
Lower Bounds for Geometric Problems

Subhash Suri

November 21, 2019

1 Lower Bounds and Models of Computation

• Proving computational complexity lower bounds is generally much harder than design-
ing efficient algorithms. Even when it seems intuitively obvious that a certain way of
solving a problem is probably the most efficient one, converting that intuition into a
rigorous proof has often been either elusive or wrong.

• The most famous case of elusiveness is the P vs. NP . In spite of general believe that
a problem such as 3-SAT cannot be solved in sub-exponential time, there is no proof.

• Another famous example of our intuition being flawed is the complexity of matrix mul-
tiplication. For long time, it seemed “obvious” that the classical method of multiplying
two n× n matrices in O(n3) was the best, until Strassen’s shocking discovery.

• In this lecture, we will explore some techniques for arguing about lower bounds.

• To analyze an algorithm’s performance, or to reason about the intrinsic complexity of
a computational problem, one needs a formal model of computation, which specifies
the primitive operations that may be executed and their costs.

• Examples include Turing Machine, or Random Access Model.

1. The primary difference for our purposes between these models is how the manip-
ulation of individual numbers is treated.

2. TM uses bits, and so to add two k bits numbers has O(k) cost—namely, the cost
grows in proportion to the operand length.

3. RAM allows two numbers to be manipulated in constant time, in line with the
hardware of digital computers, with the implicit assumption that each number
fits in a hardware word.

• Geometric computation introduces another level of complexity: even when the in-
put numbers are small integers, their geometric calculations may entail more complex
numbers, including irrationals. Length of the diagonal of a unit square, for instance.

1

• Therefore, a more appropriate model for analyzing geometric algorithm is the so-called
Real RAM. (It allows us to dispense with round-off errors in the approximate rep-
resentation of real numbers, but we should make sure our software libraries provide
mechanisms to deal with these overflows and roundoffs, when needed.

• In simple terms, the Real RAM allows each memory location to hold a single real
number, and allows the following primitives at O(1) cost :

1. Arithmetic (+,−, ?, /)

2. Comparison (<,≤,=, 6=,≥, >)

3. Indirect addressing with integer addresses

4. kth root, trig functions, analytic functions (exp, log etc).

• This model fairly closely captures the primitives of all modern programming languages.

2 ADT—Algebraic Decision (Computation) Tree

• While Real RAM is the right model for designing algorithms, it is not terribly well-
suited for proving lower bounds.

• Instead, a slightly different but computationally equivalent model, called the Algebraic
Decision (Computation) Tree (ADT) is more convenient.

• ADT mimics the way we think about “programs” or algorithms—as an interleaving of
compute and branch instructions.

• Specifically, assume the input involves a set of real variables x1, . . . , xn. Then, a ADT
is a program with statements L1, L2, . . . , Lp of the form:

1. Compute a function f(x1, . . . , xn).

2. If f > 0, go to statement Li; else go to Lj.

3. Halt and output YES, or Halt and output NO.

• The function f is an algebraic function (a polynomial of some degree).

• We assume that the program has been “unrolled” so it has no loops. Therefore, it has
the structure of a tree T , where each internal node v is associated with a polynomial
function evaluation and comparison:

fv(x1, . . . , xn) > 0 ?

1. We can always collapse all the computation that occurs between two comparison
nodes into the next comparison node, without loss of generality.

2

2. The ADT is a dth order tree if d is the largest degree used. 1st order tree is also
called Linear Decision Trees—only linear functions are evaluated.

3. If you recall the comparison-based sorting lower bound, it only used a linear
decision tree.

4. We also assume, wlog, that the tree is a binary tree—comparisons are binary.
Any k-way tree can be simulated by a sequence of k − 1 binary comparisons, if
needed.

• Remark: We do not allow any randomization in our programs, but similar, albeit
slightly more complicated, arguments apply to randomized versions as well.

• Imagine running your program over all possible inputs: each execution corresponds to
a root-to-leaf path in this ADT, and so we are interested in figuring out its longest
path.

