), we scan the list L(c) and for 

each q E L(c), set S(q) = S(q) - {cl. This takes time proportional to C, E sn sCqiJ Z,(c) I. 

A cell c is processed only once during the algorithm and, thus, the bound on the running 

time follows from Eq. (2). 0 

To analyze the performance of our algorithm, we cast the problem as a set cover 

problem. We have an underlying universal set @X), and a family of subsets 

9= {S(h) ( h E Z}. We want to choose a minimum number of sets from 9 whose 

elements together cover P(R). We start by establishing the connection between a set 

cover and a separator. The following lemma shows that the sets associated with the 

hyperplanes in the intersection-form representation of a separator cover the cell complex 

HZ). 
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Lemma 3.5. Let K be a canonical separator of P and Q, and let A?(K) be its 

intersection form. Then, F(Z) = IJ h E ,,,,S(h). 

Proof. Assume, for the sake of contradiction, that there exists a cell c E %7:(Z) that is 

not covered by the hyperplanes in X(K). In other words, c E h+, for all planes 

h E GY( K >. But, since Q c n h E KCK+z+, we can join some point of c with any point of 

Q by a path without intersecting any of the planes in A?(K), which contradicts the 

hypothesis that K separates P from Q. Thus, the sets S(h), for h E Z(K), must 

together cover all the cells of %%I?‘). 0 

Thus, our problem is to show that the set cover found by the algorithm Separate is 

close to an optimal set cover. Our analysis mimics the analysis of a well-known greedy 

set cover heuristic, see Johnson [15] and LAX&Z [16]. We include a proof for the sake of 

completeness-our presentation is borrowed from [4]. 

Let K be the separator returned by our greedy algorithm, and let M be an optimal 

separator of P and Q. We will show that the set cover corresponding to K is within 

factor @log n) of an optimal set cover, say, the one corresponding to M. Let 

Z’(K) = Ih,, h,, . . . , hk} be the intersection-form of K, and assume without loss of 

generality, that the algorithm picks the planes in the order h,, h,, . . . , h,. Let Si denote 

the cover set S(hi) corresponding to the ith hyperplane, and let T, denote the set of 

elements covered by the first i cover sets: Ti = lJ j=,S,. 

When the ith hyperplane is picked, our greedy algorithm incurs a cost of one, which 

it distributes evenly among the elements of Si that are covered for the first time. That is, 

if c E Si is covered for the first time, then 

1 

cost(c)= Isi-Ti_,I’ 

Thus, the size of the set cover found by the greedy algorithm is 

lAY(K c cost(c) 

CE8u?Y 

G c c cost(c). 

h’ER(M) CESOI’) 
(3) 

Next, we show that for any set S(h), h E X(Q), 

C cost(c) < O(log n). 

CS.sS(h) 
(4) 

To prove the above inequality, let S = S(h) be an arbitrary set, and let ui = I S - Ti I 

be the number of elements in S that remain uncovered after the greedy algorithm has 

picked its first i sets; we set u,, = 1 S I. Observe that ui_ 1 > ui, and ui_ r - ui elements 

of S are covered for the first time by Si. Thus, 

C cost(c)= 5 (“i-l-ui)’ I~,_;_~ 1. 

CES i= 1 1 
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However, 

ISi-~-, I~lIs-~-, I=“i-l, 

since the greedy algorithm always picks a hyperplane that covers the most among the 

remaining elements. It follows that 

c cost(c) < ; (Ui-i - Uj). &, 

ces i= 1 

from which it follows easily that 

ISI 

c cost(c) < c l/i = O(log n). 

css i= 1 

Notice that a set S(h) can have size O(n’>. 

Now, Equations (3) and (4) together imply that 

I Z( q I G O(log n) I Z( q I, 

which shows that the ratio between the facet-complexities of the greedy separator and an 

optimal separator is O(log n). The following theorem summarizes this result. 

Theorem 3.6. Let P and Q be two convex nested polyhedra in three dimensions, with a 

total of n facets (resp., vertices). One can find an O(log n)-approximation of a 

minimum-facet (resp., minimum-vertex) polyhedral separator of P and Q in 0(n3) time. 

3.3. Separating a convex polyhedron from a nonconvex polyhedron 

We now consider two nested polyhedra P and Q, Q L P, one of which is convex and 

the other is a general nonconvex polyhedron. Clearly, if P is convex, then we can 

simply replace Q with the convex hull of Q and apply the algorithm of Section 3.2. If, 

on the other hand, P is nonconvex (Q is convex), then we cannot simply replace P 

with its convex hull. Instead, we note that the algorithm of the previous section still 

works for this case; however, the running time deteriorates by a factor of n. The key 

difference lies in the size of the cell complex ‘Z(Z). We now elaborate on this 

difference. 

