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Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Geometrical problems and computations; I.1.2
[Symbolic and Algebraic Manipulation]: Algorithms—Analysis of algorithms; I.3.0 [Com-
puter Graphics]: General; I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Aspect ratio, bounding boxes, collision detection

1. INTRODUCTION
Many computer graphics algorithms improve their performance by using
bounding boxes. The bounding box of a geometric object is a simple volume
that encloses the object, forming a conservative approximation to the
object. The most common form is an axis-aligned bounding box, whose
extent in each dimension of the space is bounded by the minimum and
maximum coordinates of the object in that dimension (see Figure 1(a) for
an example).

Bounding boxes are useful in algorithms that should process only objects
that intersect. Two objects intersect only if their bounding boxes intersect,
and intersection testing is almost always more efficient for objects’ bound-
ing boxes than for the objects themselves. Thus, bounding boxes allow an
algorithm to quickly perform a “trivial reject” test that prevents more
costly processing in unnecessary cases. This heuristic appears in algo-
rithms for rendering, from traditional algorithms for visible-surface deter-
mination [Foley et al. 1996] to algorithms that optimize clipping through
view-frustum culling [Greene 1994], and recent image-based techniques
that reconstruct new images from the reprojected pixels of reference images
[McMillan 1997]. Bounding boxes are also common in algorithms for
modeling, from techniques that define complex shapes as Boolean combina-
tions of simpler shapes [Hoffmann 1989] to techniques that verify the
clearance of parts in an assembly [Garcia-Alonso et al. 1995]. Animation
algorithms also exploit bounding boxes, especially collision-detection algo-
rithms for path planning [Latombe 1991] and the simulation of physically-
based motion [Cohen et al. 1995; Klosowski et al. 1998; Moore and Wil-
helms 1988].

While empirical evidence demonstrates that the bounding box heuristic
improves performance in practice, the goal of proving that bounding boxes
maintain high performance in the worst case has remained elusive. To
understand the difficulties in such a proof, consider the use of bounding
boxes when detecting pairs of colliding objects from a set ! of n polyhedra.
Let Ko be the number of colliding pairs of objects and let Kb be the number
of colliding pairs of bounding boxes. Figure 1 (b) shows an example in
which Kb ! &#n2% while Ko ! O#1%, meaning that the bounding box heu-
ristic adds only unnecessary overhead, and a collision-detection algorithm
that uses the heuristic is slower than one that naively tests every pair of
objects for collision.
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Intuitively, the poor performance in this example is due to the patholog-
ical shapes of the objects in !. In this paper we identify two natural
measures of the degree to which object shapes are pathological and analyze
the bounding box heuristic in terms of these measures. We show that if the
aspect ratio ! and scale factor " are bounded by small constants (as is
generally the case in practice), then the bounding box heuristic avoids poor
performance in the worst case.

The aspect ratio measures the elongatedness of an object. In classical
geometry, the aspect ratio of a rectangle is defined as the ratio of its length
to its width. This definition can be extended in a variety of ways to general
objects and dimensions greater than two. It is often defined as the ratio
between the volumes of the smallest ball enclosing the object and the
largest ball contained in the object. We find it convenient to use the
volumes of L(-norm balls in the d-space.1 Given a solid object P in d-space,
let b#P% denote the smallest L( ball containing P and let c#P% denote the
largest L( ball contained in P. The aspect ratio of P is defined as

!#P% !
vol#b#P%%

vol#c#P%%
,

where vol#P% denotes the d-dimensional volume of P. We call b#P% the
enclosing box, and c#P% the core of P. Thus, the aspect ratio measures the
volume of the enclosing box relative to the core. For a set of objects

1In two dimensions, for instance, the L( ball of radius r and center o is the axis-aligned square
of side length 2r, with center o. The choice of the norm affects only the dimension-dependent
constant factors, so our results also apply to L1 or L2 balls, with appropriate changes in the
multiplicative constant.

n

0.5

(a) (b)

Fig. 1. (a) A polygonal object and its axis-aligned bounding box. (b) An example with Kb !
&#n2% and Ko ! O#1%.
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! ! )P1, P2, . . . , Pn*, the aspect ratio is the smallest ! such that ! $
!#Pi%, for i ! 1, 2, . . . , n.

The scale factor for a set of objects measures the disparity between the
largest and smallest objects. For a set ! ! )P1, P2, . . . , Pn* of objects in
d-space, we say that ! has scale factor " if for all 1 % i, j % n,

vol#b#Pi%%

vol#b#Pj%%
% ".

