
Subhash Suri UC Santa Barbara

Polygon Triangulation

• A polygonal curve is a finite chain of line
segments.

• Line segments called edges, their
endpoints called vertices.

• A simple polygon is a closed polygonal
curve without self-intersection.

Non−Simple PolygonsSimple Polygon

• By Jordan Theorem, a polygon divides
the plane into interior, exterior, and
boundary.

• We use polygon both for boundary and its
interior; the context will make the usage
clear.

Subhash Suri UC Santa Barbara

Polygons

• Polygons with holes are topologically
different; two paths may not be
homeomorphic.

Polygon with Holes Convex Polygon Star−Shaped

• Other common classes of polygons are
convex, star-shaped, monotone.

• Polygons are basic buliding blocks in most
geometric applications.

– Flexible: model arbitrarily complex
shapes.

– Efficient: admit simple algorithms and
algebraic representation/manipulation.

– Thus, significantly more powerful, say,
than rectangles as building blocks.

Subhash Suri UC Santa Barbara

Triangulation

• Partition polygon P into non-overlapping
triangles using diagonals only.

• Is this always possible for any simple
polygon? If not, which polygons are
triangulable.

• Does the number of triangles depend on
the choice of triangulation? How many
triangles?

• Triangulation reduces complex shapes to
collection of simpler shapes. First step of
many advanced algorithms.

• Many applications: visibility, robotics,
mesh generation, point location etc.

Subhash Suri UC Santa Barbara

Triangulation Theorem

1. Every simple polygon admits a
triangulation.

2. Every triangulation of an n-gon has
exactly n− 2 triangles.

3. Polygon in picture has n = 13, and 11
triangles.

4. Before proving the theorem and
developing algorithms, consider a cute
puzzle that uses triangulation:
Art Gallery Theorem.

Subhash Suri UC Santa Barbara

Art Gallery Theorem

• The floor plan of an art gallery modeled
as a simple polygon with n vertices.

• How many guards needed to see the whole
room?

• Each guard is stationed at a fixed point,
has 360o vision, and cannot see through
the walls.

• Story: Problem posed to Vasek Chvatal by
Victor Klee at a math conference in 1973. Chvatal
solved it quickly with a complicated proof, which
has since been simplified significantly using
triangulation.

Subhash Suri UC Santa Barbara

Formulation

• Visibility: p, q visible if pq ∈ P .

• y is visible from x and z. But x and z not
visible to each other.

..

.

x

y

z

• g(P) = min. number of guards to see P

• g(n) = max
|P |=n

g(P)

• Art Gallery Theorem asks for bounds on
function g(n): what is the smallest g(n)
that always works for any n-gon?

Subhash Suri UC Santa Barbara

Trying it Out

1. For n = 3, 4, 5, we can check that g(n) = 1.

n = 3 n = 4
n = 5

g(n) = 1 g(n) = 1
g(n) = 1

2. Is there a general formula in terms of n?

Subhash Suri UC Santa Barbara

Pathological Cases

.

.

.

1. Fig. on left shows that seeing the
boundary 6= seeing the whole interior!

2. Even putting guards at every other vertex
is not sufficient.

3. Fig. on right shows that putting guards
on vertices alone might not give the best
solution.

Subhash Suri UC Santa Barbara

Art Gallery Theorem

22−gon.

7 Guards

Theorem: g(n) = bn/3c
1. Every n-gon can be guarded with bn/3c

vertex guards.

2. Some n-gons require at least bn/3c
(arbitrary) guards.

Necessity Construction

Subhash Suri UC Santa Barbara

Fisk’s Proof

Lemma: Triangulation graph can be
3-colored.

• P plus triangulation is a planar graph.

• 3-coloring means vertices can be labeled
1,2, or 3 so that no edge or diagonal has
both endpoints with same label.

• Proof by Induction:

1. Remove an ear.
2. Inductively 3-color the rest.
3. Put ear back, coloring new vertex with

the label not used by the boundary
diagonal.

3

2

1

Inductively 3−color

ear

Subhash Suri UC Santa Barbara

Proof

1

2
3

1 2

1

2
1 3

2

1

1

3

2

2

1

2

1

3

1
3

2

3

3

• Triangulate P . 3-color it.

• Least frequent color appears at most bn/3c
times.

• Place guards at this color positions—a
triangle has all 3 colors, so seen by a
gaurd.

• In example: Colors 1, 2, 3 appear 9, 8 and
7 times, resp. So, color 3 works.

Subhash Suri UC Santa Barbara

3D Curiosity

• In 3D, even n vertex guards do not
suffice!!!

• Put our BSP picture here....

Subhash Suri UC Santa Barbara

Triangulation: Theory

Theorem: Every polygon has a triangulation.

• Proof by Induction. Base case n = 3.

p

q

r

z

• Pick a convex corner p. Let q and r be pred and
succ vertices.

• If qr a diagonal, add it. By induction, the smaller
polygon has a triangulation.

• If qr not a diagonal, let z be the reflex vertex
farthest to qr inside 4pqr.

