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ABSTRACT
We propose an efficient algorithm for discovering the high-
level topological structure of a collection of 3-dimensional
trajectories. Our algorithm computes a sparse graph repre-
senting the latent “bundling” and “unbundling” structure of
the trajectory data. This graph can serve both as a compact
signature of the trajectory data set as well as a tool for ef-
ficient comparison among different data sets. Our problem
formulation and the algorithms are broadly applicable and
general-purpose but we focus on a particular neuroscience
application to highlight the key features. In particular, our
motivation stems from the emerging area of brain tractog-
raphy, which aims to construct the connectome of human
brain white matter fibers. These fibers can be inferred non-
invasively using magnetic resonance imaging (MRI) diffu-
sion scans of the brain interior and modeled abstractly as
a set of time-independent geometric trajectories in a three-
dimensional brain space. Real neuronal fiber pathways ex-
hibit complex but natural bundling structures, which elude
existing MRI reconstruction techniques, but are easily cap-
tured by our algorithm. We validate our algorithms both
theoretically (uniqueness of the graph representation and
provably efficient algorithms) and empirically (using both
synthetic and real scanned brain data sets).

Categories and Subject Descriptors
[Big Spatial Data, Computational Geometry, Spatial
Data Analytics]
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1. INTRODUCTION
In this paper, we are interested in extracting a sparse but
structurally significant representation of a complex set of 3-
dimensional trajectories. Broadly defined as a point-sequence
in some coordinate space, a trajectory is a convenient ab-
straction in a wide range of applications dealing with mo-
bility patterns, spatial phenomena, geographical networks
or geometric connectivity, among others. Trajectory anal-
ysis often centers on discovering geometric and topological
structure that is common to subsets of trajectories.

The focus of this paper is the discovery of bundling structure,
namely, how the groups of trajectories branch and merge. In
some settings, the bundling phenomenon is wide-spread but
easily visible in the data. Our work looks at a specific situa-
tion where the branching and merging is critical but requires
significant computational effort to discover because of the
(1) large scale of data, (2) complex behavior of trajectories,
(3) non-uniformity of bundles, and (4) difficulties caused by
noise and missing data. While our techniques and results are
general-purpose, we describe them in the context of human
brain’s white matter connectivity as a specific application.

Tractography: Fiber Pathways of the Brain. Brain con-
nections are built from morphologically complex 3-dimensional
fiber bundles that are not randomly organized; in fact, much
of the white matter structure is constrained by the brain’s
anatomic development process. White matter fibers tend
to start at a functional region, merge with nearby fibers
into larger pathways for efficiency, and split off as they near
their terminal functional regions. As such, the structure
discovery problem here is a mix of geometry, graph theory,
and topology. The use of geometry alone is highly suscep-
tible to noise because of the fiber resolution, which is at
sub-micron scale, as well as natural physical disparities (in
size and shape) between human brains. On the other hand,
general-purpose graph-theoretical methods are both com-
putationally intractable (i.e. subgraph isomorphism) and
lose vital information regarding the physical proximity and
bundling structure of fibers.

Results. We propose using the topological concept of Reeb
Graph as a way to represent the bundling structure in a dis-
crete fashion that remains faithful to the original geometric
features. Our representation combines the geometry of the
fiber pathways with graph-theoretic tools in a complemen-



tary way. In particular, we apply techniques from compu-
tational geometry to track fiber trajectories, grouping and
splitting them as needed to encode the spatial branching
and merging structure that underlies the neuronal pathways.
We then process the groups into a Reeb graph structure
that allows the relevant geometric structure to be recovered
while providing a high-level view of the overall topological
structure. While the basic idea is simple and elegant, there
are a number of computational and conceptual challenges
in ensuring algorithmic efficiency and being able to identify
important structural variations from random variation and
noise.

Our main contributions include the following: (1) an effi-
cient algorithm for partitioning the trajectory data into ε-
connected bundles; the algorithm runs in worst-case time
O(N logN), where N is the total input size, and (2) an im-
plementation and empirical validation of the algorithm on
real brain imaging data.

2. PREVIOUS WORK
The analysis of trajectory data is a well-studied problem
with a vast literature, especially due to the proliferation of
GPS data in recent years. Existing theoretical approaches
for comparing and grouping trajectories are explored in [23,
7, 20, 19, 12, 11]. Real-world applications of trajectory anal-
ysis, such as tracking animal herds and vehicle traffic, are
discussed in [15, 16, 2, 10, 18, 1]. Tractography, the science
of using trajectories to model human brain white matter
from diffusion magnetic resonance imaging (dMRI) data, is
described in [4, 3, 21, 8]. Brain fiber trajectories pose a dis-
tinct challenge over GPS-based data because they are purely
spatial (time-independent) and three-dimensional, but are
known to follow well-established anatomical constraints.

