
CCCG 2019, Edmonton, Canada, August 8–10, 2019

On Multi-Dimensional Team Formation

Thomas Schibler⇤ Ambuj Singh† Subhash Suri‡

Abstract

We consider a team formation problem in multi-
dimensional space where the goal is to group a set of
n agents into ↵ teams, each of size �, to maximize their
total performance. The performance of each team is
measured by a score, which is the sum of h highest skill
values in each dimension. We wish to maximize the sum
of team scores. We prove that the problem is NP -hard
if the dimension is d = ⌦(log n) even for h = 1 and
� = 4. We then describe an e�cient algorithm for solv-
ing the problem in two dimensions as well an algorithm
for computing a single optimal team in any constant
dimension.

1 Introduction

The problem of grouping a set of agents into teams with
the objective of optimizing their collective performance
is ubiquitous in a variety of organization settings, in-
cluding team sports, project management, law, military,
management consulting, academic ad hoc committees,
to name a few. Mathematical models of team selection
and performance, therefore, are an important area of
research in social and management sciences. In these
models, the skill set of each individual is typically mod-
eled as an attribute vector. Research shows that while
individual skills are clearly an important factor, the
team’s ability to search over vast and often ill-defined
decision space crucially depends on its overall synergy
and diversity [7, 14, 18, 20]. As a result, it is widely
recognized that the performance of a team along a spe-
cific skill dimension should not depend on the average of
the group members’ values (so called weak synergy [6])
but rather on the skills of the best individuals on each
dimension [1, 10, 19].
The selection of a single best team has been consid-

ered broadly in the literature [2, 3, 12, 13, 9, 11, 4,
15]. The more general problem of assembling multi-
ple teams, however, is less well-understood, and has
been studied mainly in the context of very specific
performance objectives. For instance, Fitzpatrick and

⇤Computer Science Department, University of California,
Santa Barbara, CA 93106, USA, tschibler@gmail.com

†Computer Science Department, University of California,
Santa Barbara, CA 93106, USA, ambuj@cs.ucsb.edu

‡Computer Science Department, University of California,
Santa Barbara, CA 93106, USA, suri@cs.ucsb.edu

Askin [5] develop heuristics for assembling multiple
‘multi-functional’ teams using an integer programming
formulation. The coalition formation problem in multi-
agent (and multi-robot) systems also partitions agents
into teams but the primary goal there is strategic util-
ity maximization of completing a given set of tasks [16].
When the utility function is a simple sum of scalars, this
becomes an easy-to-solve assignment problem in bipar-
tite graphs [17], but under arbitrary set-valued functions
the coalition formation is both NP -hard and inapprox-
imable [16].

Against this backdrop, in this paper we investigate
a simple and natural model for assembling multiple
teams with multi-dimensional skills that allows us to
explore the computational complexity of multi-team for-
mation as a function of the problem’s intrinsic param-
eters: number of agents n, number of teams ↵, team
size �, and dimension d of the skill vector. We place no
constraints on the team structure except its prescribed
size—any subset of agents can form a team—and use a
simple additive function over independent attributes to
measure team performance, thereby isolating the com-
binatorial aspects of the problem.

Specifically, we have an agent pool of n candi-
dates, each modeled as a d-dimensional point p =
(p1, p2, . . . , pd), where each dimension represents an in-
dependent real-valued skill. We want to form ↵ teams,
each of size �, for some integer values ↵,�, with ↵� n,
so as to maximize the total score of all the teams. Each
agent belongs to at most one team. In formulating the
team score, we combine the two important aspects of
a team performance: strength and robustness [3]. We
measure the team strength by its coordinate-wise max-
ima but in order to add some degree of robustness we
take the top h values for each coordinate, for a user-
specified parameter h � 1. Thus, a team’s score is de-
fined as the sum of h highest values of all dimensions.
We use the notation scoreh(T) to denote the score of
team T using the top h scoring rule, which can be for-
mally defined as

scoreh(T) =
dX

j=1

max
S⇢T,|S|=h

X

pi2S

p
i
j ,

where p
i
j is the jth coordinate of the ith point pi. Our

problem then is the following: given a set of n agents,
form ↵ teams T1, T2, . . . , T↵, each of size � to maximizeP

i scoreh(Ti). Figure 1 shows an example in two di-

31st Canadian Conference on Computational Geometry, 2019

mensions, where (A,C,D) is an optimal team of size
3 for the instance on the left using scoring parameter
h = 2.