• Add diagonal pz; subpolygons on both sides have
triangulations.

Subhash Suri UC Santa Barbara

Triangulation: Theory

Theorem: Every triangulation of an n-gon
has n− 2 triangles.

• Proof by Induction. Base case n = 3.

P1 P2

u

v

• Let t(P) denote the number of triangles in
any triangulation of P .

• Pick a diagonal uv in the given
triangulation, which divides P into P1, P2.

• t(P) = t(P1) + t(P2) = n1 − 2 + n2 − 2.

• Since n1 + n2 = n + 2, we get t(P) = n− 2.

Subhash Suri UC Santa Barbara

Triangulation in 3D

5 Tetrahedra 6 Tetrahedra

• Different triangulations can have different
number of tetrahedra (3D triangles).

Subhash Suri UC Santa Barbara

Untriangulable Polyhedron

a b

c

a’ b’

c’

a

b

c

a’ b’

c’

• Smallest example of a polyhedron that
cannot be triangulated without adding
new vertices. (Schoenhardt [1928]).

• It is NP-Complete to determine if a
polyhedron requires Steiner vertices for
triangulation.

• Every 3D polyhedron with N vertices can
be triangulated with O(N2) tetrahedra.

Subhash Suri UC Santa Barbara

Triangulation History

1. A really naive algorithm is O(n4): check all
n2 choices for a diagonal, each in O(n)
time. Repeat this n− 1 times.

2. A better naive algorithm is O(n2); find an
ear in O(n) time; then recurse.

3. First non-trivial algorithm: O(n log n)
[GJPT-78]

4. A long series of papers and algorithms in
80s until Chazelle produced an optimal
O(n) algorithm in 1991.

5. Linear time algorithm insanely
complicated; there are randomized,
expected linear time that are more
accessible.

6. We content ourselves with O(n log n)
algorithm.

Subhash Suri UC Santa Barbara

Algorithm Outline

1. Partition polygon into trapezoids.

2. Convert trapezoids into monotone
subdivision.

3. Triangulate each monotone piece.

x−monotone polygon Monotone decomposition

4. A polygonal chain C is monotone w.r.t.
line L if any line orthogonal to L
intersects C in at most one point.

5. A polygon is monotone w.r.t. L if it can
be decomposed into two chains, each
monotone w.r.t. L.

6. In the Figure, L is x-axis.

Subhash Suri UC Santa Barbara

Trapezoidal Decomposition

• Use plane sweep algorithm.

• At each vertex, extend vertical line until
it hits a polygon edge.

• Each face of this decomposition is a
trapezoid; which may degenerate into a
triangle.

• Time complexity is O(n log n).

Subhash Suri UC Santa Barbara

Monotone Subdivision

• Call a reflex vertex with both rightward
(leftward) edges a split (merge) vertex.

• Non-monotonicity comes from split or
merge vertices.

• Add a diagonal to each to remove the
non-monotonicity.

• To each split (merge) vertex, add a
diagonal joining it to the polygon vertex
of its left (right) trapezoid.

A monotone piece

Subhash Suri UC Santa Barbara

Monotone Subdivision

• Assume that trap decomposition
represented by DCEL.

• Then, matching vertex for split and merge
vertex can be found in O(1) time.

• Remove all trapezoidal edges. The
polygon boundary plus new split/merge
edges form the monotone subdivision.

• The intermediate trap decomposition is
only for presentation clarity—in practice,
you can do monotone subdivision directly
during the plane sweep.

Subhash Suri UC Santa Barbara

Triangulation

3

2

1 43

2

1

6

5
43

2

1

13

8

7

6

5
43

2

1

7

11

10

9
8

7

6

5
43

2

1

12
11

10

9
8

7

6

5
43

2

1

13

12

Subhash Suri UC Santa Barbara

Triangulation

• 〈v1, v2, . . . , vn〉 sorted left to right.

• Push v1, v2 onto stack.

• for i = 3 to n do
if vi and top(stack) on same chain

Add diagonals vivj, . . . , vivk, where
vk is last to admit legal diagonal
Pop vj, . . . , vk−1 and Push vi

else
Add diagonals from vi to all vertices
on the stack and pop them
Save vtop; Push vtop and vi

sweep line

top

bot

vi

Subhash Suri UC Santa Barbara

Correctness

• Invariant: Vertices on current stack form
a single reflex chain. The leftmost
unscanned vertex in the other chain is to
the right of the current scan line.

bot

vk

vj
top

vi

New stack: (bot, ..., vk, vi)

bot

vj
top

vi
New stack: (vj, vi)

Case I Case II

Subhash Suri UC Santa Barbara

Time Complexity

bot

vk

vj
top

vi

New stack: (bot, ..., vk, vi)

bot

vj
top

vi
New stack: (vj, vi)

Case I Case II

• A vertex is added to stack once. Once it’s
visited during a scan, it’s removed from
the stack.

• In each step, at least one diagonal is
added; or the reflex stack chain is
extended by one vertex.

• Total time is O(n).

• Total time for polygon triangulation is
therefore O(n log n).

