
174 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Geometric Spanners for Routing in Mobile Networks
Jie Gao, Member, IEEE, Leonidas J. Guibas, John Hershberger, Li Zhang, and An Zhu

Abstract—We propose a new routing graph, the restricted De-
launay graph (RDG), for mobile ad hoc networks. Combined with
a node clustering algorithm, the RDG can be used as an under-
lying graph for geographic routing protocols. This graph has the
following attractive properties: 1) it is planar; 2) between any two
graph nodes there exists a path whose length, whether measured
in terms of topological or Euclidean distance, is only a constant
times the minimum length possible; and 3) the graph can be main-
tained efficiently in a distributed manner when the nodes move
around. Furthermore, each node only needs constant time to make
routing decisions. We show by simulation that the RDG outper-
forms previously proposed routing graphs in the context of the
Greedy perimeter stateless routing (GPSR) protocol. Finally, we
investigate theoretical bounds on the quality of paths discovered
using GPSR.

Index Terms—Geographical routing, spanners, wireless ad hoc
networks.

I. INTRODUCTION

AN AD HOC network consists of a collection of mobile
communication nodes. Any two nodes within a certain

distance of each other can communicate directly.1 There is no
centralized control or other fixed infrastructure. Each mobile
node can operate as a router, relaying packets for other nodes.
The nodes may move continuously and turn themselves on/off
arbitrarily. The constantly changing network topology makes
routing in ad hoc networks difficult.

Many routing protocols have been proposed for mobile
networks [1]. Among them geographical forwarding, being
a simple and scalable routing scheme, has attracted a lot of
interests in recent years. The nodes can obtain their location
information by either global positioning system (GPS) or lo-
calization algorithms [2], [3]. Simple geographical forwarding
combined with GLS (scalable location service [4]) compares fa-
vorably with dynamic source routing (DSR) [5], [6]. It delivers

Manuscript received October 15, 2003; revised August 17, 2004.
J. Gao was with the Department of Computer Science, Stanford University,

Stanford, CA 94305 USA. She is now with the Center for the Mathematics
of Information, California Institute of Technology, Pasadena, CA 91125 USA
(e-mail: jgao@ist.caltech.edu).

L. J. Guibas and A. Zhu are with the Department of Computer Sci-
ence, Stanford University, Stanford, CA 94305 USA (e-mail: guibas@
cs.stanford.edu; anzhu@cs.stanford.edu).

J. Hershberger is with Mentor Graphics Corporation, Wilsonville, OR 97070
USA (e-mail: john_hershberger@mentor.com).

L. Zhang was with Compaq Systems Research Center, Palo Alto, CA. He is
now with the Information Dynamics Laboratory, Hewlett Packard Laboratories,
Palo Alto, CA 94304 USA (e-mail: l.zhang@hp.com).

Digital Object Identifier 10.1109/JSAC.2004.837364

1We use a simplified model that all nodes have the same transmission range
and two nodes can directly communicate if their distance is within the trans-
mission range. The interference of the wireless channels and the presence of
obstacles, though being important issues, are not considered in this paper.

more packets and consumes fewer network resources. Further-
more, the performance of GLS degrades gracefully as nodes
fail and restart, and is relatively insensitive to node speeds [4].
The reason for the scalability and efficiency of location-based
routing algorithms is that they adopt local algorithms, i.e., each
node makes the decision on which node to forward the packet
to, based solely on the location of itself, the neighboring nodes,
and the destination. Local algorithms are lightweight, robust,
and distributed in nature. In contrast, the shortest-path-based
algorithms require the knowledge of the complete network
topology, whose maintenance cost is quadratic in the size of
the network—each change in edge or node status (nodes switch
on/off/sleep) may trigger routing table update in a large portion
of the network. Location-based routing algorithms reduce such
overhead.

In a geographic forwarding scheme, a source node first ac-
quires the location of the destination node it wants to commu-
nicate with, then forwards the packet to a neighbor closer to the
destination. This process is repeated until the packet reaches
the destination. Thus, a path is found via a series of local de-
cisions rather than flooding. However, geographic forwarding
methods suffer from the so called local minimum phenomenon,
in which a packet gets stuck at a node that does not have a closer
neighbor to the destination, even though the source and destina-
tion are connected in the network. One technique to deal with
this problem, proposed by Bose et al. [7] and independently
Karp and Kung [6], is to maintain a planar subgraph of the un-
derlying connectivity. When a packet is stuck at a node, the pro-
tocol will route the packet around a face of the graph to get out
of the local minimum. Karp and Kung also proposed a routing
protocol, the greedy perimeter stateless routing (GPSR) pro-
tocol that guarantees the delivery of the packet if a path exists.
The advantage of GPSR over other routing protocols is that for-
warding decisions are made using local information only; there
is no need to maintain routing tables or make global broadcasts.

Two planar subgraphs, the relative neighborhood graph
(RNG) and the Gabriel graph (GG), were proposed to solve the
local minima problem in geographical routing. Both of them
are based on local geometric conditions and can be computed
efficiently. While the algorithms perform well when each in-
dividual node’s visible range is large and nodes are uniformly
or randomly distributed, they do not perform as well for more
general node distributions. In particular, the GG and RNG are
not good spanners: nodes that can be reached via a path with
few hops might become far apart in the GG or RNG [8]. This
fact limits the quality of paths even if we use globally optimum
routing methods on these subgraphs. In this paper, we use the
stretch factor to capture this aspect of path quality. Roughly
speaking, the stretch factor of a subgraph of a graph
measures the worst case ratio between the length of a shortest

0733-8716/$20.00 © 2005 IEEE



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 175

path in to the length of the shortest path with the same
endpoints in . A subgraph with a constant stretch factor is
called a spanner.

We present a new routing graph, the restricted Delaunay
graph (RDG), that has nice theoretical guarantees on the stretch
factor of routing paths. In particular, the RDG has paths with
Euclidean and topological length only a constant factor longer
than the length of the optimal path. Our routing graph can be
efficiently computed and maintained in a completely distributed
and local manner. The total communication cost (message ex-
change) for its construction is only linear in the total number of
nodes. Under topological changes (edge insertion or deletion),
only nodes within two hops need to be updated. The update
cost is per node per topological change. In addition to
presenting a rigorous theoretical analysis, we also demonstrate
by simulation that GPSR on the RDG finds routes of substan-
tially better quality as compared with the GG or RNG, under
both uniform and multimodal distributions of the points.