• To prove lower bound on a problem’s complexity, we will argue that any ADT for
solving that problem has a long path. The worst-case complexity of the program is (at
least) proportional to the longest path in the tree.

2.1 Using ADT for Lower Bounds

• The central idea, which originated with Steele-Yao and Ben-Or (1982–83), is simple
but abstract. (Such abstraction is necessary to be able to model all possible algorithms
within the model constraints.)

• First, we will only consider Decision problems because any optimization problem is at
least as hard as its decision counterpart.

• Suppose each instance of a decision problem involves n real-valued variables x1, . . . , xn.
Such an instance corresponds to a point in the n-dimensional Euclidean space Rn.
(For instance, a set of n points in two-dimensional plane is completely specified by 2n
coordinates, and therefore represented by a point in R2n.)

• Some instances of the Decision problem evaluate to YES, others to NO; otherwise the
problem is trivial.

• Let W be the subspace of Rn that contains all the YES instances—the algorithm
outputs YES if and only if (x1, . . . , xn) ∈ W .

• The subset W ⊂ Rn can have complicated structure. We will be mainly interested
in how many connected components does it have. So, let #W denote the number of
disjoint connected components of W .

Figure.

3

• Suppose T is the ADT corresponding to an algorithm that solves this problem. Each
execution of T traverses a unique path v1, . . . , vl, where v1 is the root, and vl the leaf
node.

• Each node vj of this path is associated with a function fvj(x1, . . . , xn), and any specific
path in the tree is uniquely specified by the compute-and-branch patterns at each of
its nodes, where at each node vj we have

fvj = 0, or fvj > 0, or fvj ≥ 0

2.2 Argument for the Linear Functions

• The intuitive part of the proof technique is best understood by restricting the ADT
to only linear functions. This is the (easier) framework introduced in Dobkin-Lipton
(1979).

• Let T be the binary linear decision tree embodying the algorithm A that solves the
membership in W .

• Associated with each leaf of T is a region of Rn, and each leaf is either “accepting”
or “rejecting.” (This is the final node in the tree, so the algorithm must output the
answer.)

• Suppose

1. W1, . . . ,Wp are the (connected) components of W ,

2. l1, . . . , lr the set of leaves of T , and

3. Dj ⊂ Rn is the domain associated with leaf lj.

• By definition of the algorithm’s correctness, lj is accepting if and only if Dj ⊂ W .
(Either the whole Dj is accepting, or the whole Dj is rejecting.)

• The lower bound is shown by proving that

r ≥ #W

That is, T must have as many leaves as connected components of W . That in turn
implies that the height of T is ≥ log2 #W .

• We construct a function α : {W1,W2, . . . ,Wp} → {1, 2, . . . , r}, defined by

α(Wi) = min{j | j ∈ {1, 2, . . . , r} and Dj ∩Wi 6= ∅

That is, α(Wi) to is the lowest index leave whose domain intersects Wi.

4

• Our lower bound argument rests on showing that two different connected components
Wi,Wj have different α indices, and so the number of leaves r ≥ #W . The proof is as
follows.

1. Assume, for the sake of contradiction, that α(Wi) = α(Wj) = h.

2. Since the algorithm A solves the membership problem (YES/NO) for a point
q ∈ Wi, and Wi is a part of YES subset, the leaf lh must be accepting (type YES).

3. On the other hand, by definition of α, we have Wi∩Dh 6= ∅. Similarly, Wj∩Dh 6= ∅
4. Therefore, we can pick a point q′ ∈ Wi ∩Dh and a point q′′ ∈ Wj ∩Dh.

5. But since T is a linear decision tree, the region Dh is the intersection of halfspaces
in Rn, and therefore a convex set.

6. Therefore, any convex combination of q′ and q′′ must also lie in Dh. In particular,
the entire line segment q′q′′ lies in Dh.

7. But since q′ and q′′ lie in disjoint components Wi and Wj, there is at least one
point q′′′ on this segment such that q′′′ 6∈ W .