Our Results

We show that the multi-team formation problem is NP -
hard for dimension d = ⌦(log n), even with h = 1 and
� = 4. Specifically, we reduce the well-known NP -
complete problem of 3-Dimensional Matching to the
team formation problem in dimension d = ⌦(log n). (If
we consider very large dimensions, namely, d = ⌦(n),
the problem becomes trivially hard because simply ac-
quiring all necessary skills is a set covering problem. In
most realistic settings, however, the dimension is much
smaller than n, which is the focus of our work.) Our
main result is a polynomial time algorithm for solving
the 2-dimensional team formation problem optimally,
for all scoring rules h � 1, using the following two-step
algorithm. We first form a single team of size ↵ ⇥ �,
which we call a league, using a modified scoring rule.
We prove that the total score of the league equals the
score of the optimal team formation, and that an opti-
mal league can be decomposed into an optimal solution
of the team formation in polynomial time.

Our dynamic programming based algorithm can com-
pute an optimal league in any fixed dimension. How-
ever, we show that a key structural result, called league
decomposition lemma, fails in higher dimensions, and
so the optimal league’s score no longer equals the score
of the optimal team formation problem. Thus, form-
ing multiple teams in more than two, but a constant,
dimension remains an open problem.

2 Hardness of Team Formation

We begin with a brief reintroduction of the multi-team
formation problem. Given an agent pool of n candi-
dates, each candidate modeled as a d-dimensional point
p = (p1, p2, . . . , pd), we want to form ↵ teams, each of
size �, for some integer values ↵,�, with ↵� n, so as
tomaximize the sum of team scores. Each agent belongs
to at most team, and the score of a team T is defined
as

scoreh(T) =
dX

j=1

max
S⇢T,|S|=h

X

pi2S

p
i
j ,

where p
i
j is the jth coordinate of the ith point pi, and

h � 1 is the scoring parameter.

Theorem 1 The multi-team formation problem is NP -
hard.

Proof. We reduce the well-known 3-dimensional
matching (3DM) [8] problem to our problem. An in-
stance of 3DM consists of three input sets X,Y, Z each

of size n and a set of triples W ⇢ X ⇥ Y ⇥ Z. The
problem is to decide if there exists a subset of n triples
T ✓W so that each element of X [Y [Z is contained
in exactly one of the triples.

Given an instance of 3DM, we create an instance of
the team formation problem as follows. The number of
dimensions in our problem will be 6`+4, for a parameter
` = ⇥(log n). For each element ofX[Y [Z, we associate
a unique bit string of length 2`, containing ` zeros and
` ones. We call this string the tag of that element. The
bitwise complement of a tag t will be denoted t

0. In
particular, we will use the following types of bit strings:

1. tag(x) = a unique bit string of length 2`
containing ` bits of 0 and ` bits of 1

2. tag0(x) = bitwise complement of tag(x)

3. 0` = a string of length ` containing all 0

Using the fact that
�2`
`

�
� 2`, the choice of ` = 2 log n

su�ces for the creation of 3n distinct tags, one for each
element of X [Y [Z. With the help of these tags we
now create a point for each element of X [Y [Z and
each triple t = (u, v, w) of W , in dimension 6` + 4, as
follows:

x : tag(x) 02` 02` 1 0 0 0
y : 02` tag(y) 02` 0 1 0 0
z : 02` 02` tag(z) 0 0 1 0
t : tag0(u) tag0(v) tag0(w) 0 0 0 1

Specifically, the first 2` dimensions of x 2 X are its
tag bits, followed by 4` bits of 0’s, and its last four bits
are 1 0 0 0. The patterns for y 2 Y and z 2 Z are simi-
lar, as shown above. Next, the point corresponding to a
triple t = (u, v, w) has 6` bits corresponding to the tag

0

strings of u, v, w, followed by the pattern 0 0 0 1. Alto-
gether we have 3n + |W | points in dimension O(log n),
which is polynomial in the input size.