To define our graph, we first group nodes into clusters. Each
cluster has a clusterhead, and nearby clusters are connected via
gateway nodes. For a node to send a packet to a nonneighbor
node first forward the packet to its clusterhead; the packet
is then forwarded on the RDG defined only on clusterheads and
gateways until it reaches some clusterhead or gateway that is vis-
ible to . We use a clustering algorithm to guarantee that each
clusterhead/gateway has only a constant number of neighbors
on RDG [9]. This simplifies forwarding during routing. For in-
stance, in [6], the greedy geographic forwarding is done by ex-
amining all neighboring nodes in order to skip short edges in the
graph. This process is expensive when nodes are densely dis-
tributed. In our routing graph, we perform greedy geographic
forwarding by considering only the adjacent nodes in the RDG,
therefore, reduce the complexity significantly. The clustering al-
gorithm also improves the behavior of GPSR. GPSR based on
the GG or RNG may traverse a short boundary that consists of
a dense sequence of nodes; but boundaries in the RDG have
only constant density. We also investigate the tradeoff between
scaling and the spanning property, and the efficiency of cluster-
head changes.

The rest of the paper is organized as follows. Section II covers
related work. Section III gives a detailed description of the RDG
and proves the spanning property. Section IV deals with the dis-
tributed implementation of the RDG. Section V proves theo-
retical bounds on the length of the actual routing paths under
certain circumstances. We compare the simulation results for
GPSR on the RDG versus GPSR on the RNG in Section VI,
and finally, Section VII concludes by discussing various other
aspects of the RDG.

II. RELATED WORK

Clustering is used in many routing protocols in mobile
networks [10]–[13]. One class of clustering algorithms is based
on the minimum connected dominating set (MCDS) [14], [15].
Das et al. [14] proposed a MCDS routing protocol that uses
a -approximation of the minimum connected dominating
set. Wu et al. used a distributed algorithm to compute the

connected dominating set; however, this could perform badly
in the worst case ( -approximation) [15]. Another class of
clustering algorithms started from the lowest-ID cluster algo-
rithm proposed by Ephremides et al. [12], [13]. A similar idea
also led to the max-min D-clustering scheme proposed by Amis
et al. [10]. Chiang et al. [11] proposed a least cluster change
clustering (LCC) algorithm that tries to minimize clusterhead
changes under motion. However, there is no guarantee on the
quality of the clustering. They also proposed a clusterhead
gateway switch routing (CGSR) protocol that uses routing
tables; yet maintaining the clustering with a routing table is
expensive in a mobile setting. For mobile nodes, Gao et al.
[9] and Hershberger [16] proposed constant approximation
clustering algorithms with efficient maintenance schemes. The
algorithm by Hershberger [16] requires global information.
In this paper, we make use of the algorithm in [9] because of
the guaranteed good quality of the clusters and the efficient
distributed maintenance under motion.

Spanner graphs have been heavily studied in computational
geometry [8]. The Delaunay triangulation is known to be
a planar spanner [17]–[19]. However, little is known about
restricted spanner graphs, where only edges shorter than one
are allowed. The preliminary version of this paper [20] is the
first paper to propose a planar spanner in both Euclidean and
topological distance measures that can be constructed and
maintained in a distributed and local manner as the nodes move
around. Li et al. [21] proposed a -localized Delaunay graph
for static networks and proved it is planar if and has
a constant stretch factor for Euclidean length only. In a later
paper, Alzoubi et al. [22] used ideas similar to those of [20] and
combined the -localized Delaunay graph with the dominating
set approach to prove a constant stretch factor for topological
distance on their local Delaunay (LDel) graph. Again, they
considered static networks only. None of these authors studied
in detail how to maintain spanner graphs in a distributed fashion
when the nodes move around.

III. ROUTING GRAPH WITH CONSTANT STRETCH FACTOR

We assume that two mobile nodes can communicate with
each other directly if their separation is no larger than one. We
call two such nodes visible to each other. The unit-disk graph

is defined as follows: the vertex set is the set of
all the mobile nodes, and an edge is in if and only if
and are visible to each other. The neighborhood of , denoted
by , is the set of the nodes visible to (including itself).
If we assume , then there may be edges in .
For any two nodes and in , denote by
the length in hops (in Euclidean distance) of the topological
(Euclidean) shortest path connecting and in . For a sub-
graph of , define and to be the same
quantities in . Then, has topological (Euclidean) stretch
factor at most if for any pair of nodes

. The stretch factor measures the
quality of the subgraph. One of the major goals of this paper is
to construct a sparse planar subgraph with constant stretch
factor. This graph can serve as a routing graph in ad hoc
networks.



176 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Our construction consists of two phases. First, we make use
of the hierarchical clustering algorithm in [9] to select a small
subset of , called the clusterheads, so that each node in
can communicate directly to a clusterhead. Each noncluster-
head node in (called a client) is assigned to a unique clus-
terhead visible to it. We also identify those pairs of clusterheads
that may communicate to each other via their clients. For each
such pair, we pick one pair of clients, called gateways, that en-
able such communication. This reduces routing in to routing
between clusterheads and gateways. Second, we form a planar
routing graph on clusterheads and gateways by applying a local
rule, called the restricted Delaunay edge rule. The graph pro-
duced this way is called RDG. Routing between clusterheads
and gateways is then done on the RDG. Therefore, our final
routing graph is the union of RDG and the edges that con-
nect clients to clusterheads.

Our routing graph has the following properties.
• The RDG is a planar graph. No two edges cross each other

in the graph.
• Graph has constant stretch factor, under both topolog-

ical and Euclidean measures, compared with the original
communication graph . If there exists a path in with
length between two nodes, then there is a path in with
length for some constant , where the length
can be either topological or Euclidean distance.

• Graph can be efficiently computed and maintained
in a completely distributed and local manner. The total
communication, (i.e., the number of messages exchanged)
and computation cost for the construction is . Under
topological changes (edge insertion or deletion), only
nodes within two hops need to be updated. The update
cost and the message exchange is per node per
topological change.

In the rest of this section, we will briefly describe the clus-
tering algorithm in [9] and present the RDG.

A. Mobile Clustering

The goal of clustering is to select a subset of nodes as clus-
terheads such that the rest of the nodes are visible to at least
one of the clusterheads. While any clustering algorithm can be
used in the first stage, the algorithm developed in [9] is used
here because we need some special properties of the clustering
algorithm to achieve good properties on the routing graph.

The one-level clustering algorithm works as follows. Assume
a random ordering on the unique IDs of the nodes, and let each
node nominate the node with the highest ordered ID in its vis-
ible range.2 All nominated points are clusterheads. A cluster is
formed by a clusterhead and all the nodes that nominated it.
This one-level algorithm was first proposed by Ephremides et al.
[12], but without theoretical analysis. In [9], the method is rig-
orously analyzed and extended to a hierarchical algorithm that
achieves a constant approximation factor in expectation.

