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Abstract 

A polygon with two distinguished vertices, s and 

g, is called a street iff the two boundary chains from 

s t o  g are mutually weakly visible. For a mobile robot 
with on-board vision system we describe a strategy for 

finding a short path from s t o  g in a street not known in 

advance, and prove that the length of the path created 

does not exceed 1 + 2. times the length of the shortest 

path from s to  g .  Experiments suggest that our strategy 
is much better than this, as no ratio bigger than 1.8 has 

yet been observed. This is complemented b y  a lower 

bound of  1.41 for the relative detour each strategy can 

be forced t o  generate. 

1 Introduction 

How to quickly determine the shortest path between 

two points in a simple polygon P is a classical problem 

in computational geometry. An optimal solution was 

provided by Guibas and Hershberger [6] by proving 
that one can, in O(n) preprocessing time, build up a 

search structure of size O(n) that allows the shortest 

path between any two points in P to be computed 

within time O(1ogn + k ) ,  where n is the number of 
edges of P and k denotes the number of line segments 

the shortest path consists of. The preprocessing step 

requires a triangulation of P ;  due to Chazelle [2] or 

Seidel [13], this can be computed in O(n)  worst case 

or randomized time, too. 

Such algorithms are based on the assumption that 

the whole polygon is known in advance. In real life, 

however, one often has to move through an environ- 

ment without completely knowing it, but rather on the 

basis of local information provided by acoustical, vi- 

sual, or tactile sensors. Given the importance of this 

problem it is quite surprising how few results exist; 

see e.g. [lo, 9, 8, 3, 51, or [ll,  121 for further refer- 
ences. Lumelsky and Stepanov [9] studied the case 

of a mobile robot equipped with a tactile sensor in 

an environment of obstacles. The robot is given the 

coordinates of the goal and of its own position in the 
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Figure 1: A street P ,  the visibility polygon of P at s, 

and the path found by our strategy. 

plane; it starts heading straight to the goal until it hits 

an obstacle. Then it searches its contour for a point 

with minimum distance to the goal, and resumes from 

there. This simple strategy finds a path to the goal, 

if there is one, and the length of the path is bounded 

by 1.5 times the sum of the perimeters of all obsta- 
cles that are not farther away from the goal than the 

start point. Papadimitriou and Yanakakis [12] con- 
sidered scenes of disjoint isothetic rectangles. They 

were able to bound the lenght of the generated path 
in terms of the length of the shortest path. Similar 

bounds were achieved by Eades, Lin, and Wormald 

[5] for barriers perpendicular to the line connecting 

start and goal, and by Blum, Raghavan, and Schieber 

[l] for more general convex obstacles; the latter paper 

also includes a randomized algorithm for non-convex 

obstacles. Other recent work is by Deng, Kameda, 

and Papadimitriou [4]. 

In this paper we consider the following problem. 

Let P be a simple planar polygon with a start vertex, 

s, and a goal vertex, g. Assume that at vertex s a 

mobile robot is located that wants to get to g on as 

short a path as possible. The robot is equipped with 

a vision system that provides, for each point p in P ,  
the visibility polygon visp(p) of P at p ;  see Figure 1. 

The goal, g, is marked so that the robot can recognize 

it as soon as it sees it. 

We do not discuss here the issues of image process- 

ing or the computational complexity involved. Rather, 

we are interested in a general strategy S such that the 
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Figure 2: No strategy can guarantee a bounded rela- 

tive detour in this case. 

relative detour 

length of the path created by strategy S 

length of the shortest path 
D s ( P )  := 

becomes as small as possible. Note that just to find the 
goal represents no problem because the robot could 

simply follow the boundary until g is encountered (this 
is what the strategy of [9] mentioned above would in 

general do.) The difficulty is in keeping the detour 

small. 

With general polygons one cannot hope for the rel- 

ative detour to be bounded. In Figure 2, for example, 

there is no way of finding the goal other than by try- 
ing the streets leading away from the central “cross- 

ing” one by one. Introducing the Euclidean distance 

between start and goal as an additional parameter, 

as proposed in [12], does not help. Also, the upper 

bound to the detour should not depend on the num- 

ber of vertices of the scene, a parameter introduced in 
[l], because we want to model smooth scenes, too. 