The analysis in this paper focuses on the ratio

# !
Kb

n $ Ko
,

where Ko is the number of object pairs in ! with nonempty intersection,
and Kb is the number of object pairs whose enclosing boxes intersect.2 This
ratio can be seen as a relative performance measure of the bounding box
heuristic, because the denominator represents the best-case that an algo-
rithm using the heuristic can achieve in practice. The denominator’s O#n%
term reflects the overhead that an algorithm must incur if it does anything
to each object, and also makes # more meaningful if Ko ! 0. This ratio
would, ideally, be a small constant. Unfortunately, the pathological case of
Figure 1(b) shows that without any assumptions on ! and ", we can have
# ! &#n%. However, if we include aspect ratio and scale factors in the
analysis, we can prove the following theorem, which is the main result of
our paper.

THEOREM 1.1 Let ! be a set of n objects in d dimensions, with aspect
bound ! and scale factor ", where d is a constant. Then, # !

O#! !" log2 "%. Asymptotically, this bound is almost tight, as we can show
a family ! achieving # ! &#! !"%.

There are two main implications of this theorem. First, it provides a
theoretical justification for the efficiency that the bounding box heuristic
shows in practice. In most applications, ! and " are small constants, so # is
also constant. The theorem then indicates that Kb ! O#Ko% $ O#n%. An
algorithm that uses the bounding box heuristic is thus nearly optimal in
the asymptotic sense: it does not waste time processing bounding box
intersections because their number grows no faster than the number of
actual object intersections (plus the practically unavoidable O#n% factor,
which matches the overhead the algorithm must incur if it does anything to
each object). Poor performance requires uncommon situations in which

2Notice that the L( ball is a more conservative estimate than the axis-aligned bounding box, so
Kb is an upper bound on the number of bounding box intersections.
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! !" ! &#n%, as in Figure 1(b). The theorem also shows that performance
is affected more by the aspect ratio than the scale factor, so it may be
worthwhile to decompose irregularly-shaped objects into more regular
pieces to reduce the aspect ratio.

The second implication of the theorem is an output-sensitive algorithm
for reporting all pairs of intersecting objects in a set of n convex polyhedra
in two or three dimensions. By using the bounding box heuristic as
described in Section 9, the algorithm can report the Ko pairs of intersecting
polyhedra in O#nlogd'1n $ ! !"Ko log2" logd'1m% time, for d ! 2, 3,
where m is the maximum number of vertices in a polyhedron. (We assume
that each polyhedron was preprocessed in linear time for efficient pairwise
intersection detection [Dobkin and Kirkpatrick 1990].) Without the aspect
and scale bounds, we are not aware of any output-sensitive algorithm for
this problem in three dimensions. Even in two dimensions, the best
algorithm for finding all intersecting pairs in a set of n convex polygons
takes O#n4/3 $ Ko% time [Gupta et al. 1996]. If ! and " are constants, as is
common in practice, then the algorithm runs in time O#nlogd'1n $
Ko logd'1m%, for d ! 2, 3, which is nearly optimal.

2. RELATED WORK

The use of the bounding box heuristic in collision-detection algorithms is
representative of its use in other algorithms. Thus, our analysis focuses on
collision detection, but we believe that our results extend to other applica-
tions.

Most collision-detection algorithms that use bounding boxes can be
considered as having two phases, which we call the broad phase and
narrow phase. The basic structure of the algorithms is as follows:

● Broad phase: find all pairs of intersecting bounding boxes.

● Narrow phase: for each intersecting pair found by the broad phase,
perform a detailed intersection test on the corresponding objects.

The broad and narrow phases have distinct characteristics, and often have
been treated as independent problems for research.

Efficient algorithms for the broad phase must avoid looking at all O#n2%
pairs of bounding boxes, and they do so by exploiting the specialized
structure of bounding boxes. Edelsbrunner [1983] and Mehlhorn [1984]
describe provably efficient algorithms for axis-aligned bounding boxes in
d-space, algorithms that find the k intersecting pairs in O#nlogd'1n $ k%
time and O#nlogd'2n% space. A variety of heuristic methods are used in
practice [Cohen, et al. 1995; Held et al. 1996; Hubbard 1995], and empirical
evidence suggest that these algorithms perform well; the “sweep-and-
prune” algorithm implemented in the I-COLLIDE package of Cohen et al.
[1995] currently appears to be the method of choice. It might seem
desirable to use a broad phase that replaces axis-aligned bounding boxes
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with objects’ convex hulls, which provide a tighter form of bound. Unfortu-
nately, no provably efficient algorithm is known for finding the intersec-
tions between n convex polyhedra in three dimensions. In two dimensions,
though, a recent algorithm of Gupta et al. [1996] can report the intersecting
pairs of convex polygons in time O#n4/3 $ k%.