8. This is our contradiction: the segment cannot lie in Dh ⊂ W and still have a
point outside W .

9. Thus, T has at least as many leaves as number of components in W .

• Since T is binary, we get that its height is at least log2 #W .

2.3 Extension to Algebraic Functions (ADT)

• The main difficulty with the previous argument is that if the functions f are non-linear,
the domain associated with a leaf is no longer convex or (most importantly) connected.

• The joint result of degree d polynomial inequalities can be quite complex and highly
disconnected. How many pieces?

• To make progress on this question requires ideas from algebraic geometry, and builds
on important results proved by Milnor and Thom (1960s).

• The intuitive idea is this: suppose we take a number of polynomial functions, each of
degree at most d, in m-dimensional space: gi(x1, x2, . . . , xm) = 0. Then the number of
connected components in the solution set of these equations is upper bounded as

d(2d− 1)m−1

• In order to import this ideas to our lower bound, we need to make sure we can handle
polynomial inequalities and not just equations, and that was done by Steele-Yap and
Ben-Or.

5

• What SY and Ben-Or show is this: Suppose h is the depth of the ADT tree T , corre-
sponding to our algorithm A, operating on a problem with n variables, using degree
d polynomial functions. Then, T has at most 2h leaves, and each leaf accounts for at
most d(2d− 1)n+h−1 components of W .

• Therefore, following the same line of logic as before, we get

#W ≤ 2hd(2d− 1)n+h−1

• In simplified form, it gives the lower bound on the height of T (running time of A):

h ≥ log2 #W

1 + log2(2d− 1)

3 Lower Bounds for Geometric Problems

3.1 Lower bound for Element Distictness

• We now prove lower bound for a concrete problem called element distinctness.

• Given a set of n numbers x1, . . . , xn, decide if they are all distinct. That is, xi 6= xj,
whenever i 6= j.

• This should be “easier” than sorting. Is it?

• Let W ⊂ Rn denote the set of all YES instances of the problem, namely, instances
where elements are all unique.

• How many connected components does W have?

• Claim: #W = n!.

• Proof. Recall that n! is the number of distinct permutations of {1, 2, . . . , n}.

1. Each instance {x1, x2, . . . , xn} ∈ W can be identified with the unique permutation
of its numbers.

2. We claim that each connected component contains only points identified with
the same permutation. If not, then let p, p′ be two instances with difference
permutations, but within the same connected component.

3. Without loss of generality, suppose that permutations p, p′ differ in ordering of
elements i and j. In other words, xi < xj in p but xi > xj in p′.

4. Since p, p′ are in the same component, there is a “path” connecting them, and
each point on this path is also a valid YES instance of the problem.

6

5. Therefore, there is a sequence of valid instances that starts at p (where xi < xj)
but ends at p′ (where xi > xj).

6. But in order for the order to switch, at least two elements must become equal at
some intermediate point.

7. But having two equal items means the instance is not a valid YES instance, and
thus not in W . Contradiction!

• Using our ADT Theorem, therefore any algebraic decision tree algorithm for Element
Distinctness of n numbers must take Ω(n log n) time.

• The lower bound assumes that the number are reals. What if numbers are rationals or
integers?

• The ADT argument doesn’t work. However, even for integer numbers, the Ω(n log n)
lower bound holds, by an extension proved by Lubiw and Racz (1991).

• By the way notice that hashing is not a valid algorithm in our ADT model, and hence
the lower bound does not apply to that scheme, which is good because we can solve
this problem in O(n) time using hashing.

3.2 Other Geometric Problems

• The Element Distinctness Problem turns out to be key to proving similar lower bounds
on many other problems.

• Set Disjointness. Given two sets of numbers {a1, a2, . . . , an} and {b1, b2, . . . , bn},
decide if ai = bj for some i, j.

– Element Distinctness is a special case, with a and b sequences being the same.

• Maximum Gap. Given a set of n (unsorted) numbers x1, x2, . . . , xn, what is the
maximum gap between two consecutive numbers (in sorted order)?