More recent literature addresses the major shortcoming of
early trajectory clustering techniques in requiring each tra-
jectory to be classified into a group as a whole. Trajectory
grouping algorithms that allow segmentation in order to dis-
cover common substructure are desecribed in [14, 17, 2, 19].
Methods for summarizing the grouping structure are explord
in [17, 5, 6, 22]. Notably, [6] introduces the application of the
Reeb graph as a way to succinctly represent trajectory data
in a way that encodes the merging and splitting structure.
Our approach extends their technique to time-independent
trajectories, which is a strictly harder case, and refines the
grouping definition so that the resulting Reeb graph also
partitions the set of input points, so that the groups can be
labeled with domain-specific information such as anatomical
features.

3. REEB GRAPH OF TRAJECTORIES
A trajectory T is an ordered sequence of points in some
metric space M. We denote a trajectory T as a sequence
of points p1p2p3 · · · pm, where m is the number of points in
T . Equivalently, a trajectory can be represented by a se-
quence of segments s1s2s3 · · · sm−1, where si = pipi+1. A
subtrajectory T ′ of a parent trajectory T is a subsequence of
segments in T beginning at some index s and ending at t, i.e.
psps+1 · · · pt−1pt. Two disjoint subtrajectories of the same
parent T are adjacent if they share an endpoint, or, equiva-
lently, if their union is also a subtrajectory of T . (Depend-

ing on the application, trajectories can be time-dependent,
where each point has an associated timestamp, and the
points in the trajectory are ordered by increasing time, or
time-independent where no timestamps are involved. Our
focus in this paper is the case of time-independent, or purely
spatial, trajectories.) Throughout we assume that the am-
bient space is the 3-dimensional Euclidean space with n tra-
jectories, with a total of N points.

Many real-world trajectories exhibit highly structured merg-
ing and splitting behavior, where a group of trajectories
travel close together in one region, then separate and travel
farther apart in another region. In order to discover the
large-scale topological structure of trajectory data, we rep-
resent the bundling structure of trajectories in the form of
a Reeb graph. Originally defined in Morse theory as a way
to describe critical points of a manifold, we use the Reeb
graph as a way to represent the merging and splitting be-
havior (which we call the branching structure of a trajectory
set.

Intuitively, if a continuous portion of a set of trajectories
moves together, i.e. stays within close distance of one an-
other, then these subtrajectories share a common behavior.
We formalize this by introducing the notion of subtrajectory
bundles. For any segments s1 and s2 inM let d(s1, s2) be a
distance metric on segments (for the brain connectome data,
we use the simple metric of the maximum distance between
endpoints). For any ε > 0, we say two trajectories Ti and
Tj are ε-connected if every segment in Ti is within ε of some
segment in Tj and vice versa. Note that the definition of
ε-connected extends to subtrajectories as well.

Given an input set of trajectories I = {T1, T2, · · · , Tn}, a
bundle B is a set of subtrajectories which contains at most
one subtrajectory from each trajectory in the input set. Fi-
nally, a bundle B is an ε-bundle if every subtrajectory T ∈ B
is ε-step connected, i.e. between any two subtrajectories in
B there exists an ε-connected sequence of subtrajectories
connecting them.

Two bundles B and B′ are adjacent if a pair of their subtra-
jectories is adjacent, i.e. if there exists some subtrajectory
T ∈ B that is continued as T ′ in B′. A bundle partition
P = {B1, B2, · · · , Bk} for I is a set of bundles such that ev-
ery segment in I is assigned to exactly one bundle. A bundle
partition can be thought of as a clustering on subintervals of
trajectories in I. For every input set I there may be multi-
ple bundle partitions that are wholly composed of ε-bundles;
for example, the trivial partition where each trajectory is
a bundle. However, for a bundle partition to capture all
the grouping structure we restrict our consideration to the
partition composed of max-width ε-bundles. Formally, an
ε-bundle B of I is max-width if no other possible ε-bundle
of I intersects B and contains a superset of the trajectories
represented in B.

We can show that for any input set I and any parameter ε,
the max-width ε-bundle partition that minimizes the total
number of bundles is unique if all the trajectories satisfy
the property that two segments from the same trajectory do
not lie in each other’s ε-step neighborhoods. This property
is exhibited in real-world data sets like brain fibers, where



trajectories do not form “loops” or other structures with am-
biguous connectivity. We defer the proof to the full paper.

Let I be a set of trajectories, and let P be the max-width
bundle partition for I. The Reeb graph R for P is an undi-
rected graph that associates for each bundle Bi ∈ P an edge
ei in R, and connects two edges ei and ej with a vertex if
their corresponding bundles are adjacent. Intuitively, the
Reeb graph succinctly captures the branching structure of
the trajectories: its vertices are either endpoints of subtra-
jectory groups or critical points in the data at which merging
and splitting behavior occur, and the edges adjacent to each
vertex are the subtrajectory groups that are involved in the
critical behavior at that region. The algorithm parameter ε
controls the granularity of the bundling desired–small values
of ε allow only very dense sets of subtrajectories to be con-
sidered for grouping, while larger values of ε relax the groups
and allow larger, sparser groups to form. We summarize our
algorithmic result in the following theorem, deferring the de-
tails of the algorithm to the full paper.