The hierarchical algorithm makes use of the one-level algo-
rithm and proceeds in a number of rounds. The basic idea is
that instead of considering all nodes in its visible range, each

2There is a way to permute the order of the IDs such that every node gets a
fair chance of being a clusterhead.

node gradually grows its visible range and selects clusterheads
among nodes in the restricted visible range. Only clusterheads
selected in one round will participate in the clusterhead selection
process in the next round. More precisely, at round 0, all nodes
are clusterheads and participants. At each round every partici-
pant (clusterhead produced by the previous round) selects a new
clusterhead out of the participants within a larger visible range
by using the basic one-level algorithm. The size of the visible
range used in round is . The hierarchical algorithm ter-
minates after rounds. A cluster is defined by a final
clusterhead and all the nodes that directly or indirectly nomi-
nated it. Gao et al. showed that all nodes in a cluster are visible
to the clusterhead, and the number of final clusterheads is only
a constant factor more than the minimum possible [9]. There-
fore, the clusterheads have constant density—any unit disk only
covers a constant number of clusterheads. This is due to the fact
that the optimal solution has density at most 6 (a simple greedy
algorithm3 produces a feasible clustering with density at most
6, the optimal solution can only do better).

Theorem 3.1: The number of clusterheads in any unit disk is
in expectation.

To enable different clusters to communicate with each other,
we introduce gateways [12]. These are nodes that link two clus-
ters. For each clusterhead , define the cluster centered
at node to be the set of points that nominated and itself.
Note that one node can participate in two clusters, if it nomi-
nates another node as its clusterhead, and at the same time com-
pared with nominated by others to be a clusterhead. Node ’s
clusterhead is denoted by . For a pair of clusterheads ,
if there exists a pair of nodes such
that and are visible to each other, we define and to
be gateway nodes. Note that and might be clusterheads
already, in which case they remain clusterheads. Between each
pair of overlapping or adjacent clusters, only one pair of gateway
nodes is maintained at any time. We describe the maintenance
of clusterheads and gateways for mobile nodes in Section IV.
From Theorem 3.1, we can also derive the following fact.

Corollary 3.2: The number of clusterheads and gateways in
any unit disk in the plane is in expectation.

Proof: If clusterhead has a pair of gateway nodes with
clusterhead must be at most distance 3 away from . So
the number of clusterheads that can form gateways with is at
most a constant. That is, there are at most a constant number of
gateways in any unit disk. The number of clusterheads and gate-
ways in any unit disk is also bounded by in expectation.

The hierarchical algorithm provides a theoretical bound that
holds for any distribution of nodes in the plane. In reality, distri-
butions that cause bad clustering quality appear very rarely and
the one-level algorithm actually works pretty well for practical
situations. In our simulations, we only use the one-level clus-
tering algorithm described above.

B. Restricted Delaunay Graph (RDG)

Our routing graph includes the edges that connect each
client to its clusterhead. In addition, we build a planar graph

3The greedy algorithm works as follows. Select an arbitrary node as a clus-
terhead. Delete all the nodes covered by the selected clusterhead. Repeat this
process until all the nodes are covered.



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 177

Fig. 1. Example of linked cluster organization of a mobile network.

Fig. 2. Voronoi diagram and Delaunay triangulation of a set of points.

among clusterheads and gateways. Fig. 1 shows an example of
such a routing graph.

The routing of a packet from to (if is not directly reach-
able) is realized by first sending the packet to ’s clusterhead,
then forwarding the packet among clusterheads and gateways
until it reaches a node visible to , which forwards the packet to

. We design an RDG for connecting clusterheads and gateways,
similar to the GG and RNG used for all the nodes in GPSR [6].
The main difference is that the RDG provides theoretical guar-
antees on the Euclidean and topological stretch factors, while
the GG and RNG do not (Section V). In the rest of this section,
we concentrate on the unit-disk graph whose nodes are the clus-
terheads and gateways . Since the definition of the RDG
is independent of the clustering algorithm, we will describe the
graph on a set of points, but the reader should keep in mind that
the graph is computed on clusterheads and gateways, rather than
on the full node set .

1) Voronoi Diagram, Delaunay Triangulation, and RDG:
For a set of point sites in the plane, the Voronoi diagram
partitions the plane into convex polygonal faces such that all
points inside a face are closest to only one site. The Delaunay
triangulation is the dual graph of the Voronoi diagram, obtained
by connecting the sites whose faces are adjacent in the Voronoi
diagram. For an edge , there is an empty-circle rule to deter-
mine whether is a Delaunay edge: is a Delaunay edge
if and only if there exists a circle that contains no other points
except . Fig. 2 shows an example of a Voronoi diagram and
Delaunay triangulation of a set of points.

These classical geometric structures have numerous applica-
tions [23]. The Delaunay triangulation is known to be a good
spanner of the complete graph, measured by the Euclidean dis-
tance [18], [19]. However, we cannot use this graph directly
in our setting because: 1) the Delaunay triangulation may have

long edges, while we are only allowed to connect points within
distance 1 and 2) the empty-circle rule is a global rule and is
not suitable for local computation. To deal with those two prob-
lems, we define the RDG and show that it has good spanning
properties and is easy to maintain locally.

Definition 3.3: A restricted Delaunay graph of a set of points
in the plane is a planar graph and contains all the Delaunay edges
with length (called short Delaunay edges).

Notice that the RDG always exists and is not necessarily
unique—it may contain additional edges beyond the short
Delaunay edges. By its planarity, we also know that a RDG is
sparse, i.e., has linearly many edges in terms of the number of
nodes. In the following, we will show that any RDG has nice
spanning properties.

2) Spanning Properties of : The Euclidean spanning prop-
erty of the Delaunay triangulation was first proved in [18] and
later improved in [19]. We extend the proof in [18] to show the
Euclidean distance spanning property of the graph , which is a
subgraph of a unit-disk graph and contains only the
short Delaunay edges. Then, an RDG graph is also an Euclidean
distance spanner, since it necessarily contains graph .

Lemma 3.4: For any ,
where , i.e., is an Euclidean
spanner graph with stretch factor of at most 5.08.

Proof: It suffices to prove that for any two nodes ,
if their Euclidean distance is , then there exists a path in
RDG connecting them whose total Euclidean length is at most

. We can use the following spanning property proved for
regular Delaunay triangulations by Dobkin et al. [18]: for any
two nodes , there exists a path in the Delaunay triangulation
that lies entirely inside the circle with as the diameter, and
the path length is no more than . For any two
points in the circle with as the diameter, their distance is at
most . Therefore, all the edges in the path constructed in
[18] are short Delaunay edges, which all exist in .