In this paper we study a special class of polygons, 

based on the following observation. Racetracks and 

rivers, like the Rhine, contain many curves and bays, 

but (almost) no cul-de-sacs leading away from the 

main route. We formalize this property as follows. 

Definition 1.1 Let P be a simple polygon with two 

distinguished vertices, s and g ,  and let L and R de- 
note the oriented boundary chains leading from s to 

9 .  Then P is called a street iff L and R are mutually 

weakly visible, i.e. if each point of L can be seen from 

at least one point of R, and vice versa. 

An example is shown in Figure 1. In a street, the 

situation depicted in Figure 2 cannot occur. 

It follows from Definition 1.1 that each point of L 
can be connected to some point of R by a line segment 

contained in the polygon, and vice versa. On its way 

from s to g the robot is to cross all these line segments, 

so it sees the whole of L and R. Hence, a short path to 

the goal also represents a good solution to the terrain 

acquisition problem addressed e.g. in [SI. 

Our solution consists of two independent parts. In 
Section 2 we describe a high-level strategy that finds a 

path from s to g subject to the following invariants. 

At each position p on this path, either the robot can 

see the goal (then it walks straight towards it), or 
the robot knows which of the corners visible ahead is 

visited by the shortest path from s to g (then it walks 

straight towards this vertex), or the robot can identify 
two corners ahead one of which must be visited by the 

shortest path from s to 9 ,  but it cannot tell which 
one; see Figure 5 where ’U, too, could be the goal. 

In this case, the robot chooses a point t on the line 

segment connecting the two vertices and walks straight 
in direction of this point. How to  choose this point is 

left to a low-level strategy. However, it is crucial for the 

overall length of the generated path how this choice is 

made. There are some suggestive approaches that can 

result in an unbounded detour; see Section 3. 

In Section 3 the low-level strategy lad is proposed 
that tries to minimize the local absolute detour, when- 

ever an ambiguity arises in form of two candidate cor- 

ners. Whereas promising low-level strategies are eat+ 

ily invented, it appears to  be quite difficult to analyze 

them. We prove in Section 4 that for each street P 
the estimate 

holds. However, experiments show that our approach 

works much better than this bound suggests; we have 

not been able to construct a street P with a relative 

detour D i a d ( P )  2 1.8. On the other hand, we show in 

Section 3 that each strategy can be forced to produce a 
detour of at least fi = 1.141 ..., by choosing a suitably 

bad street. 

Acknowledgement. The author wants to thank 

Joseph S. B. Mitchell and Gunter Rote for helpful dis- 

cussions during the seminar on computational geome- 

try at SchloB Dagstuhl in October 1990, and Christian 

Icking for helpful discussions and for conducting the 

experiments at the UGH Essen. 

2 A High Level Strategy 

First we state the visibility properties of streets that 

will be used by the mobile robot on its way. Let P 
denote a street with start and goal vertices s and g .  
The polygonal chains L and R are ordered in direction 
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A 

R 

Figure 3: This situation cannot occur in a street. 

from s to  9. For simplicity, we assume that no three 

vertices of P are colinear. 

Lemma 2.1 The situation shown in Figure 3 can- 

not occur in a street. Neither can the prolongation 

of edge o beyond w hit a point of L ahead of w .  The 
same holds for  chain R. 

In fact, in Figure 3,  vertex v cannot see any point 

of R, contradicting Definition 1.1. We have shown in 

[7] that the conditions stated in Lemma 2.1 are also 
sufficient for a polygon to be a street. They can be 

tested in time O(n1ogn). Also, from each interior 

point of P points of L and of R are visible. 

The visibility polygon visp(p) from a point p in P 
contains the circular list of all pieces of the boundary 

of P that can be seen from p ,  called the umbrella of 
p ;  see Figure 1. Where two pieces meet, the one hit 

first by the ray from pis said to be below the other. Its 

endpoint is a reflex vertex of P ,  i.e. one whose internal 

angle is greater than T .  

