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Abstract

We consider the following problem: given an on-line,
possibly unbounded stream of two-dimensional points,
how can we summarize its spatial distribution or shape
using a small, bounded amount of memory? We pro-
pose a novel scheme, called ClusterHull, which repre-
sents the shape of the stream as a dynamic collection of
convex hulls, with a total of at most m vertices, where
m is the size of the memory. The algorithm dynami-
cally adjusts both the number of hulls and the number
of vertices in each hull to best represent the stream
using its fixed memory budget. This algorithm ad-
dresses a problem whose importance is increasingly rec-
ognized, namely the problem of summarizing real-time
data streams to enable on-line analytical processing.
As a motivating example, consider habitat monitoring
using wireless sensor networks. The sensors produce a
steady stream of geographic data, namely, the locations
of objects being tracked. In order to conserve their lim-
ited resources (power, bandwidth, storage), the sensors
can compute, store, and exchange ClusterHull sum-
maries of their data, without losing important geomet-
ric information. We are not aware of other schemes
specifically designed for capturing shape information
in geometric data streams, and so we compare Cluster-
Hull with some of the best general-purpose clustering
schemes such as CURE, k-median, and LSEARCH. We
show through experiments that ClusterHull is able to
represent the shape of two-dimensional data streams
more faithfully and flexibly than the stream versions
of these clustering algorithms.
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1 Introduction

The extraction of meaning from data is perhaps the
most important problem in all of science. Algorithms
that can aid in this process by identifying useful struc-
ture are valuable in many areas of science, engineer-
ing, and information management. The problem takes
many forms in different disciplines, but in many set-
tings a geometric abstraction can be convenient: for
instance, it helps formalize many informal but visually
meaningful concepts such as similarity, groups, shape,
etc. In many applications, geometric coordinates are a
natural and integral part of data: e.g., locations of sen-
sors in environmental monitoring, objects in location-
aware computing, digital battlefield simulation, or me-
teorological data. Even when data have no intrinsic ge-
ometric association, many natural data analysis tasks
such as clustering are best performed in an appropri-
ate artificial coordinate space: e.g., data objects are
mapped to points in some Euclidean space using cer-
tain attribute values, where similar objects (points) are
grouped into spatial clusters for efficient indexing and
retrieval. Thus we see that the problem of finding a
simple characterization of a distribution known only
through a collection of sample points is a fundamental
one in many settings.

Recently there has been a growing interest in de-
tecting patterns and analyzing trends in data that are
generated continuously, often delivered in some fixed
order and at a rapid rate. Some notable applica-
tions of such data processing include monitoring and
surveillance using sensor networks, transactions in fi-
nancial markets and stock exchanges, web logs and
click streams, monitoring and traffic engineering of IP
networks, telecommunication call records, retail and
credit card transactions, and so on. Imagine, for in-
stance, a surveillance application, where a remote en-
vironment instrumented by a wireless sensor network
is being monitored through sensors that record the
movement of objects (e.g., animals). The data gath-
ered by each sensor can be thought of as a stream of
two-dimensional points (geographic locations). Given
the severe resource constraints of a wireless sensor net-
work, it would be rather inefficient for each sensor to
send its entire stream of raw data to a remote base sta-



tion. Indeed, it would be far more efficient to compute
and send a compact geometric summary of the trajec-
tory. One can imagine many other remote monitoring
applications like forest fire hazards, marine life, etc.,
where the shape of the observation point cloud is a nat-
ural and useful data summary. Thus, there are many
sources of “transient” geometric data, where the key
goal is to spot important trends and patterns, where
only a small summary of the data can be stored, and
where a “visual” summary such as shape or distribu-
tion of the data points is quite valuable to an analyst.

A common theme underlying these data processing
applications is the continuous, real-time, large-volume,
transient, single-pass nature of data. As a result, data
streams have emerged as an important paradigm for
designing algorithms and answering database queries
for these applications. In the data stream model,
one assumes that data arrive as a continuous stream,
in some arbitrary order possibly determined by an
adversary; the total size of the data stream is quite
large; the algorithm may have memory to store only
a tiny fraction of the stream; and any data not
explicitly stored are essentially lost. Thus, data stream
processing necessarily entails data reduction, where
most of the data elements are discarded and only
a small representative sample is kept. At the same
time, the patterns or queries that the applications seek
may require knowledge of the entire history of the
stream, or a large portion of it, not just the most
recent fraction of the data. The lack of access to
full data significantly complicates the task of data
analysis, because patterns are often hidden, and easily
lost unless care is taken during the data reduction
process. For simple database aggregates, sub-sampling
can be appropriate, but for many advanced queries or
patterns, sophisticated synopses or summaries must be
constructed. Many such schemes have recently been
developed for computing quantile summaries [21], most
frequent or top-k items [23], distinct item counts [3, 24],
etc.

When dealing with geometric data, an analyst’s
goal is often not as precisely stated as many of these
numerically-oriented database queries. The analyst
may wish to understand the general structure of the
data stream, look for unusual patterns, or search for
certain “qualitative” anomalies before diving into a
more precisely focused and quantitative analysis. The
“shape” of a point cloud, for instance, can convey im-
portant qualitative aspects of a data set more effec-
tively than many numerical statistics. In a stream set-
ting, where the data must be constantly discarded and
compressed, special care must be taken to ensure that
the sampling faithfully captures the overall shape of

the point distribution.