The narrow phase solves the problem of determining the contact or
interpenetration between two objects. Thus, the performance of a narrow
phase algorithm does not depend on n, the number of objects in the set, but
rather on the complexity of each object. If the objects are convex polyhedra,
then a method due to Dobkin and Kirkpatrick [1990] can decide whether
two objects intersect in O#logd'1m% time, where m is the total number of
edges in the two polyhedra, and d % 3 is the dimension. This algorithm
preprocesses the polyhedra in a separate phase that runs in linear time.
Using this preprocessing, we can also compute an explicit representation of
the intersection of two convex polyhedra in time O#m%, as shown by
Chazelle [1992]. If only one of the objects in the pair is convex, then
intersection detection can be performed in time O#m logm% [Dobkin et al.
1993]. The problem is more difficult if both polyhedra are nonconvex, and
only recently has a subquadratic time algorithm been discovered for
deciding if two nonconvex polyhedra intersect [Schömer and Thiel 1995].
This algorithm takes O#m8/5$&% time to determine the first collision be-
tween two polyhedra, one of which is stationary and the other translating.
While the provable running times of these algorithms are important
results, they are primarily of theoretical interest because the algorithms
are too complicated to be practical. As an alternative, a variety of heuristic
methods have been developed that tend to work well in practice [Gottschalk
et al. 1996; Klosowski et al. 1998]. These methods use hierarchies of
bounding volumes and tree-descent schemes to determine intersections.

Our analysis of the bounding box heuristic is related to the idea of
“realistic input models,” which has become a topic of recent interest in
computational geometry. In a recent paper, de Berg et al. [1997] suggested
classifying various models of realistic input models into four main classes:
fatness, density, clutter, and cover complexity. Briefly, an object is fat if it
does not have long and skinny parts; a scene has low clutter if any cube not
containing a vertex of an object intersects at most a constant number of
objects; a scene has low density if a ball of radius r intersects only a
constant number of objects whose minimum enclosing ball has radius at
least r; the cover complexity is a measure of the relative sparseness of an
object’s neighborhood. One of the first nontrivial results in this direction is
by Matoušek et al. [1994], who showed that the union of n fat triangles has
complexity O#n loglogn%, as opposed to +#n2% for arbitrary triangles; a
triangle is fat if its minimum angle exceeds ', for a constant ' , 0. Efrat
and Sharir [1997] generalize this result to show that the union of n convex
objects has complexity O#n1$&%, provided that each object is fat and each
pair of objects intersects only in a constant number of points. Additional
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results on fat or uncluttered objects can be found in de Berg [1995];
Halperin and Overmars [1994]; and van der Stappen et al. [1993].

3. ANALYSIS OVERVIEW

Our proof for the upper bound on # consists of three steps. We first consider
the case of arbitrary ! but fixed " (Section 4). Next, in Section 5, we allow
both ! and " to be arbitrary, but assume that there are only two kinds of
objects: one with box sizes !, core sizes 1, and the other with box sizes !",
core size " (the two extreme ends of the scale factor). Finally, in Section 6,
we handle the general case, where objects can have any box size in the
range -!, !".. We first detail our proof for two dimensions, and then
sketch how to extend it to arbitrary dimensions in Section 7.

4. ARBITRARY ASPECT RATIO BUT FIXED SCALE

We start by assuming that the set ! has scale factor one, that is, " ! 1;
the aspect ratio bound ! can be arbitrary. (Any constant bound for " will
work for our proof; we assume one for convenience. The most straightfor-
ward way to enforce this scale bound is to make every object’s enclosing box
to be the same size.) We show that in this case ##!% ! O#!%. We describe
our proof in two dimensions; the extension to higher dimensions is quite
straightforward, and is sketched in Section 7.

Without loss of generality, let us assume that each object P in ! has
vol#c#P%% $ 1, and vol#b#P%% % !. Recall that a L( box of volume ! in two
dimensions is a square of side length !!. We call this a size ! box. Consider
a tiling of the plane by size ! boxes that covers the portion of the plane
occupied by the bounding boxes of the objects, namely, ! b#Pi%; see Figure
2. We consider each box semiopen, so that the boundary shared by two
boxes belongs to the one on the left, or above. Thus, each point of the plane
belongs to at most one box.

We assume an underlying unit lattice in the plane and assign each object
P to the (unique) lexicographically smallest lattice point contained in P.
(Such a point exists because the core is closed and has volume at least one.)
Let m#q% be the number of objects assigned to a lattice point q, and let Mi

denote the total number of objects assigned to the lattice points contained
in a box Bi. That is,

Mi ! "
q"Bi

m#q%,

where q " Bi means that the lattice point q lies in the box Bi. Since the
boxes in the tiling are disjoint, we have the equality / i Mi ! n. We derive

the bounds on Kb and Ko in terms of Mi.