We now prove the following: the input 3DM instance
is a yes instance if and only if our constructed instance
admits formation of ↵ = n teams, each of size � = 4,
with total score at least n(6` + 4). To prove the for-
ward direction, suppose the 3DM instance has a solution
given by the set of triples T . For each t = {x, y, z} 2 T ,
we create a team of size 4 using the points corresponding
to x, y, z and t. Since |T | = n, and no element appears
in more than one triple, we can form n disjoint teams.
We now show that these teams achieve the target total
score.

CCCG 2019, Edmonton, Canada, August 8–10, 2019

Each point’s coordinate is either 0 or 1 along each of
the 6`+ 4 dimensions, and so to reach the target score,
each team must collect a 1 in each dimension, using
its four points. Suppose the four points correspond to
x, y, z and the triple (x, y, z). Then, by construction, in
each of the first 6` dimensions, we have a 1 in either
tag() or tag0(), satisfying the requirement. Finally, the
same holds for the last four dimensions, which is easy
to check by inspection. Thus, assuming that the 3DM
instance has a satisfying solution, we can construct n

teams, each of size 4 with total score n(6`+ 4).
In the reverse direction, we show that any set of n

teams with this score correspond to a perfect 3 dimen-
sional matching. First, we observe that the optimal
score requires that every team contributes exactly one
1 in each dimension. Considering the last 4 dimensions
alone, this is only possible if the team contains exactly
one point corresponding to a triple and each of the 3
elements in X,Y, and Z. Given this team structure,
each of the first 3 sets of 2` dimensions must collect a
1 from either the tag or tag0 of some element or triple
respectively. To satisfy all 2` dimensions, the tag and
the tag0 must correspond to the same element, other-
wise they will not be bitwise complements of each other.
Consequently, we must have elements x, y, z and triple
t = {u, v, w} with x = u, y = v, and z = w. If this prop-
erty holds for all teams, then all selected triples must
exactly cover each of the element sets, proving the exis-
tence of a 3DM solution. This completes the proof. ⇤

The hardness proof is easily extended to any team size
� � 4 by introducing an appropriate number of agents
with null skills, namely, points with all 0 coordinates.
The argument requires increasing the number of dimen-
sions by ⌦(�) to avoid the use of multiple triples in a
single team. If the dimension is ⌦(n), then computing
a single team is also intractable. The proof can also be
extended to scoring rule with h > 1 by introducing an
appropriate number of points whose all coordinates are
1s.

3 An E�cient Algorithm for 2 Dimensions

Given the NP-hardness of the general problem, we now
consider optimal team formation in small dimensions.
In one dimension, the problem can be easily solved in
O(n log n) time, as follows. We sort the agents in the
increasing order of the skill level, say, the x axis. We
then repeatedly select the top h unassigned agents, and
assign them to the next team, until each of the ↵ teams
has h agents. Clearly, this assignment has the maxi-
mum sum of team scores. If needed, we can make each
team’s size to be exactly � � h, by arbitrarily selecting
any of the unassigned agents since their scores do not
contribute to the team scores.

In fact, a similar greedy strategy also solves the team
formation problem for any dimension d � 1 if the team
size is � � hd: repeat the earlier one-dimensional algo-
rithm independently for each dimension. (It is possible
for an agent to contribute a top score in more than one
dimension, in which case a team may reach its maxi-
mum possible score with fewer than hd agents.) For
team size � < hd, however, the problem becomes non-
trivial even in dimension d = 2 and h = 2. This is the
focus of the following discussion, where we consider the
team formation problem in two dimensions.