It is easily observed that an optimal separator of P and Q is a convex polyhedron. 

Thus, Lemma 3.1 applies, stating that there exists a canonical separator whose facet 

complexity is at most three times the optimal. In order to invoke the algorithm Separate, 

we again partition the surface JP into a cell complex g(Z), which is formed by 

intersection of cYP with the family of hyperplanes Z = A?(Q). This cell complex is 

similar to the one in the previous section, and consists of polygonal cells with disjoint 

interiors, however, the total number of vertices, edges, and faces is now O(n3> - this 

follows from the fact that a cell complex produced by n planes in three dimensions has 

0(n3) cells, facets, edges and vertices. Except for this difference in the size of g(X), 

the details and the analysis of the approximation algorithm are identical to the convex 

case. The following theorem states our result. 
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Theorem 3.1. Let P and Q be two polyhedra in three dimensions, one of which is 

convex, with a total of n facets. One can find an O(log n&approximation of a 

minimum-facet polyhedral separator of P and Q in 0(n4) time. 

3.4. Separating two point sets 

Our method also works if P and Q are two disjoint sets of points in three 

dimensions. In this case, we can find an O(log n)-approximation of their minimum-facet 

convex separator. Without loss of generality, assume that the convex hull of Q does not 

contain any point of P - if neither convex hull is empty of points from the other set, 

then clearly P and Q cannot be separated by a convex polyhedron. In this case, we let 

Z(Q) denote the intersection form of the convex hull of Q. The cover set S(q), for 

q E 2’(Q), is defined as the set of points of P that lies in the negative halfspace 

bounded by q: 

S(q) = {PEPI pcq-1. 

The underlying set to be covered is P. It is easy to see that the algorithm Separate finds 

an O(log n&approximate convex separator of P and Q. The running time improves to 

O(n*) since there are n cover sets, each of size at most n. 

Theorem 3.8. Let P and Q be two sets of n points in three dimensions. Zf the two point 

sets are separable by a convex polyhedron, then one can find an O(log n)-approxima- 

tion of their minimum-facet convex separator in O(n*> time. 

4. Separating k disjoint convex polyhedra 

Let 9J={P,, P*,..., Pk) be a family of k disjoint convex polyhedra in three 

dimensions, with a total of n facets. We want to find a minimum separating family for 

9, that is, a family of disjoint convex polyhedra {R,, R,, . . . , RJ, with Pi E Ri, such 

that Cf= 1 I Ri I is minimized. This problem is iVP-complete, even in two dimensions [5]. 

The following result, however, guarantees a separating family whose size depends only 

on k, and not on n. 

Theorem 4.1. Given a family of k convex polyhedra in three dimensions, a separating 

family of size O(k’) always exists, and this bound cannot be improved in the worst case. 

After an O(n) time preprocessing, one can find a separating family with O( k*> facets in 

0(k2 log2n) time, where n is the total complexity of the input polyhedra. 

proof. Let pi E Pi and pi E Pj denote two points that form a closest pair for Pi and Pj: 

d( Pi 7 Pj) = min{ 4 x, Y)IxEPi7 YEPj}, 
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Fig. 4. The top view of our lowe 

I I 

bound construction for separating k convex polyhedra in three dimensions. 

where d(. ,* > denotes the Euclidean distance. Let B,, denote the hyperplane that is 

normal to the line determined by pi and pi, and that passes through the midpoint of the 

segment (pi, pi). Let 

Ri= f-)B;, 

j#i 

where B$ is the halfspace containing Pi. Observe that Ri is a convex polyhedron with 

at most k facets and that Pi c Ri. Thus, 9’ = {R,, R,, . . . , Rk} is a separating family 

for 9 and the total number of facets in A’ is O(k’>. 

To establish the lower bound on the size of a separating family, consider the family 

of convex polygons shown in Fig. 4. Let C be a unit-height cylinder whose base is 

shaped like the regular k-gon in the center of Fig. 4. The side length of the k-gon is 

assumed to be large, so that the cylinder C looks like a “pancake.”  We place k copies 

of the cylinder C at t = 2i, for z = O,l, . . . , k - 1. We lift the outer polygons into 

cylinders of height 2k, extending from z = 0 to z = 2k. Any polyhedron that separates 

the ith cylinder Ci from the remaining polyhedra has at least k + 2 facets. Thus, the 

total number of facets in the whole separating family is at least L?(k’>. 

Finally, in order to construct the polyhedron Ri, for i = 1,2,. . . , k, we only need to 

find the minimum distance between two convex polyhedra. This can be done in @log2 

n) time, assuming that the input polyhedra are preprocessed in a logarithmic hierarchy 

[8]. Such an hierarchy can be built in linear time from any other standard description of 

the polyhedra, such as doubly-connected-edge-lists [20]. Thus, we can compute a 

separating family consisting of O(k2> facets in 0(k2 log2 n) time. 0 

5. Higher dimensions 

The separation algorithm of Section 3 was presented in enough abstraction to admit 

immediate extension to higher dimensions. Suppose that P and Q are two d-dimen- 

sional polyhedra, with a total of n facets. We assume that Q is convex and that Q E P. 