LEMMA 4.1 Given a set of objects ! with aspect bound ! and scale bound
" ! 1, let B1, B2, . . . , Bp denote a tiling by size ! boxes, as defined above,
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and let Mi denote the total number of objects assigned to lattice points in Bi,
for i ! 1, 2, . . . , p. Then

Kb % 25"
i!1

p

Mi
2.

PROOF. Consider an object P assigned to Bi, and let Pj be another object
whose box intersects b#P%. Suppose Pj is assigned to the box Bj. Since
b#P% # b#Pj% 0 !, the L( norm distance between the boxes Bi and Bj is at
most 2 !!. This means that Bj is among the 25 boxes that lie within 2 !!
wide corridor around Bi (including Bi). Suppose that the boxes are labeled
B1, B2, . . . , Bp in the row-major order—top to bottom, left to right in each
row. Assume that the number of columns in the box tiling is k. Then, the
preceding discussion shows that if the boxes of objects Pi and Pj intersect,
and these objects are assigned to boxes Bi and Bj, then we must have

j ! i $ ck $ d,

where c, d " )0, 11, 12*. (The box Bj can be at most two rows and two
columns away from Bi. For instance, the box preceding two rows and two
columns from Bi is Bi'2k'2 ; see Figure 3. The number of box pair
intersections contributed by Bi and Bj is clearly no more than MiMj. Thus,
the total number of such intersections is bounded by

B B B

B

B
B

B B B

1 2 3

4

5
6

7 8 9

Fig. 2. Tiling of the plane by boxes of size !. The unit size core for the object in B1 is also
shown.
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"
i!1

p "
j!i$ck$d

MiMj,

where c, d " )0, 11, 12*. Recalling that x1x2 % #x1
2 $ x2

2% " 2, for reals
x1, x2, we can bound the intersection count by

"
i!1

p "
j!i$ck$d

1

2
#Mi

2 $ Mj
2%.

There are 5 possible values for c and d each, and so altogether 25 values for
j for each i. Since each index can appear once as the i and once as the j, we
get that the maximum number of intersections is at most

25"
i!1

p

Mi
2.

This completes the proof of the lemma. e

Next, we establish a lower bound on the number of intersecting object
pairs. We need the following elementary fact.

LEMMA 4.2 Consider nonnegative numbers a1, a2, . . . , an, and b1, b2,
. . . , bn. Then, a1 $ a2 $ · · · $ an

b1 $ b2 $ · · · $ bn
% max

1%i%n

ai

bi
.

PROOF. Let m denote the index for which the ratio ai " bi is maximized.
Since bi#am " bm% $ ai, summing it over all i, we get

am

bm
"
i!1

n

bi $ "
i!1

n

ai.

Dividing both sides by / i!1
n bi completes the proof of the lemma. e

Fig. 3. A box, shown in dark at the center, and its 24 neighbors.
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Let us now focus on objects assigned to a box Bi in our tiling. If Li is the
number of intersecting pairs among objects assigned to Bi, then we have
the following:

##!% !
Kb

n $ Ko

%

25"
i!1

p

Mi
2

n $ "
i!1

p

Li

%
25#M1

2 $ M2
2 $ · · · $ Mp

2%

#M1 $ L1% $ #M2 $ L2% $ · · · $ #Mp $ Lp%

% max
1%i%p

25Mi
2

#Mi $ Li%
,

where the second to last inequality follows from the fact that / i Mi ! n,
and the last inequality follows from the preceding lemma. We establish an
upper bound on the right-hand side of this inequality by proving a lower
bound on the denominator term.

Fix a box Bi in the following discussion, where 1 % i % p. Consider a
lattice point q in it and the m#q% objects assigned to q. These objects all
have q in common, and therefore we get at least # m#q%

2 $ object pair
intersections. (Observe that each object is assigned to a unique lattice
point, and so we count each intersection at most once.) Thus, the total
number of pairwise intersections Li among objects assigned to Bi is at least

"
q"Bi

#m#q%
2 $.

We show that the ratio 25Mi
2 " #Mi $ Li% never exceeds c!, where c is an

absolute constant. Considering Mi fixed, this ratio is maximized when Li is
minimized.

LEMMA 4.3 Let x1, x2, . . . , xn be nonnegative numbers that sum to z,
with n % N, where z and N are fixed. Then, the minimum value of / i!1

n # xi

2$
is z#z ' n% " 2n, which is achieved when n ! N and xi ! z " n, for i ! 1,
2, . . . , n.

PROOF. We observe the following equalities:

266 • S. Suri et al.

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.