Shape is an elusive concept, which is quite chal-
lenging even to define precisely. Many areas of com-
puter science, including computer vision, computer
graphics, and computational geometry deal with rep-
resentation, matching and extraction of shape. How-
ever, techniques in those areas tend to be compu-
tationally expensive and unsuited for data streams.
One of the more successful techniques in processing of
data streams is clustering. The clustering algorithms
are mainly concerned with identifying dense groups of
points, and are not specifically designed to extract the
boundary features of the cluster groups. Neverthe-
less, by maintaining some sample points in each clus-
ter, one can extract some information about the geo-
metric shape of the clusters. We will show, perhaps
unsurprisingly, that ClusterHull, which explicitly aims
to summarize the geometric shape of the input point
stream using a limited memory budget, is more effec-
tive than general-purpose stream clustering schemes,
such as CURE, k-median and LSEARCH.

1.1 ClusterHull

Given an on-line, possibly unbounded stream of two-
dimensional points, we propose a scheme for summa-
rizing its spatial distribution or shape using a small,
bounded amount of memory m. Our scheme, called
ClusterHull, represents the shape of the stream as a
dynamic collection of convex hulls, with a total of at
most m vertices. The algorithm dynamically adjusts
both the number of hulls and the number of vertices
in each hull to represent the stream using its fixed
memory budget. Thus, the algorithm attempts to cap-
ture the shape by decomposing the stream of points
into groups or clusters and maintaining an approxi-
mate convex hull of each group. Depending on the
input, the algorithm adaptively spends more points
on clusters with complex (potentially more interesting)
boundaries and fewer on simple clusters. Because each
cluster is represented by its convex hull, the Cluster-
Hull summary is particularly useful for preserving such
geometric characteristics of each cluster as its bound-
ary shape, orientation, and volume. Because hulls are
objects with spatial extent, we can also maintain addi-
tional information such as the number of input points
contained within each hull, or their approximate data
density (e.g., population divided by the hull volume).
By shading the hulls in proportion to their density, we
can then compactly convey a simple visual representa-
tion of the data distribution. By contrast, such infor-
mation seems difficult to maintain in stream clustering
schemes, because the cluster centers in those schemes



constantly move during the algorithm.

For illustration, in Figure 1 we compare the output
of our ClusterHull algorithm with those produced by
two popular stream-clustering schemes, k-median [19]
and CURE [20]. The top row shows the input data
(left), and output of ClusterHull (right) with memory
budget set to m = 45 points. The middle row shows
outputs of k-median, while the bottom row shows the
outputs of CURE. One can see that both the boundary
shapes and the densities of the point clusters are quite
accurately summarized by the cluster hulls.

Figure 1: The top row shows the input data (left) and
the output of ClusterHull (right) with memory budget
of m = 45. The hulls are shaded in proportion to their
estimated point density. The middle row shows two
different outputs of the stream k-medians algorithm,
with m = 45: in one case (left), the algorithm simply
computes k = 45 cluster centers; in the other (right),
the algorithm computes k = 5 centers, but maintains
9 (random) sample points from the cluster to get a
rough approximation of the cluster geometry. (This is
a simple enhancement implemented by us to give more
expressive power to the k-median algorithm.) Finally,
the bottom row shows the outputs of CURE: in the
left figure, the algorithm computes k = 45 cluster
centers; in the right figure, the algorithm computes
k = 5 clusters, with c = 9 samples per cluster. CURE
has a tunable shrinkage parameter, α, which we set
to 0.4, in the middle of the range suggested by its
authors [20].

We implemented ClusterHull and experimented
with both synthetic and real data to evaluate its per-
formance. In all cases, the representation by Cluster-
Hull appears to be more information-rich than those
by clustering schemes such as CURE, k-medians, or
LSEARCH, even when the latter are enhanced with
some simple mechanisms to capture cluster shape.
Thus, our general conclusion is that ClusterHull can be
a useful tool for summarizing geometric data streams.

ClusterHull is computationally efficient, and thus
well-suited for streaming data. At the arrival of each
new point, the algorithm must decide whether the
point lies in one of the existing hulls (actually, within a
certain ring around each hull), and possibly merge two
existing hulls. With appropriate data structures, this
processing can be done in amortized time O(log m) per
point.

ClusterHull is a general paradigm, which can be
extended in several orthogonal directions and adapted
to different applications. For instance, if the input data
are noisy, then covering all points by cluster hulls can
lead to poor shape results. We propose an incremental
cleanup mechanism, in which we periodically discard
light-weight hulls, that deals with noise in the data
very effectively. Similarly, the performance of a shape
summary scheme can depend on the order in which
input is presented. If points are presented in a bad
order, the ClusterHull algorithm may create long,
skinny, inter-penetrating hulls early in the stream
processing. We show that a period-doubling cleanup
is effective in correcting the effects of these early
mistakes. When there is spatial coherence within
the data stream, our scheme is able to exploit that
coherence. For instance, imagine a point stream
generated by a sensor field monitoring the movement
of an unknown number of vehicles in a two-dimensional
plane. The data naturally cluster into a set of spatially
coherent trajectories, which our algorithm is able to
isolate and represent more effectively than general-
purpose clustering algorithms.

1.2 Related Work

Inferring shape from an unordered point cloud is a
well-studied problem that has been considered in many
fields, including computer vision, machine learning,
pattern analysis, and computational geometry [4, 10,
11, 26]. However, the classical algorithms from these
areas tend to be computationally expensive and require
full access to data, making them unsuited for use in a
data stream setting.

An area where significant progress has occurred
on stream algorithms is clustering. Our focus is some-



what different from classical clustering—we are mainly
interested in low-dimensional data and capturing the
“surface” or boundary of the point cloud, while clus-
tering tends to focus on the “volume” or density and
moderate and large dimensions. While classical clus-
tering schemes of the past have focused on cluster cen-
ters, which work well for spherical clusters, some recent
work has addressed the problem of non-spherical clus-
ters, and tried to pay more attention to the geometry
of the clusters. Still this attention to geometry does
not extend to the shape of the boundary.