If the goal is not visible from p ,  the shortest path 

to g consists of a line segment leading to such a reflex 

vertex, followed by a polygonal chain that does not 
enter visp(p) again. 

Lemma 2.2 As one scans the umbrella of visp(p), all 

pieces belonging to L must appear consecutively and in 

clockwise order around p, whereas pieces of R appear 

consecutively in counterclockwise order, with respect to 

the orders on the chains. 

Lemma 2.3 Suppose that from position p in P an 

initial piece of ihe outgoing edge of a reflex vertex v is 

visible. Then on each path from s to g in P there exists 

a position from where the incoming edge is visible. 

This fact is crucial. It does, however, not imply 

that the robot needs to  store all parts of P it has seen 

so far; see Corollary 2.10. 

Next, the high-level strategy is listed. 

PROCEDURE HighLevelStrategy; 

CONST 3: PointOfP; (* start *) 
g: PointOfP; (* goal *) 

VAR p :  PointInP; (* current position *) 

p’: PointInP; (* here event occurs *) 
VL, VR: PointOfP; (* foremost points on 

L and R robot 

has so far 

identified *) 
BEGIN (* HighLevelStrategy *) 

p := 3; 

determine VL and v~ in u i s p ( p ) ;  

WHILE V L  # VR DO (* g not visible *) 
IF p ,  VL, VR are colinear 

THEN (* Case 1 *) 
p := the closer one of (VL, V R ) ;  

walk straight to p ;  

determine VL and VR in v i s p ( p ) ;  

choose t in m; 

walk straight towards 1 UNTIL 

ELSE (* Case 2 *) 

(* low-level strategy *) 

event occurs at some point p’; 

p := p’; 

update V L  and V R  in uisp(p)  

END (* IF *) 
END (* WHILE *); 
walk straight to g 

END HighLevelStrategy. 

The path hereby created consists of a chain of line 
segments 11 . . . I ,  in P ,  where li = pi-lpi, po = s,  and 

p, = 9. At the start point, pi-1, of each new line seg- 
ment the robot determines two points, V L , ~  and vR,i, 

in the part of visp(pi-1) ahead. These are the robot’s 

orientation marks, enjoying the following properties. 

Invariant 2.4 Assume that the robot has arrived at 

a point z E li - {pi}  where 1 5 i < m. Then the 

following holds. 

Exactly one of the cases shown in Figure 6 applies 

to l i .  

So far  the robot has seen no part of P ahead of v ~ , i  

or v R , ~  except point ci in Case 1.2 and segment 

~ i , ~  in  Case 2. 

For all possible prolongations into a street of the 

part of P the robot has so far  seen, V L , ~  E L and 
V R , ~  E R hold. The shortest path from s to the 

goal visits V L , ~  or V R , ~ .  I n  Case 1, the endpoint of 

l i ,  pi ,  lies on the shortest path. In Case 2, ai < ?r 

holds. 

As Figure 6 shows, Case 1 of the above algorithm 

has two subcases. Though 1.2 is but a degenerate 
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Figure 4: Here the shortest path must visit V L .  

case 1.2 case 1.1 

Figure 5: The shortest path visits V L ,  but if the goal 
were at v then it would run through VR.  

"Ri 

case of 2, we subsume it under Case 1 because the 

next vertex visited by the shortest path to  s is known. 

It remains to  explain how the robot determines V L  

and V R .  This process is intrinsically incremental, in 

that the robot would not be able to  determine its ori- 

entation marks correctly if it were to start from some 

position in the middle of P (e.g. the i-dot in visp(s) 
in Figure 1). 

The construction is based on the following addi- 
tional invariant. We put V L , ~  := V R , ~  := s. 

Invariant 2.5 Assume that i = 0 holds or that pi i s  

endpoint of a Case 1 type segment, and that pi cannot 
see g .  Then the following holds for the pieces in the 

umbrella of pi  that lie in clockwise order between the 
old orientation marks V L , ~  and v R , ~ .  

e N o  piece of L i s  below its lefl neighbor. 

No piece of R is below i ts  right neighbor. 

case2 

Figure 6: The cases of Invariant 2.4. 