"
i!1

n #xi

2$ ! "
i!1

n xi#xi ' 1%

2
!

1

2
#"

i!1

n

xi
2 ' z%.

Thus, / i!1
n # xi

2$ is minimized when / i!1
n xi

2 " 2 is minimized. First, considering

n fixed, Cauchy’s inequality [Hardy et al. 1988] implies that the sum is
minimized when xi ! z " n. Next, since n#z " n%2 2 #n $ 1%#z " #n $ 1%2, the
sum decreases for increasing n, and so is minimized for n ! N. The lemma
follows. e

Since no square box of size ! can have more than 2!!" lattice points in it,
we get a lower bound on Li by setting m#q% ! Mi " 2!!", for all q. Thus,

Li $
1

2
Mi# Mi

2!!"
' 1$.

LEMMA 4.4 ##!% ! O#!% .

PROOF. Using the bound for Li above, we have

##!% %
25Mi

2

1

2
Mi# Mi

2!!"
' 1$ $ Mi

% 100!!".

This completes the proof. e

THEOREM 4.5 Let ! be a set of n objects in the plane, with aspect bound !
and scale bound " ! 1. Then, ##!% ! O#!%.

5. OBJECTS OF TWO FIXED SIZES

In this section we generalize the result of the previous section to the case
where objects come from the two extreme ends of the scale: their box size is
either ! or !". To simplify our analysis, we assume that ! ! 4a and " !
4b for some integers a, b , 0. (Otherwise, just use the next nearest powers
of 4 as upper bounds for !, ". In d dimensions, ! and " are assumed to be
integral powers of 2d.)

Let us call an object large if its enclosing box has size !", and small
otherwise. Clearly, there are only three kinds of intersections: large-large,
small-small, and large-small. Let Kb

l , Kb
s and Kb

sl, respectively, count these
intersections for the enclosing boxes. So, for example, Kb

sl is the number of
pairs consisting of one large and one small object whose boxes intersect.
Similarly, define the terms Ko

l , Ko
s and Ko

sl for object pair intersections. The
ratio bound can now be restated as
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##!% !
Kb

l $ Kb
s $ Kb

sl

Ko
l $ Ko

s $ Ko
sl $ n

% 3 max%Kb
l

K3
,

Kb
s

K3
,

Kb
sl

K3& (1)

where K3 ! Ko
l $ Ko

s $ Ko
sl $ n. We know from the result of the previous

section that Kb
l " K3, Kb

s " K3 % c!, for some constant c. So, we only need to
establish a bound on the third ratio, Kb

sl " #Ko
l $ Ko

s $ Ko
sl $ n%, which we

do as follows.
Let us again tile the plane with boxes of volume !". Call these boxes

B1, B2, . . . , Bp. Underlying this tiling are two grids: a level " grid, which
divides the boxes into cells of size ", and a level 1 grid, which divides the
boxes into cells of size 1. The level " grid has vertices at coordinates
#i !", j !"%, while the finer grid has vertices at coordinates #i, j%, for
integers i, j. The level " grid is used to reason about large objects, while
the level 1 grid is used for small objects. We mimic the proof of the previous
section and assign objects of each class to an appropriate box. In order to do
this, we need to define subboxes of size ! within each size !" original box.

Consider a large box Bi. The level " grid partitions Bi into ! boxes of
volume " each. Next, we also partition Bi into " subboxes, each of volume
!. Since ! ! 4a and " ! 4b, for integers a, b , 0, these subboxes are
perfectly aligned with both the level 1 and level " grids. (Along a side of Bi,
the " grid has vertices at distance multiples of !" ! 2b, while the vertices
of the subboxes lie at distance multiples of !! ! 2a.) We label the "
subboxes within Bi as Bi1, Bi2, . . . , Bi", in row major order. Figure 4
illustrates these definitions by showing two boxes side by side.

Now each member of the large object set (resp. small object set) contains
at least one grid point of the large (resp. small) grid. Just as in the previous
section, we assign each object to a unique grid point (say, the one with
lexicographically smallest coordinates). Let Xi denote the number of large
objects assigned to all the grid points in Bi. Let yij, for j ! 1, 2, . . . , ",
denote the number of small objects assigned to the subbox Bij. Define also
Yi ! / j!1

" yij to be the total number of small objects assigned to level one

grid points in Bi.
We estimate an upper bound on Kb

sl and a lower bound on Ko
sl, in terms of

Xi and Yi. Fix a box Bi. The enclosing box of a large object Pi, assigned to
Bi, can intersect the box of a small object Pj, assigned to Bj, only if Bj is one
of the 25 neighbors of Bi (including itself) that form the two layers of boxes
around Bi (see Figure 3 again). Let Bi

m be the box with a maximum number
of small objects among the 25 neighbors of Bi, and let Yi

m be the count of
the small objects in Bi

m. That is, Yi
m ! maxj)Yj 4 Bj is one of 25 neighbors

268 • S. Suri et al.