While the above lemma shows that RDGs are good Euclidean
spanners, an RDG is not necessarily a good topological spanner.
A counterexample can be constructed, where there is a direct
path between two nodes yet in the RDG the number of hops
of the shortest path is . However, if nodes are distributed
with constant density, i.e., there are nodes in any unit circle
in the plane, then we can also show that the topological stretch
factor is bounded. Fortunately, the graph has constant den-
sity by Corollary 3.2.

Lemma 3.5: An RDG is a topological spanner graph with
constant stretch factor. That is, for any two nodes in

for some constant .
Proof: Since has constant density, in the Proof of

Lemma 3.4, there are at most points in the circle with as
the diameter. Thus, the path in the RDG has a constant number
of intermediate nodes. That is, the RDG is a topological spanner
graph with constant stretch factor.

In addition, our routing graph is an Euclidean and topolog-
ical spanner.

Theorem 3.6: Graph is an Euclidean and topological
spanner with respect to the underlying unit-disk graph.

Proof: Suppose the (either Euclidean or topological)
shortest path between and is



178 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Fig. 3. Spanner property of routing graph .

and the clusterhead of is . Since node and are
visible to each other, there must exist a pair of gateway nodes
between clusterheads and , i.e.,
(Fig. 3). From Lemma 3.5, there exists a path in the RDG
whose length is at most . We define the path

to be the union of and the edges . Then,
.

The Euclidean spanner property follows from the constant
density of the clusterheads and gateways. Basically, all the ’s
are in a region whose area is linear to the Euclidean length of

. Due to the constant density argument, the number of cluster-
heads and gateways inside the region is also linear to the length
of . So the length of the path is only a constant times the
length of .

We have shown that our routing graph has constant stretch
factor for both Euclidean and topological distances. In prac-
tice, it is expensive to find the shortest path in a routing graph.
Geographic forwarding is preferable because of its simplicity.
We will prove some theoretical bounds on the length of the ac-
tual paths used by geographic forwarding in Section V. In addi-
tion, our experimental results show that our routing graph per-
forms better than the RNG or GG under geographic forwarding
(Section VI).

IV. MAINTAINING THE ROUTING GRAPH

In this section, we discuss the maintenance of the routing
graph in the distributed setting. The challenge here is that each
node only has a fixed communication range and only performs
local computation. We aim to design an algorithm that enables
each node to maintain the relevant part of the routing graph ef-
ficiently and consistently, with only the knowledge of its neigh-
bors. For the maintenance of clusterheads, we use the algorithm
described in [9] and refer to that paper for details. Here, we will
describe the maintenance of RDGs and gateway nodes.

A. Maintaining an RDG

According to Lemma 3.5, any RDG has the desired spanning
property. We will describe a distributed algorithm that maintains
an RDG as nodes move. Each node maintains a set of edges

incident to and those edges satisfy that: 1) each edge in
is short, i.e., of length ; 2) the edges are consistent, i.e.,

the edge is in if and only if it is in ; 3) the graph
obtained is planar, i.e., no two edges cross; and (4) all the short
Delaunay edges are guaranteed to be in the union of ’s.

The algorithm works as follows. First, each node acquires
the position of its one-hop neighbors among the cluster-
heads and gateways, and compute their Delaunay triangulation
(including itself), denoted by . Since is com-
puted only on , the edges we obtain are a superset of
the short Delaunay edges and some of them might be globally

Fig. 4. Pseudocode for resolving inconsistency.

non-Delaunay edges. Furthermore, the local Delaunay triangu-
lations at different nodes might be inconsistent, i.e., an edge

is in ’s local graph but not in ’s. Because of this inconsis-
tency, the union of local graphs might not be planar although
they are planar individually. To resolve these problems, in the
second step, we perform a one-hop information exchange, i.e.,
each node sends its local Delaunay triangulation to the
clusterheads and gateways within one hop. Then, each node
resolves the inconsistency by deleting edges that are not valid
in its neighbors’ local Delaunay triangulations. More precisely,
each node executes the pseudocode shown in Fig. 4.

Now, we will argue that after the execution of the above
pseudo code, all the ’s satisfy the stated properties.
The invariant the above pseudocode achieves is that for each
visible pair and , the edge belongs to if and
only if for all (notice that

since are mutually visible). If an edge
is a short Delaunay edge, it has to be present in all the local

graphs for . Therefore, the properties
1), 2), and 4) hold. The following simple geometric fact shows
that this one-hop information exchange suffices and there are
no crossing edges.

Lemma 4.1: For two visible pairs and , if the edges
and cross, then one of the four nodes sees all of the other

three.
Proof: Assume that (of length ) and (of length

) intersect at a point . By the triangle inequality,
and . Summing these two equa-

tions, we have that . Therefore, either
or has length . Similarly, either or has length
. No matter in which case, the endpoint shared by the two

short edges sees all three other points.
By Lemma 4.1, we now argue that no crossing exists in the

final graph. Suppose that the edge intersects the
edge . Then, by the lemma, one of , say

, sees all four nodes. Therefore, must have received
when computing . According to Fig. 4, both and
must be present in , contradicting the fact that is a
planar graph.

The procedure above could be expensive if contains
many nodes. Fortunately, it is not the case in our setting be-
cause we apply this algorithm on clusterheads and gateways.
According to Corollary 3.2, those nodes have constant density.
Therefore, can be computed in time for each . Note
that the computation is completely local and global flooding is
not needed.

B. Maintaining Gateway Nodes

The maintenance of gateway nodes is similar to the method
described in [12]. Essentially, every node sends its entire
neighbor set to every neighboring node. However, each node



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 179

Fig. 5. Maximal matching in bipartite graph . (Left) Original graph.
(a) Pair of nodes become invisible. (b) A node leaves the cluster. (c) A new node
joins the cluster.

might take time processing and making decisions about
whether or not it should serve as a gateway, where is the
total number of nodes within two hops. While such a method
is needed at the initial phase, it is not efficient as points are
moving. We present here an algorithm to let clusterheads select
gateways instead of each node making that decision. Note
that changes to clusterheads and gateways occur only if the
underlying unit-disk graph changes, i.e., when two nodes and

become visible or invisible to each other. We show that when
such an event happens, only the one-hop neighbors of and
need proper update and the update time is constant per node.

For two clusterheads and , we define a bipartite graph
with vertices . The edge is in
if , and is visible to . The

edges in the bipartite graph represent all eligible
gateway pairs between and . To avoid storing all the edges
in this graph, we only maintain a maximal matching
at .4 Fig. 5 shows such matchings. If is an edge in the
matching, we call is matched to , or to , or
simply, is matched. By maintaining maximal matchings, we
can reduce storage needed to and update time to
per node.