• Diameter of 2D Set. Given a set of n points in 2D plane p1, p2, . . . , pn, find the
maximum distance between any two points.

– First, how difficult is this problem in 1D?

– In 2D, we reduce Set Disjointness to Diameter.

– Let {a1, a2, . . . , an} and {b1, b2, . . . , bn} be the input.

– For each ai, produce a point in the 2D plane where the line y = aix intersects the
unit circle on the right (positive x) side.

– Specifically, each ai maps to the point pi = (xi, yi) such that yi = aixi, xi > 0,
and x2i + y2i = 1.

7

– For each bi, produce a point in the 2D plane where the line y = bix intersects the
unit circle on the let (negative x) side.

– Diameter of this collection of 2n points is 2 if and only if the sets are NOT disjoint;
otherwise the diameter is strictly less than 2.

– The entire transformation (input to diameter and back) takes O(n) time.

– So, diameter in 2D requires Ω(n log n) time.

4 3-SUM Hardness

• Unfortunately, for most geometric problems ADT at best yields an Ω(n log n) lower
bound.

• Using very different techniques and model, Chazelle, Fredman etc. have shown lower
bounds for range searching, but that’s an entirely different topic.

• Within computational geometry, there are many problems where we have not been
able to beat the quadratic O(n2) algorithmic barrier, and it seems unlikely that it’s
even possible. But no lower bound technique is known.

• As partial progress, we have been able to show an equivalence class of many problems
that are mutually Ω(n2)-Hard, meaning if you can devise a sub-quadratic algorithm
for any one of them, we can solve all of them in sub-quadratic time bound.

4.1 3-SUM Problem

• Given a set S of n integers, is there a triple a, b, c ∈ S such that a+ b+ c = 0?

• We can solve the problem in O(n2) time. (How?)

• The ACT model gives only an Ω(n log n) lower bound.

• In spite of significant effort, no (truly) sub-quadratic time algorithm is known, under
the standard model of computing. The straightforward upper bound of O(n2) can be
slightly improved, using non-trivial techniques. For instance, a result by Gronlund and
Pettie achieves the bound of O(n2

(logn/ log logn)2/3
.

• The 3SUM conjecture is that it cannot be solved in time O(n2−ε), for any ε > 0.

• Imitating the NP -completeness model of problem equivalence classes, the 3-sum prob-
lem can be used to show n2-hardness of other problems.

• A problem is 3SUM-Hard if an o(n2) time algorithm for the problem implies an o(n2)
time algorithm for 3SUM .

• A generalized version is kSUM, which is conjectured to require Ω(ndk/2e) time.

8

4.2 Degeneracy Testing

• We have often conveniently assumed that the points are in non-degenerate position.
How complex is to check that condition?

• Specifically, given a set S of n points in the plane, are three of them collinear?

• Theorem. 2D degeneracy testing is 3SUM-hard.

• Proof. Three numbers a, b, c sum to 0 if and only if (a, a3), (b, b3), (c, c3) are collinear.

• Suppose the 3 points lie on a line y = µx + γ. Then, for the first two points, we can
infer that:

a3 − b3 = µ(a− b) which implies µ = a2 + ab+ b2

• Similarly, for the 2nd and 3d point, we get

b3 − c3 = µ(b− c) which implies µ = b2 + bc+ c2

• Thus, a2 + ab+ b2 = b2 + bc+ c2, which gives a+ c = −b, or a+ b+ c = 0.

4.3 Other 3SUM-hard Problems

• Using similar ideas, one can show that all of the following problems are 3SUM -hard.

• Given a set of n lines in the plane, are there three that pass through the same point?

• Given a set of (non-intersecting, axis-parallel) line segments, is there a line that sepa-
rates them into two non-empty subsets?

• Given a set of (infinite) strips in the plane, do they fully cover a given rectangle?

• Given a set of triangles in the plane, compute their measure.

• Given a set of horizontal triangles in space, can a particular triangle be seen from a
particular viewpoint?