Our aim is not to exhaustively survey the clus-
tering literature, which is immense and growing, but
only to comment briefly on those clustering schemes
that could potentially be relevant to the problem
of summarizing shape of two- or three-dimensional
point streams. Many well-known clustering schemes
(e.g., [5, 7, 16, 25]) require excessive computation and
require multiple passes over the data, making them un-
suited for our problem setting. There are machine-
learning based clustering schemes [12, 13, 27], that use
classification to group items into clusters. These meth-
ods are based on statistical functions, and not geared
towards shape representation. Clustering algorithms
based on spectral methods [8, 14, 18, 28] use the sin-
gular value decomposition on the similarity graph of
the data, and are good at clustering statistical data,
especially in high dimensions. We are unaware of any
results showing that these methods are particularly ef-
fective at capturing boundary shapes, and, more im-
portantly, streaming versions of these algorithms are
not available. So, we now focus on clustering schemes
that work on streams and are designed to capture some
of the geometric information about clusters.

One of the popular clustering schemes for large
data sets is BIRCH [30], which also works on data
streams. An extension of BIRCH by Aggarwal et al. [2]
also computes multi-resolution clusters in evolving
streams. While BIRCH appears to work well for
spherical-shaped clusters of uniform size, Guha et
al. [20] experimentally show that it performs poorly
when the data are clustered into groups of unequal
sizes and different shapes. The CURE clustering
scheme proposed by Guha et al. [20] addresses this
problem, and is better at identifying non-spherical
clusters. CURE also maintains a number of sample
points for each cluster, which can be used to deduce the
geometry of the cluster. It can also be extended easily
for streaming data (as noted in[19]). Thus, CURE
is one of the clustering schemes we compare against
ClusterHull.

In [19], Guha et al. propose two stream variants of
k-center clustering, with provable theoretical guaran-

tees as well as experimental support for their perfor-
mance. The stream k-median algorithm attempts to
minimize the sum of the distances between the input
points and their cluster centers. Guha et al. [19] also
propose a variant where the number of clusters k can be
relaxed during the intermediate steps of the algorithm.
They call this algorithm LSEARCH (local search).
Through experimentation, they argue that the stream
versions of their k-median and LSEARCH algorithms
produce better quality clusters than BIRCH, although
the latter is computationally more efficient. Since we
are chiefly concerned with the quality of the shape, we
compare the output of ClusterHull against the results
of k-median and LSEARCH (but not BIRCH).

1.3 Organization

The paper is organized in seven sections. Section 2
describes the basic algorithm for computing cluster
hulls. In Section 3 we discuss the cost function used
in refining and unrefining our cluster hulls. Section 4
provides extensions to the basic ClusterHull algorithm.
In Sections 5 and 6 we present some experimental
results. We conclude in Section 7.

2 Representing Shape as a

Cluster of Hulls

We are interested in simple, highly efficient algorithms
that can identify and maintain bounded-memory ap-
proximations of a stream of points. Some techniques
from computational geometry appear especially well-
suited for this. For instance, the convex hull is a useful
shape representation of the outer boundary of the whole
data stream. Although the convex hull accurately rep-
resents a convex shape with an arbitrary aspect ratio
and orientation, it loses all the internal details. There-
fore, when the points are distributed non-uniformly
within the convex hull, the outer hull is a poor rep-
resentation of the data.

Clustering schemes, such as k-medians, partition
the points into groups that may represent the distribu-
tion better. However, because the goal of many clus-
tering schemes is typically to minimize the maximum
or the sum of distance functions, there is no explicit at-
tention given to the shape of clusters—each cluster is
conceptually treated as a ball, centered at the cluster
center. Our goal is to mediate between the two ex-
tremes offered by the convex hull and k-medians. We
would like to combine the best features of the convex
hull—its ability to represent convex shapes with any



aspect ratio accurately—with those of ball-covering ap-
proximations such as k-medians—their ability to repre-
sent nonconvex and disconnected point sets. With this
motivation, we propose the following measure for rep-
resenting the shape of a point set under the bounded
memory constraint.

Given a two-dimensional set of N points,
and a memory budget of m, where m � N ,
compute a set of convex hulls such that (1)
the collection of hulls uses at most m vertices,
(2) the hulls together cover all the points of S,
and (3) the total area covered by the hulls is
minimized.

Intuitively, this definition interpolates between a single
convex hull, which potentially covers a large area,
and k-medians clustering, which fails to represent the
shape of individual clusters accurately. Later we
will relax the condition of “covering all the points”
to deal with noisy data—in the relaxed problem, a
constant fraction of the points may be dropped from
consideration. But the general goal will remain the
same: to compute a set of convex hulls that attempts
to cover the important geometric features of the data
stream using least possible area, under the constraint
that the algorithm is allowed to use at most m vertices.

2.1 Geometric approximation in data

streams

Even the classical convex hull (outer boundary) com-
putation involves some subtle and nontrivial issues in
the data stream setting. What should one do when
the number of extreme vertices in the convex hull ex-
ceeds the memory available? Clearly, some of the ex-
treme vertices must be dropped. But which ones, and
how shall we measure the error introduced in this ap-
proximation? This problem of summarizing the con-
vex hull of a point stream using a fixed memory m has
been studied recently in computational geometry and
data streams [1, 6, 9, 17, 22]. An adaptive sampling
scheme proposed in [22] achieves an optimal memory-
error tradeoff in the following sense: given memory m,
the algorithm maintains a hull that (1) lies within the
true convex hull, (2) uses at most m vertices, and (3)
approximates the true hull well—any input point not
in the computed hull lies within distance O(D/m2) of
the hull, where D is the diameter of the point stream.
Moreover, the error bound of O(D/m2) is the best pos-
sible in the worst case.