ACM Transactions on Graphics, Vol. 18, No. 3, July 1999.



of Bi*, and Bi
m is the box corresponding to Yi

m. Then, we have the following
upper bound:

Kb
sl % 25"

i!1

p

XiYi
m.

Next, we estimate lower bounds on the number of object pair intersec-
tions. Let Li denote the number of object pair intersections among the large
objects assigned to Bi, and let Si denote the object pair intersections among
the small objects assigned to Bi. Since there are only ! grid points for the
large objects in Bi, by Lemma 4.3, we have

Li $
1

2
Xi#Xi

!
' 1$. (2)

Similarly, each of the subboxes Bij, for j ! 1, 2, . . . , ", has ! grid
points of the level 1 grid. Thus, we also have

Si $ "
j!1

"
yij

2 #yij

!
' 1$. (3)

In deriving our bound, we use the conservative estimate of / i!1
p

#Li $

Si% for Ko; that is, only count the intersections between two large or two
small objects. We also use the notation Si

m for the number of object-pair
intersections among the small objects assigned to Bi

m. We have the follow-
ing inequalities:

!iB

i2BBi1

iB

Fig. 4. The box on the left shows large grid and the one on the right shows small grid as well
as the subboxes. In this figure, ! ! 4 and " ! 16.
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Kb
sl

n $ Ko
%

25"
i!1

p

XiYi
m

n $ "
i!1

p

#Li $ Si%

!

252"
i!1

p

XiYi
m

25"
i!1

p

#Xi $ Li $ Yi $ Si%

%

252"
i!1

p

XiYi
m

"
i!1

p

#Xi $ Li $ Yi
m $ Si

m%

% max
1%i%p

252XiYi
m

Xi $ Li $ Yi
m $ Si

m,

where the second inequality follows from the fact that / i!1
p

#Xi $ Yi% ! n;

the third follows from the fact that a particular box Bi
m can contribute the

Yi
m term to at most its 25 neighbors; and the final inequality follows from

Lemma 4.2. The remaining step of the proof now is to show that the above
inequality is O#! !"%. First, by summing up the terms in Eqs. (2) and (3),
we observe the following:

Xi $ Li $ Yi
m $ Si

m $

Xi
2 $ "

j!1

"

#yij
m%2

2!
,

where we recall that / j!1
" yij

m ! Yi
m. Thus, we have

XiYi
m

Xi $ Yi
m $ Li $ Si

m %
2!XiYi

m

Xi
2 $ "

j!1

"

#yij
m%2

%
2!XiYi

m

Xi
2 $ "#Yi

m

"
$2

%
2!"XiYi

m

"Xi
2 $ #Yi

m%2,
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where once again Cauchy’s inequality is invoked to show that / j!1
"

# yij
m%2 $

"#Yi
m " "%2. It can be easily shown that this ratio is at most 2! !", as

follows. If Yi
m % !"Xi, then we have

2!"XiYi
m

"Xi
2 $ #Yi

m%2 %
2!"Xi!"Xi

"Xi
2 % 2!!".

Otherwise, Yi
m , !"Xi, and we have

2!"XiYi
m

"Xi
2 $ #Yi

m%2 %

2!"
Yi

m

!"
Yi

m

#Yi
m%2 % 2!!".

This shows that Kb
sl " #n $ Ko% ! O#! !"%. Combining this with Inequal-

ity (1), we get the desired result, which is stated in the following theorem.

THEOREM 5.1 Suppose ! is a set of n objects in the plane such that each
object has aspect ratio at most !, and the enclosing box of each object has
size either ! or !". Then, ##!% ! O#! !"%.

6. THE GENERAL CASE

We now are in a position to prove our main theorem. Suppose ! is a set of
n objects, with aspect ratio bound ! and scale factor ". Recall that for
simplicity we assume that both ! and " are powers of four. We partition
the set ! into O#log "% classes, "0, "1, . . . , "k, for k ! log ", such that
an object P belongs to class " i if 2 i % vol#c#P%% 2 2 i$1. (Equivalently, the
enclosing boxes of objects in class " i have volumes between !2 i and !2 i$1.)
Each class behaves like a fixed size family (the case considered in Section
4), and so we have ##" i% ! O#!%, for i ! 0, 1, . . . , log ". Any pair
of classes behaves like the case considered in Section 5, implying that
##" i ! " j% ! O#! !"%, for 0 % i, j % log ". We can now formalize this
argument to show that ##!% ! O#! !" log2 "%.