3.1 Forming 3-person teams in 2-dimensions

In the interest of simpler exposition and proofs, we de-
scribe our algorithm using the scoring rule h = 2, and
then discuss the minor adaptations needed for general-
ization to higher values of h. Therefore, in the following
we drop the subscript h from the scoring notation; it is
always assumed to be h = 2. Specifically, we focus on
the case of team size � = 3, which helps illustrate some
of the main di�culties of the problem. The case of � = 1
or � = 2 is easily solved greedily in two dimensions, and
thus omitted from our discussion.

Somewhat surprisingly, the problem of forming teams
of size 3 turns out to be non-trivial even if we want to
form a single team, namely, ↵ = 1 with the scoring
parameter h = 2. It serves as a test case both for dis-
proving greedy schemes, and for our polynomial time
algorithm. Using x and y as coordinates in two dimen-
sions, suppose a 3-person team has agents with coor-
dinates (x1, y1), (x2, y2), (x3, y3). (Recall that we are
using scoring rule of top two values, namely, h = 2.)
Since the team score is composed of top two x and top
two y values, and there are only 3 agents, at least one of
them contributes both x and y to the team score. Let
us call such an agent a 2-contributor. Each of the other
agents contributes its x or y values (possibly these two
agents are the same).

This property of the optimal 3-person team suggests
a natural greedy algorithm: sort the agents by their
x, y, and x + y values. First take the agent with the
maximum x+ y, remove it from all three lists, and then
choose the agents with the maximum x and maximum y.
Unfortunately, this simple algorithm is flawed. In fact,
one can show that any algorithm that selects the team
using only the rank order by x, y and x+ y coordinates
fails. In particular, we construct two instances, each
containing 4 agents, whose sorted orders by x, y, and x+
y are identical, yet their top scoring teams are di↵erent.
The construction is shown in Figure 1.

On the left, we have an instance with four agents A =
(4, 11), B = (5, 5), C = (1, 8), D = (8, 1). The optimal
3-person team for this instance is (A,C,D) with score
of 31 = x(A)+x(D)+y(A)+y(C), with A contributing
both x and y, C contributing y and D contributing x.

31st Canadian Conference on Computational Geometry, 2019

Figure 1: An example for ↵ = 1,� = 3, h = 1 and
d = 2. On the left, we show an instance of team forma-
tion with four two-dimensional agents: A = (4, 11), B =
(5, 5), C = (1, 8), D = (8, 1). On the right, we show
a closely related instance with A

0 = (4, 11), B0 =
(7, 7), C 0 = (1, 8), D0 = (8, 1). The two instances have
exactly the same sorted orders along x, y, x+y, but they
lead to di↵erent optimal 3-person team solutions. The
optimal team for the left instance is (A,C,D) with score
31 while the team for the right instance is (A0

, B
0
, D

0)
with score 33.

On the right, we have another instance also with four
agents, where only the coordinates of B0 are di↵erent:
A

0 = (4, 11), B0 = (7, 7), C 0 = (1, 8), D0 = (8, 1), whose
optimal team is (A0

, B
0
, D

0) with score of 33 = x(B0) +
x(D0) + y(A0) + y(B0). Yet, the two instances have the
same ranking order by x, y, and x+y. The crucial point
of this example is that although A is an obvious choice
for inclusion in the team, whether it contributes both x

and y or just y depends on which other agents are in
the team, namely, B or B

0.
Of course, since there are only O(n3) choices for a 3-

person team, one can exhaustively find an optimal one.
But what about forming ↵ teams? Even for the sim-
ple sum-of-team-scores objective function, the greedy
strategy of iteratively computing the best 3-person team
among the remaining agents fails, as shown by the fol-
lowing example of six agents that we want to group into
two teams of size 3.

A = (20, 20);B = (10, 20);C = (20, 10);

D = E = F = (0, 0)

The single optimal team is (A,B,C), with an score of
80, which leaves the remaining team of (D,E, F) with
score 0. Instead, an optimal choice of two teams would
be (A,B,D) and (C,E, F), which together have a score
of 100.