In our problem setting, we will maintain not one
but many convex hulls, depending on the geometry of
the stream, with each hull roughly corresponding to a

cluster. Moreover, the locations of these hulls are not
determined a priori—rather, as in k-medians, they are
dynamically determined by the algorithm. Unlike k-
medians clusters, however, each hull can use a different
fraction of the available memory to represent its cluster
boundary. One of the key challenges in designing the
ClusterHull algorithm is to formulate a good policy for
this memory allocation. For this we will introduce a
cost function that the various hulls use to decide how
many hull vertices each gets. Let us first begin with an
outline of our scheme.

2.2 The basic algorithm

The available memory m is divided into two pools: a
fixed pool of k groups, each with a constant number of
vertices; and a shared pool of O(k) points, from which
different cluster hulls draw additional vertices. The
number k has the same rôle as the parameter fed to k-
medians clustering—it is set to some number at least as
large as the number of native clusters expected in the
input. (Thus our representation will maintain a more
refined view of the cluster structure than necessary, but
simple post-processing can clean up the unnecessary
sub-clustering.) The exact constants in this division
are tunable, and we show their effect on the perfor-
mance of the algorithm through experimentation. For
the sake of concreteness, we can assume that each of
the k groups is initially allocated 8 vertices, and the
common pool has a total of 8k vertices. Thus, if the
available memory is m, then we must have m ≥ 16k.

a

b

c
d

Triangle of
uncertainty

Figure 2: An approximate hull, with 6 sampling
directions. The sample hull’s vertices are a, b, c, d.

Our algorithm approximates the convex hull of
each group by its extreme vertices in selected (sam-
ple) directions: among all the points assigned to this
cluster group, for each sample direction, the algorithm
retains the extreme vertex in that direction. See Fig-
ure 2 for an example. Each edge of this sampled hull
supports what we call an uncertainty triangle—the tri-
angle formed by the edge and the tangents at the two



endpoints of the edge in the sample directions for which
those endpoints are extreme. A simple but important
property of the construction is that the boundary of
the true convex hull is sandwiched in the ring of un-
certainty triangles defined by the edges of the com-
puted hull. See Figure 3 for an illustration. The ex-
tremal directions are divided into two sets, one contain-
ing uniformly-spaced fixed directions, corresponding to
the initial endowment of memory, and another contain-
ing adaptively chosen directions, corresponding to ad-
ditional memory drawn from the common pool. The
adaptive directions are added incrementally, bisecting
previously chosen directional intervals, to minimize the
error of the approximation.

p
q

Figure 3: The true hull is sandwiched in a ring of
uncertainty triangles.

Each hull has an individual cost associated with
it, and the whole collection of k hulls has a total cost
that is the sum of the individual costs. Our goal
is to choose the cost function such that minimizing
the total cost leads to a set of approximate convex
hulls that represent the shape of the point set well.
Furthermore, because our minimization is performed
on-line, assigning each new point in the stream to a
convex hull when the point arrives, we want our cost
function to be robust : as much as possible, we want it
to reduce the chance of assigning early-arriving points
to hulls in a way that forces late-arriving points to incur
high cost. We leave the technical details of our choice
of the cost function to the following section.

Let us now describe the high-level organization of
our algorithm. Suppose that the current point set S
is partitioned among k convex hulls H1, . . . , Hk. The
cost of hull Hi is w(Hi), and the total cost of the
partition H = {H1, . . . , Hk} is w(H) =

∑
H∈H

w(H).
We process each incoming point p with the following
algorithm:

Algorithm ClusterHull

if p is contained in any H ∈ H, or in the ring of
uncertainty triangles for any such H , then

Assign p to H without modifying H .
else

Create a new hull containing only p and add it to H.

if |H| > k then

Choose two hulls H, H ′ ∈ H such that merging
H and H ′ into a single convex hull will result
in the minimum increase to w(H).

Remove H and H ′ from H, merge them to form
a new hull H∗, and put that into H.

If H∗ has an uncertainty triangle over either edge
joining points of the former H and H ′ whose
height exceeds the previous maximum
uncertainty triangle height, refine (repeatedly
bisect) the angular interval associated with that
uncertainty triangle by choosing new adaptive
directions until the triangle height is less than
the previous maximum.

while the total number of adaptive directions
in use exceeds ck

Unrefine (discard one of the adaptive directions
for some H ∈ H) so that the uncertainty triangle
created by unrefinement has minimum height.

The last two steps (refinement and unrefinement)
are technical steps for preserving the approximation
quality of the convex hulls that were introduced in [22].
The key observation is that an uncertainty triangle
with “large height” leads to a poor approximation of a
convex hull. Ideally, we would like uncertainty triangles
to be flat. The height of an uncertainty triangle is
determined by two key variables: the length of the
convex hull edge, and the angle-difference between the
two sampling directions that form that triangle. More
precisely, consider an edge pq. We can assume that the
extreme directions for p and q, namely, θp and θq , point
toward the same side of pq, and hence the intersection
of the supporting lines projects perpendicularly onto
pq. Therefore the height of the uncertainty triangle is
at most the edge length `(pq) times the tangent of the
smaller of the angles between pq and the supporting
lines. Observe that the sum of these two angles equals
the angle between the directions θp and θq . If we define
θ(pq) to be |θp−θq|, then the height of the uncertainty
triangle at pq is at most `(pq) · tan(θ(pq)/2), which is
closely approximated by

(2.1)
`(pq) · θ(pq)

2
.