The property of maximal matching guarantees that if there
is at least one edge in the bipartite graph, i.e., clusterheads
and can be connected via gateways, all maximal matchings
have to contain at least one edge, too. To maintain the maximal
matching record, a clusterhead maintains the pair ,
where is visible to is matched to , and . For
each matched node (which may or may not be chosen as a
gateway node), maintains the pair , where is matched
to , and . At the beginning, after proper rounds of
information propagation, each clusterhead pair would properly
select a maximal matching from the bipartite graph (to make the
matching consistent on both sides, we let the clusterhead with
higher ID select the matching and inform the other clusterhead).
We let the clusterhead with higher ID select a gateway pair out
of the available matching. As points move around, if the pre-
vious selected gateways are no longer valid as indicated by the
matching, the clusterhead would select another gateway pair out
of the current matching.

When nodes move around, we want to maintain a maximal
matching. We first describe how the neighborhood information

4A matching of a bipartite graph is a subgraph where each node has at most
one edge. A maximal matching is a matching such that no edges can be added
to the matching. A maximal matching can be constructed in a greedy way.

Fig. 6. Organizing neighbors.

is organized inside a node . To be more specific, each node
would propagate information by broadcasting an update entry
of the following form

where the ID uniquely identifies and are the IDs of the
clusterheads that the clusters belongs to (recall that a node
may belong to two clusters), are the IDs that the clus-
terheads is matched to. Note that since clusterheads have con-
stant density, each such entry is of constant size. Then, would
organize its neighbors’ entries into a table that is indexed by a
pair of clusterhead IDs (Fig. 6). The first index is the ID of a
clusterhead that a neighbor belongs to, and the second index is
the ID of a clusterhead that a neighbor is matched (not matched)
to. This table enables lookup time to find a neighbor whose
clusterhead is and currently matched (not matched) to . For

, the indices of the table include only clusterheads within dis-
tance 3. Also, a neighbor might appear in the table several
times, but by the constant density argument, at each node the
total number of pairs of indices in the table is a constant, each
neighbor only appears a constant number of times. So the total
storage at each node is still linear in the neighborhood size. The
table and the maximal matching record are updated upon re-
ceiving any update entry from neighbors.

Changes of the maximal matching can only happen when two
nodes begin or stop seeing each other, this may also cause one
client in to change clusterhead. We will discuss these sit-
uations separately.

1) When two nodes and begin to see each other
, the change takes place if both are

not matched with respect to clusterheads and . They
become matched in by adding and to the
update entry respectively. Once the update entry is mod-
ified, a node would broadcast the entry to its neighbors
(in the succeeding discussions we omit this step). If two
nodes stop seeing each other and they are matched
before in , we need to find out if they can be
matched with other nodes in the same bipartite graph. To
do this, and would look into their neighbor set and
find unmatched nodes in and , respectively
[Fig. 5(a)]. For example, looks for a neighbor with

as one of the clusterheads and is not matched to .
2) When one node changes its clusterhead: This involves

disappearing in the original cluster and appearing in
the new cluster. When disappears in , if is not
matched at all, nothing needs to be done. If not then



180 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Fig. 7. RNG and GG.

needs to broadcast the clusterhead change to its neigh-
bors. Notice that because of the constant density of clus-
terheads, participates in at most a constant number of
matchings in total. So a clusterhead change would only
affect a constant number of nodes in the graph. Suppose

was matched to some node in some , once
receives message from about clusterhead changes,
needs to search its neighbors for potential matchings

[Fig. 5(b)]. When appears in needs to find
among its neighbors nodes that belong to some other
cluster and are currently not matched to . This
can be done in a similar way as described in the previous
situation [Fig. 5(c)].

To summarize, the RDG, as well as the routing graph
are light-weight structures that can be efficiently computed
and maintained in a completely distributed and localized
manner. The total communication and computation cost for the
construction is only . Under topological changes (edge
insertion or deletion), only nodes within two hops need to be
updated. The update cost is per node per topological
change.

V. QUALITY ANALYSIS OF ROUTING GRAPHS

As shown in Section III-B2, our routing graph has bounded
topological and Euclidean stretch factors. In the literature, there
have been other ways proposed to construct good spanners. The
most popular one is to partition the space around each point into
cones with some fixed angles, and then connect the point to the
nearest point in each cone. While such cone-based construction
gives us good geometric spanners, they are generally nonplanar.

The RNG and the GG are two planar graphs used in [6]. The
RNG is defined such that an edge exists if there is no other
node whose distances to and are less or equal to the dis-
tance between and . GG is defined such that an edge
exists if no other node is inside the circle with the diameter
(Fig. 7). Bose et al. [24] proved that the Euclidean stretch factor
of GG and RNG are and , respectively, where is
the number of points. The same construction also implies that
even for a constant density point set, the topological stretch fac-
tors can be for GG and for RNG. If the density of
the points is high, the stretch factor can be as great as .

One problem with maintaining a sparse graph of the under-
lying topology is that we may have to traverse many short edges
when the density of the point set is high. In GPSR, the problem
is avoided by using the sparse graph only for getting out of local
minimum. During the greedy geographic forwarding, the pro-
tocol considers all the visible nodes but not just adjacent nodes
in the graph. Therefore, the complexity of each routing step can

be high if the density is high. Nevertheless, the routing can be
benefited by considering all the visible points. For example, we
are able to prove the following result on the quality of path in
a special case, where geographic forwarding is never stuck at a
local minimum.5

Theorem 5.1: If a packet can be greedily forwarded from
to , i.e., no local minimum is reached during the forwarding,
then the routing path length is bounded by if the shortest
path between has length .

Proof: Recall that by greedy forwarding, each time we
check all the visible neighbors and forward the packet to the
one closest to the destination. Let the path be

. Note that the distance between and is
decreasing when increases. Since the optimum path is of length
, the distance between and is at most . Thus, all ’s lie in

a circle of radius centered at . Also, we know that the points
and for cannot see each other because otherwise

we would have chosen instead of as the successor of
in the path. Therefore, the points are

mutually invisible. According to a simple packing lemma, we
know that there can be at most such points in a disk with
radius .