3.2 A Polynomial Time Algorithm

In the following, we develop a polynomial time algo-
rithm for solving the multi-team formation problem op-
timally in two dimensions. Our algorithm is based on
the following idea:

1. First, identify the union of all the agents that are
in the optimal set of teams, and then

2. Partition this union into individual teams while
preserving the total score.

A 3-person team in dimension d = 2 involves a total of
2d = 4 individual skill scores, namely, top two scores in
each of the two dimensions. Across ↵ teams, therefore,
we have a total of 4↵ scores. Instead of forming these
teams, let us consider a slightly di↵erent problem. Find
a group of 3↵ agents whose score is computed as follows:
for each dimension, we take the top 2↵ skill values, and
the group score is the sum of these 4↵ values.

For ease of reference, let us call such a group of 3↵
agents with this new scoring rule a league. Given a
league L, let score(L) be the total score of L. Sup-
pose T is the optimal set of 3-person teams, with to-
tal score score(T). The question we ask is: what
is the gap between score(T) and score(L)? Clearly,
score(T) score(L), because the union of T is a valid
league: a group of 3↵ agents, whose dimension-wise
scores add up to score(L). But how much larger can the
league score be compared to the team score? Our main
result is that the two are always equal in two dimen-
sions and, more importantly, (1) an optimal league can
be partitioned in polynomial time into ↵ teams of size
� = 3 with the same total score, and (2) we can com-
pute an optimal league in polynomial time. Together
the two lead to a polynomial time algorithm.

3.3 Optimal League Decomposition

Let us first establish the league decomposition lemma.

Lemma 2 (League Decomposition) Given an in-
stance of multi-team formation in two dimensions, let
T be an optimal solution of ↵ teams of size 3 each,
and let L be an optimal league of size 3↵. Then,
score(T) = score(L). We can also partition L into an
optimal multi-team solution in time O(n).

Proof. The score of a league sums the top 2↵ values in
each dimension. We label each point a 2-contributor, x-
contributor, y-contributor, or none, depending on how
many coordinate values it contributes to the league
score. We then observe the following:

1. there are at least ↵ 2-contributors.

2. there are an equal number of x and y-contributors,
and this number is at most ↵.

The first claim follows from the pigeon hole principle:
4↵ values are summed in scoring the league, but there
are only 3↵ points, and so at least ↵ points must con-
tribute both of their coordinates. This leaves at most 2↵

CCCG 2019, Edmonton, Canada, August 8–10, 2019

values unaccounted for, which must be evenly split be-
tween x and y values. Thus, at most ↵ values can come
from an x-contributor, and ↵ from a y-contributor.

1: procedure Partition 2D League(p1, · · · ,p3↵)
2: Initialize contributor lists X, Y , and XY .
3: Initialize empty list of teams T .
4: for i 2 [0, len(X)] do
5: Add team {XY [i], X[i], Y [i]} to T .

j len(X).
6: while j < len(XY) do
7: Select any unused point p.
8: Add team {XY [j], XY [j + 1],p} to T .
9: j j + 2.

10: Return T .

Figure 2: Partitioning a league into optimal teams.

We use these two facts to design a simple greedy
algorithm for partitioning the league. The algorithm
is shown above in Fig. 2. We first pair any 2-
contributor of the league with one x-contributor and
one y-contributor. Because there are at least as many
2-contributors as x or y-contributors, we can continue
this until there are no more 1-contributors left. By (2)
above, we exhaust the x and y contributors at the same
time. If any 2-contributors remain, we pair them arbi-
trarily together, along with an arbitrary extra point if
we wish to maintain the team size.
To see that the resulting teams have the same total

score as L, we note that exactly two x and two y values
contributing to the league score are assigned to each
team. Finally, the greedy algorithm only uses unsorted
lists, and therefore runs in O(n) time. This completes
the proof. ⇤

3.4 Computing an Optimal League

We now describe an algorithm for computing the op-
timal league L, using dynamic programming. Given a
set of n d-dimensional points p1, · · · ,pn, we construct
a 4-dimensional table A of size n⇥ 3↵⇥ 2↵⇥ 2↵ whose
A[i, j, k, l] entry stores scorek,l(Li,j), where