5 Hardness using Exponential Time Hypothesis (ETH)

• The most common hardness assumption is P 6= NP , which is used to show that a
problem is difficult to solve optimaly in polynomial time.

• Those proofs say nothing about the complexity of problems that can be solved in
polynomial time but improving their time complexity seems to pose a barrier, such as
Ω(n2) or Ω(n3).

9

• A new line of hardness proofs has emerged in the past decade or so, enabling us to
argue that breaking those barriers may be just as hard as P 6= NP !

• In this lecture, we will consider one such line of arguments based on the exponential
time hypothesis (ETH).

• Informally, ETH says that 3-SAT cannot be solved in 2o(n) time, and SETH says that
k-SAT needs roughly 2n time for large k.

5.1 Hardness of Orthogonal Vectors

• The orthogonal vectors problem is to decide if there is an orthogonal pair of vectors
between two sets. Specifically:

1. Let A = {α1, α2, . . . , αn} and B = {β1, β2, . . . , βn} be two sets of d-dimensional
binary vectors.

2. Decide if there is an orthogonal pair α′, β′, namely, two vectors that satisfy∑d
i=1 α

′[i] · β′[i] = 0.

• For simplicity, we assume that d = Θ(log2 n); in fact, d = ω(log n) is enough. Other-
wise, the sets A,B will either have repetitions or be the whole space of {0, 1}d vectors.

• A brute force algorithm for OV takes O(n2d) time—check the inner product of all
pairs. We will show that we cannot hope to do better assuming SETH.

• OV Theorem. Assuming SETH, the OV problem requires Ω(n2−ε) time, for all ε > 0.

• Proof. We will reduce k-SAT to OV . Suppose the formula has n variables x1, . . . , xn
and m clauses C1, . . . , Cm, where we can assume that m = O(n).

1. Split the variables into two sets of n/2 each, calling them X and Y .

2. For each set X and Y , list all 2n/2 (partial) assignments.

3. For each assignment α of X, define a m-dimensional vector v(α) whose jth coor-
dinate is 0 if α sets (true) any of the literals in the jth clause; otherwise, the jth
coordinate is 1. That is,

v(α)j = 0 if and only if clause Cj is satisfied by partial assingment α.

4. Similarly, for each partial assignment β of Y , define a m-dim vector w(β).

5. We now observe that any clause Cj is unsatisfied by the partial assignments α, β
if and only if vj(α) · wj(β) = 1. Otherwise, either vj(α) or wj(β) is 0, in which
case Cj is satisfied by either α or β.

6. Thus, Cj is satisfied if the jth bit of of the dot product v(α) · w(β) is 0.

7. Therefore, all the clauses of the k-SAT are satisfied if the entire dot product is
zero, namely, v · w = 0.

10

8. Our instance of OV has N = 2n/2, and d ≈ m ≈ n ≈ logN .

9. Therefore, if the OV problem can be solved in time O(N2−ε), then by this re-
duction the k-SAT can be solved in time 2(2−ε)n/2 = O(2(1−ε/2)n) which violates
SETH. This completes the proof.

5.2 Hardness of Nearest Neighbors

• The Bi-chromatic Closest Pair (BCP) problem is the following: given two sets of points
A and B in some space, find a ∈ A and b ∈ B such that ‖a− b‖ is minimum.

• The BCP problem is a batched version of the Nearest Neighbor query problem: instead
of finding NN of one query, we want to find NNs of multiple queries.

• We will argue that the trivial algorithm that solves the problem by pairwise compar-
isons is essentially best possible in worst-case.

• We will use the L1 norm and points from the hypercube vertices {0, 1}d. (Observe that
this is the version we used in LSH: Hamming distance with binary vectors.)

• Theorem. Assuming SETH, solving BCP needs Ω(n2−ε) time, for all ε > 0.

• Proof. Reduction from OV to BCP .