Note that the preceding bound is tight. Fig. 8(a) illustrates
a situation where a path with nodes is discovered by
greedy geographic forwarding, while the optimum path has
length . While considering all the visible vertices can help to
skip short edges, it incurs high cost when deciding to which
node the packet is forwarded. Our algorithm does not have this
problem since we perform the clustering first and only maintain
a sparse graph for clusterheads and gateway nodes. This effec-
tively “smooths out” the point set so that our analysis enjoys the
property that the points are distributed with constant density.
In addition to the stretch factor and the low maintenance cost
for RDG as described before, we can also prove the quality of
perimeter routing on our graph, again in a special case. We say
that a perimeter routing follows the right-hand (left-hand) rule,
if we always traverse a face in a counterclockwise (clockwise)
direction. We call a path connecting right-sided (left-sided)
if the path lies entirely on the right (left) side of the line passing
through . Then, we have the following.

Theorem 5.2: If the shortest path is right-sided (left-sided)
and has length , then the path discovered by perimeter routing
following the right-hand (left-hand) rule has length at most

.
Proof: Suppose that the optimum path is to the right of line

. If the perimeter routing follows the right-hand rule, then all
the points traversed lie entirely inside the region bounded by the
line segment and the optimum path from to [Fig. 8(b)].
The area of that region is . By the constant density prop-
erty, the number of nodes in that region is at most . There-
fore, the length of the path is at most as well.

The above theorem does not specify a way to figure out which
side the shortest path lies. This is in general a difficult question
in perimeter routing—by following a wrong direction, we may
have to traverse a very long path while a short path exists by
following the other direction. We do not know of any good local
rule to resolve this problem. However, one trick one may use is

5As noted in [6], this is the typical case.



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 181

Fig. 8. Examples of greedy forwarding and one-sided perimeter routing.

to try both directions. Specifically, we can forward the packet
to the right hops, and then come back to and forward the
packet to the left hops. Then, we double ’s value and repeat the
process until either we reach a point where greedy forwarding
is available, or we enter another face, or we come back to the
starting edge, which means there is no path between . We
can obtain competitive bounds by this doubling technique: if the
number of nodes traversed by following the optimal direction in
the perimeter routing is , then the number of nodes traversed
with this scheme is .

In GPSR, when a packet cannot reach its destination, it finds
this out by traversing a face boundary and returning to the edge
where it began. If a destination is unreachable from the source,
the undeliverable packet has to traverse the outer face of the
source’s connected component. The RDG shortens such travel.
In the RDG, routing is done in a much smaller graph than the
RNG and GG, and the undeliverable packet travels through
many fewer nodes before it realizes the unreachability. This is
also demonstrated by the simulation in the next section.

VI. SIMULATIONS

In the previous sections, the analyses are mostly theoretical
and help us to understand the quality of the algorithm in the ex-
treme cases. To demonstrate the quality of our algorithm in prac-

Fig. 9. (a) RNG and (b) RDG on a uniform distribution.

tice, we have also performed simulations on points with uniform
or nonuniform distributions.

1) Uniform Distribution: In this simulation, we used 300
random points in a square of side length 24. Each node can see
all the nodes in a disk of radius 2 around itself. The density of
nodes is about 8. We only use the one-level clustering algorithm
to select the clusterheads. The simulation is first done in a static
case. We evaluate the quality of the path found by GPSR on
the RNG and RDG. The RDG on clusterheads and gateways is
shown in Fig. 9(b). The RNG is shown in Fig. 9(a) The RDG is
a sparser backbone compared with the RNG, containing fewer
nodes. Therefore, when we do perimeter routing along a face
in the RDG, the number of hops experienced is much smaller
than in the RNG. This is also shown in the simulation results.
Fig. 10(a) shows the comparison of performance in the RNG and
RDG. For all pairs of reachable nodes, we compute the number
of hops of the optimal path, and the path we get using GPSR
on both the RNG and RDG. For the pairs with the same op-
timal length, we take the average length of the paths from GPSR.
We can see that the RDG outperforms the RNG in terms of the



182 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Fig. 10. (a) Averaged length using GPSR versus optimal length. (b) Maximal
length using GPSR versus optimal length.

routing path quality. Fig. 10(b) shows the maximal number of
hops by GPSR on RNG and RDG. Also, when we look at all the
unreachable pairs, on the average 67 hops are traveled in RDG
and 139 hops are traveled in RNG.

We also experimented with motion. We assume every point
moves with a constant velocity in a random direction at a
random speed between 0 and 1. Points are constrained to
move within the square (of side length 24), so a point bounces
back once hitting the virtual boundary.6 In this paper, we are
interested in how the path quality between two fixed points
changes over time. We track the topology of the network under
motion over 1000 frames at 1 frame/s. We then compute the
path length between these two specific points at each frame. On
average RDG outperforms RNG by more than 37% (23 hops
versus 37 hops).

2) Nonuniform Distribution: In the real world, the nodes are
far from uniformly distributed. In this case, the advantage of the

6This models the situation that one point moves into and one point moves out
of the specified region.

Fig. 11. (a) RNG and (b) RDG on a nonuniform distribution.

RDG over the RNG is shown more obviously by the simulation.
Here, we show a simulation with 300 points—100 points are
randomly distributed, and another 200 points are clustered in
four groups. The size of a node’s visible range is a disk of radius
3.5. The RNG and RDG are shown in Fig. 11. The comparison
of path length in RNG and RDG is shown in Fig. 12. We can see
from the figures that most of the packets follow a shorter path
in RDG, compared with RNG. The advantages are clearer when
the length of the optimal path increases.

VII. DISCUSSION

We discuss some other practical issues in implementing and
measuring the method in this chapter. We also state the recent
results on how to find a short path in wireless ad hoc networks,
to make the problem complete.

A. Scaling Versus Spanner Property

One desirable property of the routing graph is that every node
has small degree, so no node can be overloaded. However, there



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 183

Fig. 12. (a) Averaged length using GPSR versus optimal length. (b) Maximal
length using GPSR versus optimal length.

is a tradeoff between the constant degree and the spanner prop-
erty. If we enforce constant degree of the routing graph, the
spanner property cannot be achieved. Consider the situation in
which nodes are very near to each other such that every node
can see all the other nodes. If we let each node’s degree in the
routing graph be at most , then one node can reach at most

nodes in one hop, and nodes in two hops, and nodes
in hops. Then, there must exist a node that can reach in no
fewer than hops.

Notice that in our routing graph, the clusterheads may have
a lot of clients, but the RDG constructed on clusterheads and
gateway nodes has a constant degree due to the constant density
property. So, when the messages are routed on the “backbone”
graph, the routing decisions are made with cost per node.
This is compared with routing on RNG and GG, whose degree
might be as high as .