Li,j = an optimal league using at most

j points in {p1, · · · ,pi}
scorek,l(L) = sum of top k x-values and top l

y-values of L

The table is initialized as L0,j = Li,0 = 0, for all i, j.
Suppose we have computed all Li�1,j�1 and want to
compute Li,j . Consider the new point pi. It is either not

included in the league, or if it is included it serves in one
of the three possible roles: x-contributor, y-contributor,
or 2-contributor. We can, therefore, compute the table
entry Li,j using the following dynamic program:

1: procedure 2D League(p1, · · · ,pn, ↵)
2: Initialize n⇥ 3↵⇥ 2↵⇥ 2↵ table A

3: Let A[0, j, k, l] = 0, 8j, k, l
4: Let A[i, 0, k, l] = 0, 8i, k, l
5: for i 2 [1, n] do
6: for j 2 [1, 3↵] and k, l 2 [0, 2↵] do
7: sx A[i� 1, j � 1, k � 1, l] + pi[x]
8: sy A[i� 1, j � 1, k, l � 1] + pi[y]
9: sx,y A[i�1, j�1, k�1, l�1]+pi[x]+

pi[y]
10: s0 A[i� 1, j, k, l]
11: A[i, j, k, l] max(sx, sy, sx,y, s0)

12: Return A[n, 3↵, 2↵, 2↵]

Specifically, if pi is an x-contributor, then
scorek,l(Li,j) is the x-coordinate of pi plus the
scorek�1,l(Li�1,j�1); that is, the remaining points may
only contribute k � 1 x-values. We have similar cases
for pi being a y-contributor or a 2-contributor. The
final optimal league score is found in the table entry
A[n, 3↵, 2↵, 2↵].

The table A has size O(n↵3), each entry can be com-
puted in constant time, and so the algorithm runs in
O(n↵3) time and space.

3.5 Extension to Top h Scoring Rule

The league decomposition lemma and the algorithm for
computing the optimal league easily extend to scor-
ing rule of top h, for all h � 2, as follows. Without
loss of generality, we may assume that the team size
satisfies h � < 2h. Thus, the league size satisfies
↵� < 2↵h. By the pigeonhole principle, the number of
2-contributors in the league is at least ↵(2h � �), and
therefore we can assign to each team at least (2h��) of
these 2-contributors, and fill the rest by 1-contributors
arbitrarily. Similarly, the dynamic program algorithm is
easily extended by changing the table size to h↵ instead
of 2↵. We summarize the main result of our paper.

Theorem 3 The multi-team formation problem in two
dimensions can be solved optimally in worst-case time
and space O(n↵3

�h
2), where ↵ is the number of teams,

� the team size, h the scoring parameter, and n is the
number of agents.

4 Team Formation in Higher Dimensions

The dynamic programming algorithm of Section 3.3 can
be extended to form an optimal single team of size

31st Canadian Conference on Computational Geometry, 2019

� < hd in polynomial time, for any fixed dimension
d. Specifically, we compute a (d+ 2)-dimensional table
A, whose first two dimensions are the same as before,
namely, the first i points and the team size j. Each
of the remaining d indices corresponds to the number of
top scores in each dimension. In particular, scorek1,···kd ,
where each ki 2 [0, h], is the team score where top ki

values in dimension i have been accounted for. There
are 2d such combinations, so each table entry can be
computed in O(2d) time. As mentioned earlier, when
the team size � � hd, the problem can be easily solved
in O(dn) time using a greedy algorithm. We therefore
have the following result.

Theorem 4 We can compute an optimal single team
of size � in d dimensions in time O((2h)d�n) time.

The real di�culty in higher dimensions lies in forming
multiple teams. In two dimensions, we used the League
Decomposition Lemma as a key tool. Unfortunately,
as we show below, in higher dimensions, this lemma no
longer holds.

Theorem 5 Let L be an optimal league, and T a set
of optimal teams in dimensions d � 4. Then, there are
instances for which score(T) < score(L).