307 



Lemma 2.6 In  the situation described in Invariant 

2.5 three orderings are possible among the pieces be- 

tween VL,i and VR,i (including those containing V L , ~  

and V R , ~  .) 

1. Each piece lies above its left neighbor. Only the 

rightmost piece, r ,  belongs t o  R. 

2. Each piece lies above its right neighbor. Only the 
leftmost piece, I, belongs to L .  

3. There is a unique piece, c, lying above both its 
neighbors. Its left neighbor belongs to  L ,  its right 

neighbor to R. 

Proof: Assume there is a piece c that lies above 

both its neighbors. Its left neighbor is below c, so it 
must belong to L ,  due to Lemma 2.3. Similarly, the 

right neighbor of c belongs to R. Lemma 2.2 implies 

that there can be at most one piece like c. 

If there is no such piece then 1) or 2) must apply 

because no piece can be below both its neighbors, due 

to Invariant 2.5. U 

For i = 0, the first and the third alternative are de- 

picted in Figure 4 and Figure 5, respectively. Here 

the leftmost and the rightmost piece are joined at 

Next, we consider a Case 2 type segment l i ,  see 

Figure 6. As the robot moves towards t i ,  the rays 

p~ and p~ emanating from its current position, z ,  r e  

tate about their pivots, V L , ~  and V R , ~ ,  and segment 

grows longer. The following lemma shows that the 

robot will obtain more information before it arrives at 

t i .  This event marks the endpoint, p i ,  of segment l i .  
In the following we drop the index i, and denote vL,i+l 

by v i ,  etc. The events no. 2-4 are illustrated by the 

Figures 5, 8 ii), and 9, correspondingly. 

vL,O = vR,O = s. 

Lemma 2.7 Assume Case 2 applies to V L  and V R ;  cJ 

Figure 6. Then one of the following events occurs be- 

fore the robot arrives at t E - or hits the boundary 

of P. 

1. The goal becomes visible. 

2. The growing segment c reaches vr, or VR. 

3. A n  endpoint of c is encountered by  one of the rays 

PLI PR-  

4. One of the rays is blocked by  a reflex vertex. 

Proof: W.1.o.g. we assume that c belongs to chain 

R, and that s is the robot’s current position. 

V 

S 

s 

Figure 7: In i), vertex v cannot see any point of L. 
In ii), the robot crosses the line segment connecting z 

with L before hitting the boundary. 

If t is visible from s, and if none of the four events 

occured then both rays would rotate about theit pivots 

without being obstructed, until the robot arrives at t 
on -, from where it can see the grown segment c 

at the angle T (Figure 8 i) shows that parts of c may 

become invisible, as the robot proceeds. But the pieces 

between the hit points of p~ and p~ are known to 

belong to the same chain.) This situation is depicted 

in Figure 7 i); it contradicts Lemma 2.1 because the 

prolongation of the outgoing edge of V R  hits R ahead 

If t is not visible then t lies outside the polygon be- 

cause only c can obstruct the view from s to t ,  but 
c itself is fully visible from s. In this case the robot 

must cross each line segment in P connecting a point 

x E R between V R  and c with L ,  before it arrives at c; 

0 

of V R .  

see Figure 7 ii). Thus, event no. 2 applies. 

Now we describe how the robot determines the new 

orientation marks v i  and v h  on arriving a t  p .  

Determination of v i  and VI 
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1. p sees g .  Let v i  := vk  := g. 

2. p = s or p is endpoint of a Case 1 type segment. 

(a) Lemma 2.6 1) holds. Let v h  be the left end- 
point of piece T ,  and let v k  be the vertex of 

r’s left neighbor below vk;  see Figure 4. 

(b) Lemma 2.6 2) holds. Symmetrically. 

(c) Lemma 2.6 3) holds. Let v i  and vk  be the 
reflex vertices of the neighbors of c; see Fig- 

ure 5. 

C 

3. p is endpoint of a Case 2 type segment. We distin- 

guish between the different events that may have 

occurred at  p .  

(a) Event no. 1. See 1) above. 

(b) Event no. 2 shown in Figure 5. Let v k  be 

the hit point of p~ = p x ,  and v i  := VL. 