Let Kb
ij, for 0 % i, j % log ", denote the number of object pairs #P, P3%

whose enclosing boxes intersect such that P " " i and P3 " " j. Similarly,
define Ko

ij. Then, we have the following:

##!% !
"
i
"
j

Kb
ij

"
i
"
j

Ko
ij $ n

% ' max
i, j

Kb
ij

"
i
"
j

Ko
ij $ n(log2"

% O#!!" log2 "%
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where the second inequality follows from the fact that i, j are each bounded
by log", and the last inequality follows directly from Theorem 5.1. This
proves our main result, which we restate in the following theorem.

THEOREM 6.1 Let ! be a set of n objects in the plane, with aspect ratio
bound ! and scale factor bound ". Then, ##!% ! O#! !" log2 "%.

7. EXTENSION TO HIGHER DIMENSIONS

The 2-dimensional result might lead one to suspect that the bound in d
dimensions, for d $ 2, will be O#! "1/d%. In fact, the asymptotic bound in d
dimension turns out to be the same as in two dimensions—only the
constant factors are different. A closer examination shows that the expo-
nent on " in Theorem 6.1 arises not from the dimension, but rather from
Cauchy’s inequality.

Our proof of Theorem 6.1 extends easily to d dimensions, for d $ 3. The
structure of the proof remains exactly the same. We tile the d-dimensional
space with boxes (L( balls). The main difference arises in the number of
neighboring boxes for a given box Bi. While in the plane, a box has at most
52 neighboring boxes in the two surrounding layers, this number increases
to 5d in d dimensions. Since our arguments have been volume based, they
hold in d dimensions as well. Our main theorem in d dimensions can be
stated as follows.

THEOREM 7.1 Let ! be a set of n objects in d-space, with aspect ratio
bound ! and scale factor bound ". Then, ##!% ! O#! !" log2 "%, where the
constant is about 5d.

8. LOWER BOUND CONSTRUCTIONS

We first describe a construction of a family ! with " ! 1, which shows
##!% ! &#!%. The construction works in any dimension d, but for ease of
exposition, we describe it in two dimensions. See Figure 5 for illustration.

Consider a square box B of size ! in the standard position, namely, B
! -0, !!. 5 -0, !!.. We can pack roughly ! unit boxes in B, in a regular
grid pattern; the number is #!!$2 to be exact. We convert each of these unit
boxes into a polyhedral object of aspect ratio !, by attaching two “wire”
extensions at the two endpoints of its main diagonal. Specifically, consider
one such unit box u, the endpoints of whose main diagonal have coordi-
nates #a1, a2% and #b1, b2%. The b endpoint of u is connected to the point
# !!, !!% with a Manhattan path, whose ith edge is parallel to the positive
i-coordinate axes and has length !! ' bi. Similarly, the a endpoint of u is
connected to the origin with a Manhattan path, whose ith edge is parallel
to the negative i-coordinate axes and has length ai. It is easy to see that
each unit box, together with the two wire extensions forms a polyhedral
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object with aspect ratio !. By a small perturbation, we can ensure that no
two objects intersect. The bounding boxes of each object pair intersect,
however, and so we have at least ! 2 bounding box intersections in B.

We can group our n objects into #n " !$ groups, each group corresponding
to a !-size box as above. This gives us

Kb $ #
n

!$ 5 #!

2$ ! &#n!%.

On the other hand, Ko ! 0, and thus, ##!% ! &#n! " n% ! &#!%.
We next generalize this construction to establish a lower bound of

&#! !"%, assuming that !" % n. See Figure 6.
We take a square box B3 of volume 4!". We divide the lower right

quadrant of B3 into ! subboxes of size ". We take a copy of the construction
of Figure 5, scale it up by a factor of ", and put it in place of the lower right
quadrant of B3. We extend the wires attached to each object to the corners
c, d of B3. Thus, the smallest enclosing box of each object is now exactly B3,
and aspect ratio is 4!. These are the big objects. Next, we take the
upper-left quadrant, divide it into " subboxes of size ! each. At each !-size
subbox, we place a copy of the construction in Figure 5. These are the small
objects.

Altogether we want X ! n " #1 $ !"% big objects, and Y ! n !" " #1 $ !"%
small objects. Since there are a total of ! locations for big objects, we
superimpose X " ! copies of the big object at each location. Similarly, there
are !" locations for the small objects, so superimpose Y " !" copies of the
small object at each location. (This is where we need the condition !" % n,
since we want to ensure that each location receives at least one object.) Let
us now estimate bounds for Kb and Ko. The enclosing box of every big object
intersects the enclosing box of every small object, we have

a

b

Fig. 5. The lower bound construction showing ##!% ! &#!%.
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Kb $ XY $
n2!"