Subhash Suri UC Santa Barbara

Shortest Paths

s

t

• A workspace with polygonal obstacles.

• Find shortest obstacle-avoiding path from
s to t.

• Properties of Shortest Path:

– Uses straight line segments.
– No self-intersection.
– Turns at convex vertices only.

Subhash Suri UC Santa Barbara

Visibility Graph

• Construct a visibility graph G = (V, E),
where V is set of polygon vertices (and
s, t), E is pairs of nodes that are mutually
“visible”.

• Give each edge (u, v) the weight equal to
the Euclidean distance between u and v.

• The shortest path from s to t in this graph
is the obstacle avoiding shortest path.

• G can have between c1n and c2n
2 edges.

Run Dijkstra’s algorithm.

s

t

Subhash Suri UC Santa Barbara

Paths in a Polygon

• Workspace interior of a simple polygon.

• Can we compute a shortest path faster?

• The visibility graph can still have Θ(n2)
edges.

s

t

• Using polygon triangulation, we show an
O(n log n) time algorithm.

Subhash Suri UC Santa Barbara

Fast Algorithm

s

t

• Let P be a simple polygon and s, t be
source and target points.

• Let T be a triangulation of P .

• Call a diagonal d of T essential if s, t lie on
opposite sides of d.

• Let d1, d2, . . . , dk be ordered list of essential
diagonal.

Subhash Suri UC Santa Barbara

Algorithm

• Essential diagonals d1, d2, . . . , dk.

d1

d2 d3

dk

s

t

• The algorithm works as follows:

1. Start with d0 = s.
2. for i = 1 to k + 1 do
3. Extend path from s to both

endpoints of di

Subhash Suri UC Santa Barbara

Path Extending: Funnel

• Union of path(s, pi) and path(s, qi) forms a
funnel.

• The vertex where paths diverge is called
apex.

d1

d2 d3

dk

s

t
apex

Subhash Suri UC Santa Barbara

Funnel

di

s

apex

qi

pi

funnel

Subhash Suri UC Santa Barbara

Path Extending

new funnelnew funnel

apex

qi

pi

apex

qi

pi

qi+1

di+1

di+1

qi+1

• Two cases of how to extend the path.

• In case I, funnel contracts.

• In case II, apex shifts, tail extends, funnel
contracts.

• In each case, funnel property maintained.

Subhash Suri UC Santa Barbara

Data Structure & Update

new funnelnew funnel

apex

qi

pi

apex

qi

pi

qi+1

di+1

di+1

qi+1

scan

scan

scan

scan

• How to determine tangent to funnel?

• Can’t afford to spend O(n) time for each
tangent.

• Idea: If x edges of funnel are removed by
the new tangent, spend O(x) time for
finding the tangent.

• How to tell a tangent?

Subhash Suri UC Santa Barbara

Data Structure & Update

new funnelnew funnel

apex

qi

pi

apex

qi

pi

qi+1

di+1

di+1

qi+1

scan

scan

scan

scan

• Start scanning the funnel from both ends,
until tangent determined.

• At most 2x + 2 vertices scanned.

• Since each vertex inserted once, and
deleted once, total cost for all the
tangents is O(n).

• Data structure for the funnel:
Double-ended queue. Insert/delete in O(1)
time.

Subhash Suri UC Santa Barbara

Paths Among Obstacles

s

t

Approach Complexity Reference

Vis. Graph O(n3) L. Perez, Wesley ’79
O(n2 log n) Sharir-Schorr ’84
O(n2) Welzl, AAGHI ’86
O(E + n log n) Ghosh-Mount ’91

SP Map O(k2 + n log n) Kapoor-Maheshwari ’88
O(nk log n) Reif-Storer ’91
O(n5/3+ε) Mitchell ’93
O(n log n) Hershberger-S ’93

Subhash Suri UC Santa Barbara

Paths in 3D

s

t

x

1. Shortest Euclidean length path among
convex polyhedral obstacles.

2. Visibility Graph approach breaks down:
No finite size graph. Contact points like x
can be anywhere on the edge.

3. NP-Hard! Canny-Reif [1986-87].

4. Approximation algorithms (FPTAS) exist,
which compute paths of length at most at
most (1 + ε) times the optimal.

5. Running time polynomial in n and 1/ε.

6. Papadimitriou 1985, Aleksandrov et al.
2000, etc.]

Subhash Suri UC Santa Barbara

Paths on a Convex Surface

• Shortest paths on a surface can be
determined fast.

• Paths still turn at interior points of edges,
but satisfy a crucial unfolding property.

• Given polytope P , points s, t, a shortest
path from s to t on P ’s surface can be
determined in O(n2) time. [Sharir-Schorr
’84, Mount ’86, Chen-Han ’90].

Subhash Suri UC Santa Barbara

Paths on a Convex Surface

• Approximately shortest paths on a convex
surface even more efficiently.

• Hershberger-Suri ’95 give an O(n) time
2-approximation algorithm.

• [AHSV ’96] generalize it to
(1 + ε)-approximation algorithm in
O(n log n

ε + 1
ε3

).