(c) Event no. 3 shown in Figure 8 ii). Let v i  be 

the reflex vertex where p~ = p 3  slips off c,  

and v k  := VR. 

(d) Event no. 4 shown in Figure 9. Let v k  be 

the reflex vertex blocking p ~ ,  and v i  := VL. 

The symmetric versions of 3 (a), 3(b), and 3(c) are 

treated similarly. 

The algorithm HighLevelStrategy is now corn- 
pletely specified. no. 3. 

Theorem 2.8 For each i 2 0,  Invariant 2.5 holds 
for  p i ,  and Invariant 2.4 holds for lj+l = pipi+l. The 

sequences ( v ~ , j ) j  and ( v ~ , j ) j  are weakly increasing on 

L and R, correspondingly. 

Figure 8: i) Part of c may become invisible. ii) Event 

The proof is by induction on i. 
Example. In Figure 1 the path from point p3 on 

consists of two Case 2 segments with associated points 

( v L , ~ , v R , ~ )  and ( v L , ~ , v R , ~ ) .  The endpoint of the sec- 

ond segment is determined by event no. 2. 

Summarizing, we obtain the following. 

Theorem 2.9 Let P be a street consisting o f n  edges. 

Then algorithm HighLevelStrategy finds a path w from 

s to g in P that consists o f rn  = O(n) line segments. 
If l i l j+ l  . . . l ,  is a sequence of Case 2 segments of w 

followed by  a sequence l ,+ l I j+2 . .  .lk of Case 1 seg- 

ments then for each point z in lilj+l . . . l j  the first ver- 
tex visited by  the shortest path from z to  g is p ,+ l ,  and 

l , + z . .  .It is a piece o f the  shortest path from s t o  g. 

Corollary 2.10 The memory size needed b y  the robot 

does not depend on the complexity of the street but only 
of the maximum complexity of the visibility polygons 

encountered. 

L s  

Figure 9: Event no. 4. 
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Figure 10: To walk towards the closer candidate cor- 
ner can result in an unbounded detour. 

.,...... . .._..... ........ ... ... 
.._........ ...- + ........ ... 

Figure 11: To head for the middle of m can result 

in an unbounded detour, too. 

3 Minimizing the Local Absolute De- 
tour 

The problem not settled by the high-level strategy 
is how to choose the target point, t in m, in Case 

2; see Figure 9. 
An obvious idea is to choose the closer one of vL  

and V R .  However, by this strategy the robot can be 

lured off the shortest path arbitrarily far, see Figure 

10. 

Another obvoius approach could be to head for the 
point in the middle of m. But in general, this strat- 

egy does not work either, as Figure 11 shows. 

The strategy we propose tries to minimize the local 
absolute detour. Suppose the robot is for the first time 

in the situation of Case 2, as shown in Figure 9. At the 

latest upon arriving at t E an event will occur. 

If V L  turns out to be the correct corner then the robot 

has to walk from t to V L ,  causing the absolute detour 

DL( t )  = st+tvL - S V L ,  where vw denotes the distance 

between the points v and w. Otherwise, it must walk 

to vR,  resulting in the detour D R ( t )  = st + t v R  - SUR.  

Lemma 3.1 The macimum o f D L ( t )  and D R ( t )  be- 
comes minimal iff t i s  chosen such that 

S V L  - SUR + V L V R  

2 
VLt  = 

Proof: An application of the law of cosine shows 

that the function DL(t) is strictly increasing from 0 
to a value greater than 0 as t moves from V L  to V R ;  

similarly, D R ( t )  is strictly decreasing from a positive 

value to 0. Thus, the maximum of both becomes min- 

imal at the unique point t where the values are equal. 

0 

In Figure 9 the robot chooses t by the above formula 
and starts walking towards t .  On arriving at p', the 

robot sees vertex vk  and chooses its next target point 

t' on v ~ , v k  by the same rationale. But this time the 
length of the shortest path from s to vk ,  S U R  + V R V ~ ,  

is taken into account, so t' is determined by 

Generally, the low-level strategy lad chooses the 
next target point t k + l  in VL,k+lvR,k+l  according to 
the formula 

The point t k + l  minimizes the maximum of the possible 
absolute detours 

k 

D R ( t )  := C p j - l p j  + p k t  +tvR,k+l - Bk+l 
. .  