#1 $ !"%2
(4)

On the other hand, the only object pair intersections exist between
objects assigned to the same location. We therefore have

Ko % !#X "!

2
$ $ !"#Y "!"

2
$

% !#X "!%2 $ !"#Y "!"%2

%
"X2 $ Y2

!"

%
2n2

!#1 $ !"%2
.

Thus,
##!% !

Kb

Ko $ n

$ # n2!"

#1 $ !"%2$)# n2

2!#1 $ !"%2
$ n$

objects

objects
small

d

c

large

Fig. 6. The lower bound construction, showing ##!% ! &#! !"%.
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$
!!"

1

2
$

!#1 $ !"%2

n

$ c!!",

for some constant c , 0. (The ratio !#1 $ !"%2 " n is bounded by a con-
stant, since !" % n.)

THEOREM 8.1 There exists a family ! of n objects with aspect ratio bound
! and scale factor " such that ##!% ! &#! !"%, assuming !" % n.

9. APPLICATIONS AND CONCLUDING REMARKS

Theorems 6.1 and 7.1 have two interesting consequences. The first is a
theoretical validation of the bounding box heuristic mentioned in Section 1.
In practice, the object families tend to have bounded aspect ratio and scale
factor. Thus, the number of extraneous box intersections is at most a
constant factor of the number of actual object-pair intersections. This result
needs no assumption about the convexity of the objects.

If the aspect ratio and scale factor grow with n, our theorem indicates
their impact on the efficiency of the heuristic. The degradation of the
heuristic is smooth, and not abrupt. Furthermore, the result suggests that
the dependence on aspect ratio and scale factor is not symmetric—the
complexity grows linearly with !, but only as a square root of ". It is
common in practice to decompose complex objects into simpler parts. Our
work suggests that for collision detection purposes, reducing aspect ratio
may have higher payoff than reducing scale factor. It would be interesting
to verify empirically how this strategy performs in practice.

The second consequence of our theorems is an output-sensitive algorithm
for reporting pairwise intersections among polyhedra. We run the two-
phase intersection algorithm: the broad phase computes the pairs of objects
whose bounding boxes intersect; the narrow phase then checks the object-
pairs for actual intersection. If there are K intersecting box-pairs, then
the algorithm of Edelsbrunner [1983] finds them in worst-case time
O#n logd'1 n $ K%, where d is the dimension of the ambient space. When
the aspect ratio and scale factors are constant, the number of box-pairs K is
within a constant factor of the intersecting object-pairs, and therefore the
total running time is proportional to output size. The bound is the strongest
for convex polyhedra in dimensions d ! 2, 3. We are aware of only one
non-trivial result for this problem, which holds in two dimensions. Gupta et
al. [Gupta, Janardan, and Smid 1996] give an O#n4/3 $ Ko% time algorithm
for reporting Ko pairs of intersecting convex polygons in the plane. The
problem is wide open in three and higher dimensions.
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Our theorem leads to a significantly better result in two and three
dimensions for small aspect and scale bounds, and nearly optimal result for
convex polyhedra. Given n polyhedra in two or three dimensions, we can
report all pairs whose bounding boxes intersect in time O#n logd'1 n $
Kb% [Edelsbrunner 1983; Mehlhorn 1984], where Kb is the number of

intersecting bounding box pairs. If the polyhedra are convex, then the
narrow phase intersection test can be performed in O#logd'1 m% time
[Dobkin and Kirkpatrick 1990], assuming that all polyhedra have been
preprocessed in linear time; m is the maximum number of vertices in a
polyhedron. If the convex polyhedra have aspect ratio at most ! and scale
factor at most ", then by Theorem 7.1, the total running time of the
algorithm is O#n logd'1 n $ ! !"Ko log2 " logd'1 m%, for d ! 2, 3. If ! and
" are constants, then the running time is O#n logd'1 n $ Ko logd'1 m%,
which is nearly optimal.

Finally, Zhou and Suri [1999] have recently improved and extended this
work. In particular, they close the gap between the upper and lower bound,
showing that # ! O#! !"%. Zhou and Suri also consider a natural extension
of our model, in which only the average aspect ratio is bounded. This may
be more practical in situations where a few pathological objects may exist
in the scene, but the total aspect ratio of the n objects is bounded by !avgn.
The main result of Zhou and Suri [1999] for the average aspect ratio is the
following theorem:

“Let ! be a set of n objects in d dimensions, with average aspect ratio !avg and
scale factor ", where d is a constant. Then, ##!% ! O#!avg

2/3 "1/3 n1/3%. This
bound is tight in the worst case.”
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