1. Suppose we have two sets of vectors A,B ⊂ {0, 1}d, with d = O(log2 n), and
|A| = |B| = n.

2. For the lower bound, we will like to relate the closest pair distance between A
and B to their dot product.

3. The idea begins with the following relation, for any a, b ∈ {0, 1}d:

‖a− b‖1 = ‖a‖1 + ‖b‖1 − 2〈a, b〉

(a) To prove this, we note that a and b are 0-1 vectors. Let D be the number
of coordinates at which a and b differ, and I be the number of coordinates
where they both have a 1.

(b) Then, D = ‖a− b‖1, and I = 〈a, b〉.
(c) In the count ‖a‖1 + ‖b‖1, the D disagreement coordinates are counted once,

while the I agreement coordinates are counted twice.

(d) So, ‖a‖1 + ‖b‖1 = D+ 2I, which implies D = ‖a‖1 + ‖b‖1− 2I, proving the
equality.

4. Next, define b̄ = 1̄− b, where 1̄ is the vector of all 1s. Then, using the preceding
equality, we get

11

‖a− b̄‖1 = ‖a‖1 + ‖b̄‖1 − 2〈a, b̄〉
= ‖a‖1 + ‖b̄‖1 − 2(‖a‖1 − 〈a, b〉)
= ‖b̄‖1 − ‖a‖1 + 2〈a, b〉

5. Therefore, if partition A and B into the following subsets, for i ∈ {0, 1, . . . , d},

Ai = {a ∈ A : ‖a‖1 = i}, Bi = {b ∈ B : ‖b̄‖1 = i}

and define the set

B̄i = {b̄ : b ∈ Bi}

Then we get that for any a ∈ Ai and b̄ ∈ B̄j, we have

‖a− b̄‖1 = j − i+ 2〈a, b〉 ≥ j − i

6. In other words, since an inner prduct is always non-negative, j−i is a lower bound
on the closest pair between Ai and B̄j, and that the equality holds if and only if
〈a, b〉 = 0.

7. Therefore, to find a ∈ A and b ∈ B with 〈a, b〉 = 0, we can run BCP on the
pairs of sets Ai and B̄j for all i, j ∈ {0, . . . , d}, and check if the inequality in
(4) is ever achieved among these pairs of vectors. (If it is, it must be for the
norm-minimizing, namely, BCP pair of vectors.)

8. An o(n2−ε) time algorithm for BCP then gives us an o((d+1)2n2−ε) = o(n2−ε log4 n)
time algorithm for the OV problem, which contradicts the hardness of OV.

• NN Hardness. Fix δ, c > 0, and suppose an algorithm is allowed O(nc) time to
preprocess the set A. It still needs Ω(n1−δ) time to answer each online NN query for
b ∈ B.

6 References

1. On a Class of O(n2) Problems in Computational Geometry. Anka Gajentaan, Mark
H. Overmars: Comput. Geom. 165-185, 1995.

2. Hadrness of approximate nearest neighbor saerch. Aviad Rubinstein. STOC 2018.

3. A new algorithm for optimal 2-constraint satisfaction and its implications. Ryan
Williams. Theoretical Computer Science, 2005.

12

7 Extra Material

7.1 Transformations and Reductions

• The most common technique for proving lower bounds is reduction. A reduction from
problem A to B is the following procedure.

1. Input of problem A is converted to a suitable input for B.

2. Solve problem B.

3. Transform the output into a correct solution to problem A.

• If the transformation steps 1 and 3 take time τ(N) on input size N , then we say that
A is τ(N)-reducible to B.

• [Reduction Theorem.] If problem A is known to require T (N) time to solve, and A
is τ(N)-reducible to B, then B requires at least T (N)−O(τ(N)) time.

• In other words, hardness of A proves hardness of B.

• Similarly, if B can be solved in T (N), then A can be solved in T (N) +O(τ(N)).

• In the precious reduction, we only transformed in the direction from A to B. If the
τ(N)-reduction works in both directions, then A and B are called equivalent..

• But to get started, we first need a lower bound on A. How does one prove that some
problem A must require T (N) time no matter what algorithm is used?

13