3=1 

where t ranges in vL,k+lVR,)+l .  

The performance of strategy lad depends only on 
its behavior in convex funnels, since these are the only 

ambiguous situations where the robot does not follow 
the shortest path, due to Theorem 2.9. 

In practice, strategy lad works very well. Though 

we have deliberately tried to create bad funnels, we 

have not been able to  construct a funnel whose relative 

detour exceeds D = 1.8. This is complemented by the 
following lower bound. 

Theorem 3.2 For each possible strategy S 

i n f D s ( P )  2 h= 1.414 ... 

holds, the infimum being taken over  all streets P .  

Proof: Let P denote the polygon depicted in Fig- 

ure 12. P is not a complete street since the goal has 

not yet been specified. The robot cannot look into 

the caves before it reaches the dotted line, b. Suppose 

that its first point of contact lies to the right of h, 
depending on strategy S. In this case, the goal is put 
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Figure 12: Establishing a lower bound for the relative 

detour. 

into the left cave. Then the total length of the robot’s 
path from s to g is as least as large as 

1 1 1  
length of h + - length of b = - + - - fi 

2 Jz Jz- 
whereas the shortest path from s to g is of length 1. 

One might object that a street whose “breadth” ex- 

ceeds its “length” makes a poor example. But rather 

than placing the goal in one of the caves, we could as 

well glue on another copy of P ,  and iterate the con- 

struction. This would lead to a street of unbounded 

length and bounded breadth. 

4 An Upper Bound for the Global Rel- 
ative Detour 

Let (CL, CR) be a funnel as depicted in Figure 13. 

Since it is difficult to estimate the length of the path 
generated by strategy lad directly, we prove a bound 

for the longer path shown in Figure 13 that results if 

the robot does not react to the new visibility informa- 

tion obtained at point pi but continues walking to its 

target point, t i .  

Theorem 4.1 With the above notations the following 
holds. 

n n 

A fort iori ,  this yields an upper bound for the rela- 

tive detour caused by strategy lad. 

Theorem 4.2 For each street P 
n 

In order to prove Theorem 4.1 we have to estimate 

the length of the path depicted in Figure 13 against 

the length of the left convex chain, CL. Clearly, the 

Figure 13: Point ti is determined by vitj := 
A ~ - B ~ + u ~ u J ~  

2 .  

path becomes only longer if we insert additional edges 

ei that do not violate the above conditions. Thus, 
we may assume that each vertex of the funnel is the 

endpoint of an edge e i .  

The edges split the funnel into two types of trian- 

gles. If wi-1 = wi holds for two consecutive edges e i ,  

e i - l ,  then the included triangle q-1 shares its third 

side with CL. If vi = vj+l then the included triangle 

has its third side on CR. The bottommost triangle 
of the funnel is special; we define it to  be of the former 

type by putting vo := PO, WO := w l ,  and to := PO. 

The following lemma shows that the target points 

can be computed incrementally. 

Lemma 4.3 Assume that vi = vi+l holds. Then 

1. vjtj+1 = $(Viti - tjwj - W i W i + l  + V i W i + l ) ,  

2. ti+1wi+1 = i(tjWi + W j W i + l  - vjti + l ] i W i + l ) ,  

3. V&+l 5 vjti. 

Symmetric formulae hold in the case wi-1 = wi.  

Next, we distribute the length of the path to be 

estimated among the triangles Z. 

Definition 4.4 Let e i ,  i < n, be an edge in the fun- 

nel. Then the cost of the triangle Z above ei is defined 

by 

cost (Z) := titi+1 + vi+1ti+1 - vitj. 

Note that for the special triangle TO we obtain 

cost (TO) = pot1 + v l t l ,  since to = po = vo. Clearly, 
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the sum of these quantities telescopes into the length 

of the path, 

n-1 n 

i = O  j=2  

The following lemma provides the main tool for es- 

timating the cost contribution of a single triangle. We 
omit the lenghty proof. 

Lemma 4.5 Let ai denote the angle between ei and 

ei+l. 