B. More About Clustering

One common issue in using clusterheads in routing pro-
tocols is that frequent clusterhead changes may adversely

affect routing protocol performance since nodes are busy
in clusterhead selection rather than packet forwarding. For
example, consider the clusterhead gateway switch routing
(CGSR) protocol proposed by Chiang et al. [11]. Each node
keeps a cluster member table, where it stores the destination
clusterhead for each mobile node in the network. So when a
node changes its clusterhead, the updated information must be
broadcast to every node in the network, which causes a lot of
traffic. In addition, each node keeps a routing table that is used
to determine the next hop in order to reach the destination.
Changes of clusterheads also cause a lot of changes in the
routing table. To minimize the changes of clusterheads, they
proposed a least cluster change (LCC) clustering algorithm, in
which clusterheads only change when two clusterheads come
to see each other, or when a node moves out of the visible range
of all the clusterheads.

However, the above is not a problem in our routing graph:
GPSR does not require any routing tables. The routing graph
changes locally and need not be broadcast over the whole net-
work. In addition, our clustering algorithm is stable. Changes to
clusterheads and gateways occur only when the underlying unit-
disk graph changes. From [9], if all the nodes follow bounded-
degree algebraic motion, the number of changes of our clus-
tering is at most , which is near optimal. They
also showed in [9] that under such motion, to maintain the min-
imum number of clusters at all times, the number of cluster-
head changes is . To maintain a constant approximation,
the number of clusterhead changes is at least . In sum-
mary, our clustering changes only when the network topology
changes. Any routing graph such as the RNG or GG needs to
be updated according to the network topology as well. On the
other hand, it is not the case that RDG would change more
frequently than RNG or GG. Under certain conditions, RDG
does not change, while both GG and RNG suffer from a lot of
changes. Consider nodes moving on a line with the same speed,
except a special node moves faster. Since the probability that the
fast node has the ID high enough to be a clusterhead is small,
most of the time the RDG does not change, but the RNG or GG
could change times.

The theoretically proved constant approximation ratio of the
clustering algorithm we used in this paper [9] is for the worst
case. In practice, the approximation ratio is a small constant,
as shown by the simulation. In fact, for any clustering algorithm
with constant approximation ratio, the routing graph constructed
in this paper will have a constant stretch factor under both topo-
logical and Euclidean distance measures. The clustering algo-
rithm proposed by Hershberger [16] gives a nine-approximation
ratio in the worst case. The clusters can also be maintained ef-
ficiently under motion., but the algorithm requires global infor-
mation and is, thus, less well suited for the distributed environ-
ment. The greedy algorithm, i.e., each time an uncovered node
claims itself as a clusterhead until all nodes are covered and no
clusterheads are within distance 1 of each other, has an approxi-
mation ratio 6 by a simple packing argument. This algorithm can
be implemented under motion in a distributed fashion: when two
clusterheads are too close to each other, one of them retires and
the uncovered nodes claim themselves as clusterheads by using
a random backoff scheme (additional inconsistency resolution
mechanism is necessary here); when one node moves outside its
clusterhead’s range, it either finds another clusterhead or claims



184 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005

Fig. 13. Lower bound construction for the online localized routing problem
from [25]. There are multiple spikes on a circle pointing inside. Only one of
them connects to the destination, which lies at the center of the circle. Any local
algorithm has no idea which spike will lead to the destination and has to try all
of them in the worst case.

itself as a clusterhead if it fails in finding one. The problem with
this algorithm is that it suffers from expensive events. When a
clusterhead retires, suddenly there could be nodes looking
for new clusterheads. Again, we emphasize here that users can
choose their favorite clustering algorithms suitable for their ap-
plications and the routing graph is a spanner as long as the clus-
tering algorithm has an approximation ratio.

C. Finding a Short(er) Path

This paper proposed a spanner for ad hoc wireless networks
that contains a path whose length is within a constant factor
of the shortest-path length. To make the solution complete, the
natural follow-up question is how to find this path. In Section V,
we show that geographical routing under certain circumstances
produces paths with length , if the shortest-path length is

. The results for finding a constant approximate routing path
are listed below.

If only local information is available, i.e., each node
knows only the nodes within a constant number of hops, then
Kuhn et al. [25] showed a lower bound construction in which
any online algorithm finds a path of length if the shortest
path has length , as shown in Fig. 13. They also proposed a
geometric routing algorithm that achieves the bound.

On the other hand, if the topology of the whole network
is available, Gao and Zhang [26] proposed an algorithm
that preprocesses the unit-disk graph into a structure of size

such that any -approximate shortest
distance query is answered in time, for any . The

-approximate shortest path can be output in
time, where is the length of the shortest path.

D. Disadvantages of Geographical Routing

This paper focuses on constructing good routing graphs
for geographical routing. The most attractive properties of
geographical routing are its efficiency, locality, and scalability.
We should also note the disadvantages of geographical routing.
Obtaining the location information is difficult or expensive.
GPS receivers can be costly and do not work indoors, or in
conditions under heavy foliage. Various localization algorithms
that estimate locations by the distance to certain anchor nodes
were proposed, but they are still computation intensive and
the accuracy is not satisfactory. Furthermore, updating and
querying location information adds nonnegligible cost to the
geographical routing paradigm, especially in highly mobile

networks. Designing robust, universal, and scalable routing
protocols still remains an open and important problem in
wireless ad hoc networks.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have presented a maintainable routing graph
that is a planar spanner of the full connectivity graph. We

have assumed that all nodes have equal and circular commu-
nications ranges. In practice, this assumption is often violated
due to fading and multipath effects. Even when equal and cir-
cular communication ranges are possible, there may be energy
advantages to using shorter ranges in areas of higher node den-
sity, so as to conserve energy. It would be interesting to extend
the results of this paper to these more realistic scenarios.

REFERENCES

[1] E. M. Royer and C.-K. Toh, “A review of current routing protocols for
ad-hoc mobile wireless networks,” IEEE Pers. Commun., vol. 6, no. 2,
pp. 46–55, Apr. 1999.

[2] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained
localization in ad hoc networks of sensors,” in Proc. 7th Annu. Int. Conf.
Mobile Comput. Netw. (MobiCom 2001), Rome, Italy, Jul. 2001, pp.
166–179.

[3] A. Savvides and M. B. Strivastava, “Distributed fine-grained localiza-
tion in ad-hoc networks,” IEEE Trans. Mobile Comput., submitted for
publication.

[4] J. Li, J. Jannotti, D. Decouto, D. Karger, and R. Morris, “A scalable
location service for geographic ad-hoc routing,” in Proc. 6th ACM/IEEE
Int. Conf. Mobile Comput. Netw., 2000, pp. 120–130.

[5] R. Jain, A. Puri, and R. Sengupta, “Geographical routing using partial
information for wireless ad hoc networks,” IEEE Pers. Commun., vol. 8,
no. 1, pp. 48–57, Feb. 2001.