This formula forms the basis for adaptively choos-
ing new sampling directions: we devote more sampling
directions to cluster hull edges whose uncertainty tri-
angles have large height. Refinement is the process of
introducing a new sampling direction that bisects two
consecutive sampling directions; unrefinement is the
converse of this process. The analysis in [22] showed



that if a single convex hull is maintained using m/2
uniformly spaced sampling directions, and m/2 adap-
tively chosen directions (using the policy of minimizing
the maximum height of an uncertainty triangle), then
the maximum distance error between true and approx-
imate hulls is O(D/m2). Because in ClusterHull we
share the refinement directions among k different hulls,
we choose them to minimize the global maximum un-
certainty triangle height explicitly. We point out that
the allocation of adaptive directions is independent of
the cost function w(H). The cost function guides the
partition into convex hulls; once that choice is made,
we allocate adaptive directions to minimize the error
for that partition. One could imagine making the as-
signment of adaptive directions dependent on the cost
function, but for simplicity we have chosen not to do
so.

3 Choosing a Cost Function

In this section we describe the cost function we apply
to the convex hulls that ClusterHull maintains. We
discuss the intuition behind the cost function, experi-
mental support for that intuition, and variants on the
cost function that we considered.

The α-hull is a well-known structure for represent-
ing the shape of a set of points [15]. It can be viewed as
an extension of the convex hull in which half-planes are
replaced by the complements of fixed-radius disks (i.e.,
the regions outside the disks). In particular, the con-
vex hull is the intersection of all half-planes containing
the point set, and the α-hull is the intersection of all
disk-complements with radius ρ that contain the point
set.1 See Figure 4 for examples of the convex hull and
α-hull on an L-shaped point set. The α-hull minimizes
the area of the shape that covers the points, subject to
the radius constraint on the disks.

Figure 4: Shape representations for a set of points:
(left) convex hull, (right) α-hull.

1In the definition of α-hulls, the disk radius ρ = 1/|α|, and
α ≤ 0, but we are not concerned with these technical details.

The α-hull is not well suited to represent the shape
of a stream of points, because an unbounded number of
input points may appear on the boundary of the shape.
Our goal of covering the input points with bounded-
complexity convex hulls of minimum total area is an
attempt to mimic the modeling power of the α-hull in
a data stream setting.

Although our goal is to minimize the total area of
our convex hull representation, we use a slightly more
complex function as the cost of a convex hull H :

(3.2) w(H) = area(H) + µ · (perimeter(H))2.

Here µ is a constant, chosen empirically as described
below. Note that the perimeter is squared in this
expression to match units: if the perimeter term
entered linearly, then simply changing the units of
measurement would change the relative importance
of the area and perimeter terms, which would be
undesirable.

Figure 5: Input distributions: L-shaped and ellipses.

We want to minimize total area, and so defining
w(H) = area(H) seems natural; however, this proves
to be infeasible in a stream setting. If a point set has
only two points, the area of its convex hull is zero;
thus all such hulls have the same cost. The first 2k
points that arrive in a data stream are paired up into
k two-point convex hulls, each with cost zero, and the
pairing will be arbitrary. In particular, some convex
hulls are likely to cross natural cluster boundaries.
When these clusters grow as more points arrive, they
will have higher cost than the optimal hulls that
would have been chosen by an off-line algorithm. This
effect is clearly visible in the clusters produced by
our algorithm in Figure 6 (right) for the ellipses data
set of Figure 5 (right). By contrast, the L-shaped
distribution of Figure 5 (left) is recovered well using
the area cost function, as shown in Figure 6 (left).

We can avoid the tendency of the area cost to
create long thin needles in the early stages of the
stream by minimizing the perimeter. If we choose
w(H) = perimeter(H), then the well-separated clus-
ters of the ellipses data set are recovered perfectly, even
when the points arrive on-line—see Figure 7 (right).



Figure 6: With the area cost function, ClusterHull
faithfully recovers the L-shaped distribution of points.
But it performs poorly on a set of n = 10, 000
points distributed among ten elliptical clusters; it
merges pairs of points from different groups and creates
intersecting hulls.

Figure 7: With the perimeter cost function, Cluster-
Hull faithfully recovers the disjoint elliptical clusters,
but performs poorly on the L-shaped distribution.

However, as the poor recovery of the L distribution
shows (Figure 7 (left)), the perimeter cost has its own
liabilities. The total perimeter of two hulls that are
relatively near each other can often be reduced by
merging the two into one. Furthermore, merging two
large hulls reduces the perimeter more than merging
two similar small ones, and so the perimeter cost
applied to a stream often results in many small hulls
and a few large ones that contain multiple “natural”
clusters.

We need to incorporate both area and perimeter
into our cost function to avoid the problems shown
in Figures 6 and 7. Because our overall goal is to
minimize area, we choose to keep the area term primary
in our cost function (Equation 3.2). In that function
(perimeter(H))2 is multiplied by a constant µ, which
is chosen to adjust the relative importance of area and
perimeter in the cost. Experimentation shows that
choosing µ = 0.05 gives good shape reconstruction on
a variety of inputs. With µ substantially smaller than
0.05, the perimeter effect is not strong enough, and
with µ greater than 0.1, it is too strong. (Intuitively,
we want to add just enough perimeter dependence to
avoid creating needle convex hulls in the early stages
of the stream.)

Figure 8: With the combined area and perimeter cost
function, the algorithm ClusterHull recovers both the
ellipse and L distributions. The choice of µ = 0.05
gives good shape reconstruction.

We can understand the combined area-perimeter
cost by modeling it as the area of a fattened convex
hull. If we let ρ = µ · perimeter(H), we see that
the area-perimeter cost (3.2) is very close to the area
obtained by fattening H by ρ. The true area is
area(H)+ρ ·perimeter(H)+πρ2 = area(H)+ρ2( 1

µ
+

π); if µ is small, then 1/µ is relatively large compared
to π, and the extra πρ2 term is not very significant.