1. If vi = vi+l then cost (Ti) 5 viti Sinai 

2. If wi = wi+l then cost (T i )  5 tiwj sin ai + vivi+l 

The triangles in the funnel can be grouped into 

lefl fans, denoting maximal sequences of triangles that 

share but a vertex with CL, and right fans. By con- 

vention, the bottommost triangle, TO, is (part of) a 
right fan. We define the cost of a fan to  be the sum 

of the costs of its constituing triangles. 

Lemma 4.6 Let F = TiTj+l.. . Tk be a fan in the 
funnel. 

1. If F is a left fan then 

k 

cost ( F )  5 Vjti Caj =: Bcost ( F )  
. .  

3 =I 

2. If F is a right fan then 

k k 

Finally, we need the following technical result. 

Lemma 4.7 Let a ,  b, and c be the sides of a trian- 

gle, let p denote the angle opposite to a ,  and let A 

be a curve connecting the endpoints of a. Then the 

following holds for the lengths of these pieces. 

1 3 
cp + - ( A  - c + b). 5 -AT.  

2 2 

Now we can prove Theorem 4.1. 

Proof: 

number of left fans in the funnel that 

(Sketch) We show by induction on the 

3 

2 
Bcost ( F )  5 (1 + - ) A n  

F fan 

holds, where Bcost is as defined in Lemma 4.6. 

A funnel without a left fan consists of a single right 

fan F that includes the bottommost triangle. We ap- 

ply Lemma 4.7 to  the triangle (vo,  W O ,  vn) .  The same 

works if the funnel ends with a right fan. If it ends 

with a left fan, F ,  then the Bcosik of F and of the right 
fan, F’, below F can only patially be charged to the 

last piece of the left chain bordering F’. The rest, T ,  is 

charged to  the funnel Q’ that results from the original 

one by cutting off F and F’. More precisely, if the left 

fan on top of Q‘ is enlarged by drawing the tangent 
from the endpoint of the shortened left chain to the 

right chain, then r does not exceed the Bcost of the 

left subfan newly added. Since the resulting funnel 

has one fan less than the original one, the induction 

hypothesis can be applied. 

5 Concluding Remarks 

We have introduced a class of simple polygons in 
order to describe streets of varying breadth that may 

contain many curves but no crossings. Without know- 

ing the street in advance, a mobile robot equipped 
with an on-board vision system can find a path from 

the start to  the goal large portions of which are part 

of the shortest path. There are, however, situations 

where the robot cannot know if the street ahead is 

turning left or right; then a deviation from the short- 
est path is unavoidable. 

In order to keep the deviation short, we have de- 

signed a strategy that tries to minimize the local ab- 

solute detour and thus guarantees the overall relative 
detour to  be bounded. 

One challange is to  close the gaps between the 
proven upper bound of 5.72, the empirical upper 

bound of 1.8, and the lower bound of 1.4. Though it 

seems reasonable to study a continuous model (with 

curves instead of polygonal chains) it is not clear if 

the theory of differential equations can help. 

Another question addresses different low-level 
strategies. One alternative is strategy spl that always 

follow the shortest path to the line segment m. De- 

spite being simpler than lad, strategy spl is still dif- 

ficult to analyze. Also, one can construct examples 

where the detour caused by spl exceeds 1.8, our em- 

pirical bound for lad. This approach is currently under 

investigation. 

A further problem concerns the generalization to a 

kinodynamic model, where the robot has a unit mass 
and is, in each direction, capable of a maximal velocity 

and acceleration. Here no longer a short path is asked 

for, but a fast trajectory that has to be safe in the 

sense that the robot can always stay on the street no 
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matter what the next curve looks like. An additional 

challenge arises if the robot’s speed is so large that 

the time needed for image processing and for deciding 

[ll] J. S. B. Mitchell. Algorithmic approaches to op- 

timal route planning. In Proc. SPIE Conference 
on Mobile Robots, 1990. 

about the next action must be taken into account-a 

situation well known from red  life. [12] C. H. Papadimitriou and M. Yanakakis. Shortest 

paths without a map. In Proc. 16th ICALP , 
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