[6] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. o ACM/IEEE Int. Conf. Mobile Comput.
Netw., 2000, pp. 243–254.

[7] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guaran-
teed delivery in ad hoc wireless networks,” Wireless Netw., vol. 7, no. 6,
pp. 609–616, 2001.

[8] Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds.,
North-Holland, Amsterdam, The Netherlands, 2000, pp. 425–461. D.
Eppstein, “Spanning trees and spanners”.

[9] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Discrete mo-
bile centers,” Discrete Comput. Geometry, vol. 30, no. 1, pp. 45–65,
2003.

[10] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh, “Max-min
D-cluster formation in wireless ad hoc networks,” in Proc. 19th IEEE
INFOCOM, Tel-Aviv, Israel, Mar. 1999, pp. 32–41.

[11] C.-C. Chiang, H.-K. Wu, W. Liu, and M. Gerla, “Routing in clustered
multihop, mobile wireless networks with fading channel,” in Proc. IEEE
SICON, Apr. 1997, pp. 197–211.

[12] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design concept
for reliable mobile radio networks with frequency hopping signaling,”
in Proc. IEEE, vol. 75, Jan. 1987, pp. 56–73.

[13] M. Gerla and J. Tsai, “Multicluster, mobile, multimedia radio network,”
ACM-Baltzer J. Wireless Netw., vol. 1, no. 3, pp. 255–265, 1995.

[14] B. Das and V. Bharghavan, “Routing in ad-hoc networks using min-
imum connected dominating sets,” in Proc. IEEE Int. Conf. Commun.
(ICC’97), Jun. 1997, pp. 376–380.

[15] J. Wu and H. Li, “On calculating connected dominating set for efficient
routing in ad hoc wireless networks,” in Proc. 3rd Int. Workshop Discrete
Algorithms Methods Mobile Comput. Commun., Aug. 1999, pp. 7–14.

[16] J. Hershberger, “Smooth kinetic maintenance of clusters,” in Proc. ACM
Symp. Comput. Geometry, Jun. 2003, pp. 48–57.

[17] L. P. Chew, “There is a planar graph almost as good as the complete
graph,” in Proc. 2nd Annu. ACM Symp. Comput. Geometry, Jun. 1986,
pp. 169–177.

[18] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, “Delaunay graphs are
almost as good as complete graphs,” Discrete Comput. Geometry, vol.
5, no. 4, pp. 399–407, 1990.



GAO et al.: GEOMETRIC SPANNERS FOR ROUTING IN MOBILE NETWORKS 185

[19] J. M. Keil and C. A. Gutwin, “The Delaunay triangulation closely ap-
proximates the complete Euclidean graph,” in Lecture Notes in Com-
puter Science, ser. , 1989, vol. 382, Proc. Int. Workshop Algorithms Data
Structures, pp. 47–56.

[20] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
spanner for routing in mobile networks,” in Proc. 2nd ACM Symp. Mo-
bile Ad Hoc Netw. Compu., Oct. 2001, pp. 45–55.

[21] X.-Y. Li, G. Calinescu, and P.-J. Wan, “Distributed construction of planar
spanner and routing for ad hoc networks,” in Proc. IEEE INFOCOM,
Jun. 2002, pp. 1268–1277.

[22] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Fieder, “Geometric
spanners for wireless ad hoc networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 14, no. 5, May 2003.

[23] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer-Verlag, 1985.

[24] P. Bose, L. Devroye, W. Evans, and D. Kirkpatrick, “On the spanning
ratio of Gabriel graphs and -skeletons,” in Proc. 5th Latin Amer. Symp.
Theoretical Inf., Apr. 2002, pp. 479–493, submitted for publication.

[25] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically optimal geo-
metric mobile ad-hoc routing,” in Proc. 6th Int. Workshop Discrete Al-
gorithms Methods Mobile Comput. Commun., Sep. 2002, pp. 24–33.

[26] J. Gao and L. Zhang, “Well-separated pair decomposition for the unit-
disk graph metric and its applications,” in Proc. 35th ACM Symp. Theory
Comput., Jun. 2003, pp. 483–492.

Jie Gao (M’01) received the B.S. degree from the
University of Science and Technology of China in
1999 and the Ph.D. degree in computer science from
Stanford University, Stanford, CA, in 2004.

She is currently a Postdoctoral Fellow at the Center
for the Mathematics of Information, California Insti-
tute of Technology, Pasadena. She will join the State
University of New York, Stony Brook, as an Assis-
tant Professor in Fall 2005. Her research interests are
algorithms, ad hoc communication and sensor net-
works, and computational geometry.

Leonidas J. Guibas received the Ph.D. degree from
Stanford University, Stanford, CA, in 1976.

He heads the Geometric Computation Group in the
Computer Science Department, Stanford University,
where he works on algorithms for sensing, modeling,
reasoning, rendering, and acting on the physical
world. He has published and lectured extensively
in computational geometry, geometric modeling,
computer graphics, computer vision, robotics, and
discrete algorithms. His main subsequent employers
were Xerox PARC, MIT, and DEC/SRC. He has

been with Stanford University since 1984 as a Professor of Computer Science.
Prof. Guibas is an ACM Fellow.

John Hershberger received the Ph.D. degree
in computer science from Stanford University,
Stanford, CA, in 1987.

He joined the DEC Systems Research Center in
1987 and moved to Mentor Graphics Corporation,
Wilsonville, OR, in 1993. He holds a courtesy ap-
pointment in the Department of Computer Science,
University of California, Santa Barbara. His research
interests include computational geometry, analysis
of algorithms and data structures, and electronic
design automation.

Li Zhang received the B.E. and M.E. degrees, both
in computer science, from Tsinghua University,
Beijing, China, in 1991 and 1993, respectively, and
the Ph.D. degree in computer science from Stanford
University, Stanford, CA, in 2000.

From 1993 to 1995, he was an Assistant Teacher
in the Department of Computer Science, Tsinghua
University. In 2000, he joined Compaq (formerly
DEC) Systems Research Center, which became a
part of Hewlett Packard Laboratories, Palo Alto,
CA, in 2002. He is currently a Researcher at the

Information Dynamics Laboratory, Hewlett Packard Laboratories. His research
interests include computational geometry, algorithms for ad hoc and sensor
networks, and game theoretical analysis of resource allocation.

An Zhu received the B.S. and M.S. degrees in com-
puter science and mathematics from the University
of Maryland, College Park, in 1999. She is currently
working towards the Ph.D. degree in computer sci-
ence at Stanford University, Stanford, CA.

Her research interests are design and analysis of al-
gorithms, with applications to scheduling, networks,
database systems, etc.