Because the cost (3.2) may fatten long thin
clusters more than is desirable, we also experi-
mented with replacing the constant µ in (3.2) by
a value inversely related to the aspect ratio of H .
The aspect ratio of H is diam(H)/width(H) =
Θ((perimeter(H))2/area(H)). Thus if we simply re-
placed µ by 1/aspectRatio(H) in (3.2), we would es-
sentially obtain the area cost. We compromised by
using the cost

w(H) = area(H) +

µ · (perimeter(H))2/(aspectRatio(H))x

for various values of x (x = 0.5, x = 0.1).
The aspect ratio is conveniently approximated as
(perimeter(H))2/area(H), since the quantities in
that expression are already maintained by our convex
hull approximation. Except in extreme cases, the re-
sults with this cost function were not enough different
from the basic area-perimeter cost to merit a separate
figure.

The cost (3.2) fattens each hull by a radius pro-
portional to its own perimeter. This is appropriate if
the clusters have different natural scales and we want
to fatten each according to its own dimensions. How-
ever, in our motivating structure the α-hull, a uniform
radius is used to define all the clusters. To fatten hulls
uniformly, we could use the weight function

w(H) = area(H) + ρ · perimeter(H) + πρ2.

However, the choice of the fattening radius ρ is prob-
lematic. We might like to choose ρ such that α-hulls



defined using radius-ρ disks form exactly k clusters,
but then the optimum value of ρ would decrease and
increase as the stream points arrived. We can avoid
these difficulties by sticking to the simpler cost of def-
inition (3.2).

4 Extensions and Enhancements

In this section we discuss how to enhance the basic
ClusterHull algorithm to improve the quality of shape
representation.

4.1 Spatial incoherence and

period-doubling cleanup

In many data streams the arriving points are ordered
arbitrarily, possibly even adversarily. The ClusterHull
scheme (and indeed any on-line clustering algorithm)
is vulnerable to early errors, in which an early-arriving
point is assigned to a hull that later proves to be the
wrong one.

Figure 9 (left) shows a particularly bad input con-
sisting of five thin parallel stripes. We used ClusterHull
with µ = 0.05 to maintain five hulls, with the input
points ordered randomly. A low density sample from
the stripe distribution (such as a prefix of the stream)
looks to the algorithm very much like uniformly dis-
tributed points. Early hull merges combine hulls from
different stripes, and the ClusterHull algorithm cannot
recover from this mistake. See Figure 9 (right).

Figure 9: Processing the stripes input (left) in random
order leads to errors for our algorithm (right).

If the input data arrive in random order, the
idea of period-doubling cleanup may help identify and
amplify the true clusters. The idea is to process the
input stream in rounds in which the number of points
processed doubles in each round. At the end of each
round we identify low density hulls and discard them—
these likely group points from several true clusters.
The dense hulls are retained from round to round, and
are allowed to grow.

Formally, the period-doubling cleanup operates as
follows: For each H ∈ H we maintain the number of

points it represents, denoted by count(H). The density
of any hull H is density(H) = count(H)/area(H).
The algorithm also maintains an approximate convex
hull G of all the input points. After each round, it
discards from H every hull H for which any of the
following holds:

• count(H) < δ · N/k

• density(H) < density(G)

• density(H) < 1

2
· median{density(A) : A ∈ H}

Here N is the number of points seen so far. In our
experiments, we set the tunable parameter δ to 0.1.

The first test takes care of hulls with a very small
number of tightly clustered points (these may have high
densities because of their smaller area, and will not be
caught by density pruning). The second test discards
hulls that have less than average density. The intuition
is that each cluster should be at least as dense as the
entire input space (otherwise it is not an interesting
cluster). In case the points are distributed over a
very large area, but the individual clusters are very
compact, the average density may not be very helpful
for discarding hulls. Instead, we should discard hulls
that have low densities relative to other hulls in the
data structure; the third test takes care of this case—
it discards any hull with density significantly less than
the median density.

Figure 10 (left) shows the result of period-doubling
cleanup on the stripes distribution; the sparse hulls
that were initially found have been discarded and five
dense hulls have been correctly computed. We note
that, with the same amount of memory, neither CURE
nor the k-median clustering is able to represent the
stripes distribution well (cf. Figure 10). Our exper-
iments show that applying period-doubling cleanup
helps improve clustering on almost all data sets.

Figure 10: Period-doubling cleanup (left) on Cluster-
Hull corrects the errors in the stripes distribution; the
middle figure shows the output of k-medians, and the
right figure shows the output of CURE.



4.2 Noisy data and incremental

cleanup

Sampling error and outliers cause difficulty for nearly
all clustering algorithms. Likewise, a few outliers can
adversely affect the ClusterHull shape summary. An
algorithm needs some way to distinguish between dense
regions of the input distribution (the true clusters) and
sparse ones (noise). In this section, we propose an
incremental cleanup mechanism that can improve the
performance of our algorithm in the presence of noise.
Both the period-doubling and the incremental cleanup
are inspired by sampling techniques used in frequency
estimation in streams. In particular, period-doubling
is inspired by sticky sampling and incremental cleanup
is inspired by lossy counting [23]. The incremental
cleanup also processes the input in rounds, but the
rounds do not increase in length. This is because
noise is not limited to the beginning of the input; if
we increased the round length, all the hulls would be
corrupted by noisy points. Instead, we fix the size of
each round depending on the (estimated) noise in the
input.