An easy extension of Lemma 3.1 shows that there always exists a canonical separator of 
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P and Q whose facet-complexity is at most d times the optimal. The combinatorial 

complexity of the cell complex %(2?) on the boundary of P is 0(&j; the arrangement 

formed by n planes in d-space has O(nd) faces of all dimensions. The cover set S(q), 

for q E Z?(Q), is the set of d-dimensional cells in ‘Z(Z) that lie in the closed halfspace 

q-. Our algorithm finds a set of hyperplanes 2?(K) that together separate every point of 

aP from Q. The same analysis as before shows that the size of Z’(K) is within 

O(log n) of the best canonical separator. The total running time of the algorithm is 

dominated by the initial construction of the arrangement @ZF”) and the updating of 

cover sets. 

Theorem 5.1. Let P and Q be two polyhedra in d dimensions, where d > 3 is 

considered Bed, Assume that Q is convex and that P and Q have a total of n facets. In 

O( nd+ ‘) time, one can find a polyhedral separator of P and Q whose facet-complexity 

is O(d log n) times the optimal. 

6. Curved surfaces 

In many real applications, the surfaces of choice are non-polyhedral. Solid modelers, 

for instance, often use boundary representations that include spherical patches in 

addition to planes. Thus, it is interesting to investigate the separability problem using 

non-polyhedral surfaces. 

Consider, for instance, the problem of separating two polyhedral solids using a 

spherical surface - we call a surface spherical if the enclosed solid is the intersection 

of a finite number of spheres. Given a spherical surface K, its intersection form Z(K) 

is the set of spheres that define the “facets” of K. A separator K is called a canonical 

separator if each sphere in X(K) is determined by four vertices of the inner polyhedron 

Q. 
A simple extension of Lemma 3.1 shows that an optimal spherical separator can 

always be transformed into a canonical separator, at the expense of increasing the 

facet-complexity three-fold. There are O(n’) circumspheres of Q determined by quadru- 

ples of vertices of Q - each such sphere corresponds to a Voronoi vertex in the 

farthestpoint Voronoi diagram of the vertices of Q and this Voronoi diagram has 0(n2) 

vertices [lo]. 

We form the cell complex E by intersecting the 0(n2) canonical spheres with the 

boundary of P. This gives a subdivision of size O( n5> - each pair of spheres intersects 

aP in O(n) points. By running our greedy heuristic on this cell complex, we can find a 

canonical spherical separator whose facet-complexity is O(log n) times the optimal. 

Theorem 6.1. Let P and Q be two polyhedra in three dimensions, one of which is 

convex, with a total of n facets. In O(n7) time, one can find a spherical separator of P 

and Q whose facet-complexity is O(log n) times the optimal. 
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Extensions to higher dimensions and other elementary surfaces can be obtained along 

similar lines. 

7. Conclusion 

We have presented polynomial-time approximation algorithms for several polyhedral 

separation problems. Our main results are an O(l)-approximation algorithm for a family 

of polygons in the plane, and an @log n)-approximation algorithm for separating a 

convex polyhedron from a nonconvex polyhedron. The general topic of polyhedral 

separation and approximation is quite fundamental, and poses several challenging 

problems of both theoretical and practical nature. There are numerous possibilities for 

further research on these problems. We outline a few in the following. 

(1) Our algorithms for polyhedral separation are based on the greedy set-cover heuristic. 

It is an interesting problem to determine if the special structure of the geometric problem 

can be used to improve the log n approximation ratio. 

(2) Is it possible to improve the approximation ratio if the two polyhedral surfaces P 

and Q are scaled copies of each other, or if they arise from the fattening of a single 

surface? 

(3) The problem of finding approximation algorithms for separation of a family of 

non-convex polyhedra in three (or more) dimensions remains open. While our methods 

here cannot be applied directly to this problem, we suspect that some transformation to a 

set-cover problem is possible. We are currently examining this problem. 

(4) Can our methods be generalized to handle separation with more general curved 

surfaces? 

(5) We have studied the problem of minimizing facet complexity of a separating surface. 

It would be interesting to study the problem of finding a minimum surface-area 

separator. In two dimensions, the problem of finding a minimum-length separating cycle 

is known as the relative convex hull problem, and is well-studied. In three dimensions, 

the problem of minimum-area surfaces has a long history in the physics and mathemati- 

cal literature on soap films. What can be said about approximation algorithms, or about 

the problem of minimizing the area of a polyhedral separating surface? 
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