Theorem 3.1. Given an input set of trajectories I and
a distance parameter ε, the Reeb graph R for I can be com-
puted in O(N logN) time, where N is the total number of
points in the input set.

4. ALGORITHM IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In order to form a qualitative impression of the kind of bun-
dle formations that our algorithm discovers, we first illus-
trate the behavior of the algorithm on a few synthetically
generated but distinctive trajectory data sets. These small
examples are designed to highlight the split-merge phenom-
ena among white matter fibers considered significant by neu-
roscientists in their study of brain imaging data. These ex-
amples show how the Reeb graph both simplifies the struc-
ture of trajectory sets when they share common behavior
but also preserves geometric faithfulness, especially for sub-
structures within the same trajectory.

(a) A basic ex-
ample of bundling
structure.

(b) An example of
a“triad”with three
distinct groupings.

(c) An example
of overlapping
branching events.

Figure 1: Synthetic trajectory samples demonstrating basic,
but nontrivial branching structure where simple clustering
methods fail to identify all the latent substructure.

We construct three different trajectory data sets with non-
trivial topologies (shown in Figure 1, each highlighting a
distinct type of bundling structure. In each case, the input
set of trajectories can be easily clustered using traditional
clustering methods, but those groupings fail to capture the

Figure 2: Reeb graph representations of the synthetic data.
White vertices identify termination regions, while grey ver-
tices identify branching points. Edges record the common
subtrajectories of the groupings.

unique and distinctive spatial and topological pattern that
is vital to these sets, and is correctly found by our algorithm.
The Reeb graph representation in Figure 2 succinctly iden-
tifies the these substructures and, if trajectory information
is stored with each edge, provides means for recovering the
original geometric structure.

4.1 Brain Imaging Data
We collected a series of scans from a single subject from
the UCSB Brain Imaging Center. White matter trajectories
were generated using the algorithm described in [25]. To
test the Reeb graph computation, we reconstructed individ-
ual trajectory sets for the arcuate fasciculus and the superior
longitudinal fasciculus. The anatomy of these two structures
is well-understood within the neuroscience community and
is known to display strong geometric structure, with well-
defined termination points that branch off from larger and
larger bundles. Consequently, the branching and merging
structure of the physical tissue of the arcuate fasciculus is
thoroughly described in [13, 9] and the superior longitudi-
nal fasciculus is described in [24]. Thus, each Reeb graph’s
attributes can be verified against neurological ground truth.

The trajectories reside in a normalized three-dimensional
brain space that is 182× 218× 182 mm in size. Selecting an
optimal value of ε depends on the application in question; we
use a value of ε = 2.25 for two reasons: it is close enough
to the minimum dMRI resolution of 2mm to capture the
smallest reasonable groups, but large enough to ensure that
macroscopic groupings are identified.

(a) Brain atlas of the arcuate
fasciculus [9].

(b) Brain atlas of the superior
longitudinal fasciculus [24].

Figure 3: Anatomical ground-truth labeling for two well-
known neurological structures. Important macroscopic ter-
mination regions are labeled based on physical dissection.

We use manually labeled diagrams of the arcuate fascicu-
lus and superior longitudinal fasciculus from Figure 3 as our



(a) Reeb graph partition of the
trajectories in Figure 3a.

(b) Reeb graph representation
of arcuate fasciculus.

Figure 4: Reeb graph labeling and representation of the
arcuate fasciculus, a well-known neurological structure, pro-
duced by our algorithm. Colored bundles are reflected in the
graph edges. White vertices identify termination regions,
grey vertices identify branching points.

(a) Reeb graph partition of the
trajectories in Figure 3b.

(b) Reeb graph representation
of longitudinal fasciculus.

Figure 5: Reeb graph labeling and representation of the
superior longitudinal fasciculus, another well-known neuro-
logical structure, produced by our algorithm.

reference points and compare them with colored diagrams
of the Reeb graph on the trajectory set for our subject in
Figures 4 and 5. We find that our algorithm discovers most
of the known termination regions and assigns them edges
in the Reeb graph, and also discovers unique substructures
within the individual that are absent from the brain atlas.
Furthermore, our algorithm discovers the large central arcu-
ate bundle and superior longitudinal bundle that unites all
of the separate connections in each dataset. In regions where
the trajectories are more sparsely distributed or noisy, the
algorithm has some difficulty finding distinct groups. Meth-
ods for reducing the effect of noisy imaging data or outliers
are an ongoing area of work.

4.2 Runtime Analysis
We evaluated the computational efficiency of our algorithm
on an AMD dual-core 1.4Mhz processor with 4GB of RAM.
Our input size ranged from 50 to 5,000 trajectories repre-
senting sets of white matter pathways in the human brain,
and our average trajectory length was 86 points per trajec-
tory. The resulting runtime ranged from 2 seconds to 78
minutes.
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