Specifically, the incremental cleanup assumes that
the input stream consists of points drawn randomly
from a fixed distribution, with roughly (1 − ε)N of
them belonging to high density clusters and εN of them
being low density noise. The expected noise frequency
ε affects the quality of the output. We can estimate
it conservatively if it is unknown. The idea is to set
the value of δ to be roughly equal to ε, and process the
input in rounds of k/(2ε) points. The logic is that in
every round, only about k/2 hulls will be corrupted by
noisy points, still leaving half of the hulls untouched
and free to track the true distribution of the input. If
we set k to be more than twice the expected number
of natural clusters in the input, we obtain a good
representation of the clusters.

Figure 11: Incremental cleanup, with estimated noise
frequency ε = 0.1, applied to distributions with 1%,
10%, and 20% actual background noise.

This scheme propagates the good hulls (those with
high density and high cardinality) from one round of
the algorithm to the next, while discarding hulls that
are sparse or belong to outliers. See Figure 11 for
an example of how this scheme identifies true clusters

and discards noisy regions. Of course, if noise is
underestimated significantly (Figure 11 (right)), the
quality of the cluster hulls suffers.

4.3 Spatial coherence and trajectory

tracking

Section 4.1 considered spatially incoherent input
streams. If the input is spatially coherent, as occurs
in some applications, ClusterHull performs particularly
well. If the input stream consists of locations reported
by sensors detecting some moving entity (a light pen
on a tablet, a tank in a battlefield, animals in a remote
habitat), our algorithm effectively finds a covering of
the trajectory by convex “lozenges.” The algorithm
also works well when there are multiple simultaneous
trajectories to represent, as might occur when sensors
track multiple independent entities. If the stripes of
Figure 9 are fed to the algorithm in left-to-right order
they are recovered perfectly; likewise in Figure 12 a
synthetic trajectory is represented accurately.

(a) (b) (c)

Figure 12: Input along a trajectory in (a); the shape is
recovered well using m = 100 in (b), and using m = 150
in (c).

4.4 Density estimation and display

Stream versions of traditional clustering schemes (in-
cluding k-median and CURE) do not include an es-
timate of the density of points associated with each
cluster center, whereas each cluster hull H can easily
maintain count(H). As in Section 4.1, this gives an es-
timate of the density of the points in each hull. If this
information is displayed graphically (cf. Figure 13) it
conveys more insight about the distribution of the in-
put data than does the simple cluster-center output or
even cluster-sample output.

5 Implementation and

Experiments

We implemented the convex hull algorithm of [22]
and the ClusterHull algorithm on top of it. The



convex hull algorithm takes logarithmic time per in-
serted point, on the average, but our ClusterHull imple-
mentation is more simple-minded, optimized more for
ease of implementation than for runtime performance.
The bottleneck in our implementation is neighborhood
queries/point location, taking time proportional to the
number of hulls. By storing the hull edges in a quad-
tree, we could speed up these operations to O(log m)
time.

When a new point arrives, we must check which
hull it belongs to, if any. Using a quad-tree, this
reduces to a logarithmic-time search, followed by
logarithmic-time point-in-polygon tests with an ex-
pected constant number of hulls. Each new hull H
must compute its optimum merge cost—the minimum
increment to w(H) caused by merging H with another
hull. On average, this increment is greater for more
distant hulls. Using the quad-tree we can compute the
increment for O(1) nearby hulls first. Simple lower
bounds on the incremental cost of distant merges then
let us avoid computing the costs for distant hulls. Com-
puting the incremental cost for a single pair of hulls re-
duces to computing tangents between the hulls, which
takes logarithmic time [22].

Merging hulls eliminates some vertices forever, and
so we can charge the time spent performing the merge
to the deleted vertices. Thus a careful implementation
of the ClusterHull algorithm would process stream
points in O(log m) amortized time per point, where
m is the total number of hull vertices.

In the remainder of this section we evaluate the
performance of our algorithm on different data sets.
When comparing our scheme with k-median cluster-
ing [19], we used an enhanced version of the latter.
The algorithm is allowed to keep a constant number of
sample points per cluster, which can be used to deduce
the approximate shape of that cluster. We ran the k-
medians clustering using k clusters and total memory
(number of samples) equal to m. CURE already has
a parameter for maintaining samples in each cluster,
so we used that feature. In this section, we analyze
the output of these three algorithms (ClusterHull, k-
median, CURE) on a variety of different data sets, and
as a function of m, the memory.

Throughout this section, we use the period-
doubling cleanup along with the area-perimeter cost
(Equation 3.2) to compute the hulls. We use µ = .05
and r, the number of initial sample directions per hull,
equal to 8. The values of these parameters are critical
for our algorithm; however, in this section we use the
same set of parameters for all data sets. This shows
that when tuned properly, our algorithm can generate

good quality clusters for a variety of input distributions
using a single set of parameters. In the next section,
we will analyze in detail the effects of these param-
eters on the results of our scheme. To visualize the
output, we also shade the hulls generated by our algo-
rithm according to their densities (darker regions are
more dense).

5.1 West Nile virus spread

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 13: The westnile data set is shown in the top
figure (a). Figures (b) and (c) show the outputs of
ClusterHull for m = 256 and m = 512. Figures (d)
and (e) show the corresponding outputs for k-medians.
Figures (f) and (g) show the corresponding outputs for
CURE.

Our first data set, westnile (Figure 13 (a)), con-
tains about 68, 000 points corresponding to the loca-
tions of the West Nile virus cases reported in the US, as
collected by the CDC and the USGS [29]. We random-
ized the input order to eliminate any spatial coherence
that might give an advantage to our algorithm. We ran
ClusterHull to generate output of total size m = 256



and 512 (Figures (b) and (c)). The clustering algo-
rithms k-medians and CURE were used to generate
clusters with the same amount of memory. The results
are shown in Figure 13.

All three algorithms are able to track high-density
regions in coherent clusters, but there was little infor-
mation about the shapes of the clusters in the output
of k-medians or CURE. Visually the output of Cluster-
Hull looks strikingly similar to the input set, offering
the analyst a faithful yet compact representation of the
geometric shapes of important regions.

5.2 The circles and the ellipse data

sets

(a) (d)

(b) (e)

(c) (f)

Figure 14: The left column shows output of ClusterHull
(top), k-medians (middle) and CURE (bottom) for
circles dataset with m = 64. The right column
shows corresponding outputs for ellipse dataset with
m = 128.

In this experiment, we compared ClusterHull with
k-median and CURE on the circles and the ellipse
data sets described earlier. The circles set contains
n = 10, 000 points generated inside 3 circles of different
sizes. We ran the three algorithms with a total memory
m = 64. The output of ClusterHull is shown in
Figure 14 (a); the output of k-median is shown in (b);
and the output of CURE is shown in (c).

Similarly, Figures 14 (d), (e), and (f), respectively,
show the outputs of ClusterHull, k-median, and CURE

on the ellipse data set with memory m = 128. The
ellipse data set contains n = 10, 000 points distributed
among ten ellipse-shaped clusters.

In all cases, ClusterHull output is more accurate,
visually informative, and able to compute the bound-
aries of clusters with remarkable precision. The out-
puts of other schemes are ambiguous, inaccurate, and
lacking in details of the cluster shape boundary. For
the circles data, the k-median does a poor job in de-
termining the true cluster structure. For the ellipse
data, CURE does a poor job in separating the clus-
ters. (CURE needed a much larger memory—a “win-
dow size” of at least 500—to separate the clusters cor-
rectly.)

6 Tuning ClusterHull

Parameters

In this section, we study the effects of various param-
eters on the quality of clusters.

6.1 Variation with r

r = 4 r = 6

r = 8 r = 16

Figure 15: The result of varying r on the ellipses data
set.

We first consider the effect of changing r, the
number of initial directions assigned to each hull. To
isolate the effects of r, we fixed the values of µ = .05
and k = 10. We ran the experiments on two data sets,
ellipses and circles. The results are shown in Figures 15
and 16, respectively.

The results show that the shape representation
with 4 initial directions is very crude: ellipses are
turned into pointy polygons. As we increase r, the
representation of clusters becomes more refined. This
contrast can be seen if we compare the boundary of



r = 4 r = 6

r = 8 r = 16

Figure 16: The result of varying r on the circles data
set.

the big circle in Figure 16 for r = 4 and 8. However,
increasing the number of directions means that we need
more memory for the hulls (memory grows linearly with
r). For r = 8, we get a good balance between memory
usage and the quality of the shapes.

6.2 Variation with µ

µ = 0.01 µ = 0.05

µ = 0.1 µ = 0.5

Figure 17: For the circles data set, ClusterHull recovers
clusters correctly for µ ∈ [.05, .5], but fails for µ ≤ .01.

We considered values of µ in the range [.01, .5].
We fixed r = 8, and ran our algorithm for two data
sets, circles and stripes. We fixed the number of hulls,
k = 10 (m = 128) for circles and k = 5 (m = 64) for
stripes.

If the value of µ is too small, the area dominates the
cost function. This causes distant hulls to merge into
long skinny hulls spanning multiple clusters. Although
the period-doubling cleanup gets rid of most of them

µ = 0.01 µ = 0.05

µ = 0.1 µ = 0.5

Figure 18: For the stripes data set, ClusterHull re-
covers clusters correctly for µ ∈ [.01, .1], but fails for
µ ≥ .5.

by discarding hulls with small densities, the output still
contains some hulls spanning multiple natural clusters.
Figure 17 shows this effect when µ = .01.

On the other hand, if µ is increased too much, the
cost function prefers decreasing the total perimeter,
and it is hard to prevent large neighboring clusters from
merging together. In Figure 18, neighboring stripes are
merged into a single hull for µ = .5. The results show
that choosing µ in the range [.05, .1] gives good clusters
for most input sets.

7 Conclusion

We developed a novel framework for summarizing the
geometric shape and distribution of a two-dimensional
point stream. We also proposed an area-based quality
measure for such a summary. Unlike existing stream-
clustering methods, our scheme adaptively allocates
its fixed memory budget to represent different clusters
with different degrees of detail. Such an adaptive
scheme can be particularly useful when the input has
widely varying cluster structures, and the boundary
shape, orientation, or volume of those clusters can be
important clues in the analysis.

Our scheme uses a simple and natural cost func-
tion to control the cluster structure. Experiments show
that this cost function performs well across widely dif-
ferent input distributions. The overall framework of
ClusterHull is flexible and easily adapted to different
applications. For instance, we show that the scheme
can be enhanced with period-doubling and incremental



cleanup to deal effectively with noise and extreme data
distributions. In those settings, especially when the in-
put has spatial coherence, our scheme performs notice-
ably better than general-purpose clustering methods
like CURE and k-medians.

Because our hulls tend to be more stable than, for
instance, the centroids of k-medians, we can maintain
other useful data statistics such as population count or
density of individual hulls. (Our hulls grow by merging
with other hulls, whereas the centroids in k-medians
potentially shift after each new point arrival. The use
of incremental cleanup may cause some of our hulls
to be discarded, but that happens only for very low-
weight, and hence less-interesting hulls.) Thus, the
cluster hulls can capture some important frequency
statistics, such as which five hulls have the most points,
or which hulls have the highest densities, etc.

Although ClusterHull is inspired by the α-hull
and built on top of an optimal convex hull structure,
the theoretical guarantees of those structures do not
extend to give approximation bounds for ClusterHull.
Providing a theoretical justification for ClusterHull’s
practical performance is a challenge for future work.
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