Proof. Consider the following set of 9 agents in four
dimensions. A = A

0 = (1, 1, 1, 0), B = B
0 =

(1, 1, 0, 1), C = C
0 = (1, 0, 1, 1), D = D

0 = (0, 1, 1, 1),
and F = (0, 0, 0, 0). Suppose our goal is to form ↵ = 3
teams, each of size � = 3. Then, trivially, our league
consists of all p points, where the scoring rule sums the
top 2↵ = 6 values in each dimension. By construction,
we have six 1s in each dimension, and so score(L) = 24.

However, any partition of these nine agents into 3
teams must assign the all-zero point F to one of the
teams, which can therefore have a score of at most 6.
On the other hand, no team has score more than 8, since
the sum of top two entries in each of the four dimensions
is two. Thus, the optimal team formation has score 22,
proving that score(T) < score(L). This completes the
proof. ⇤

One can also show that an optimal partition of an
optimal league L may not give an optimal team forma-
tion solution T . For instance, imagine introducing one
more agent G = (1, 1, 1, 1) to the set of points in the
previous example. Replacing F by G does not improve
score(L), so L remains an optimal league. On the other
hand, replacing F by G does improve score(T). Find-
ing an e�cient algorithm for optimal or approximately
optimal team formation in a constant dimension larger
than 2 remains an interesting open problem.

5 Concluding Remarks

Our work introduces a simple and natural model for
multi-dimensional multi-team formation, and shows
that computing optimal teams is NP -hard even in mod-
erate dimensions. We show that the problem of forming
multiple teams optimally can be e�ciently solved in two
dimensions, as is the problem of forming a single team
in any dimension d = O(log n). The problem of form-
ing multiple teams in higher than two dimension, either
exactly or approximately, remains an interesting open
problem.

There are several other natural objective functions
for team optimization, such as maximizing the mini-
mum team score, instead of maximizing the sum of team
scores. For maximizing the minimum, unfortunately, we
can show that the problem is NP -hard even in one di-
mension if we sum the top three scores of the team. The
objective function can also be extended by considering
other aspects of team formation that translate to more
general constraints beyond individual-specific skills: for
example, synergy between team members translates to
edge-level requirements. Learning the skills and syn-
ergies based on past observations is another possible
future extension of the research.

References

[1] Bryan L. Bonner, Michael R. Baumann, Austin K.
Lehn, Daisy M. Pierce, and Erin C. Wheeler. Mod-
eling collective choice: decision-making on complex
intellective tasks. European Journal of Social Psy-
chology, 36(5):617–633, 2006.

[2] Shi-Jie Chen and Li Lin. Modeling team
member characteristics for the formation of a
multifunctional team in concurrent engineering.
IEEE Transactions on Engineering Management,
51(2):111–124, 2004.

[3] Chad Crawford, Zenefa Rahaman, and Sandip Sen.
Evaluating the e�ciency of robust team formation
algorithms. In Autonomous Agents and Multiagent
Systems, pages 14–29, Cham, 2016. Springer Inter-
national Publishing.

[4] Christoph Dorn and Schahram Dustdar. Compos-
ing near-optimal expert teams: A trade-o↵ between
skills and connectivity. InOn the Move to Meaning-
ful Internet Systems: OTM 2010, pages 472–489,
Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[5] Erin L. Fitzpatrick and Ronald G. Askin. Forming
e↵ective worker teams with multi-functional skill
requirements. Computers & Industrial Engineer-
ing, 48(3):593 – 608, 2005.

CCCG 2019, Edmonton, Canada, August 8–10, 2019

[6] Larson J.R., Jr. In search of synergy: In small
group performance. Psychology Press, Taylor &
Francis, New York, 2010.

[7] Jon Kleinberg and Maithra Raghu. Team perfor-
mance with test scores. In Proceedings of the Six-
teenth ACM Conference on Economics and Com-
putation, EC ’15, pages 511–528, 2015.

[8] Jon M. Kleinberg and Éva Tardos. Algorithm de-
sign. Addison-Wesley, 2006.

[9] Theodoros Lappas, Kun Liu, and Evimaria Terzi.
Finding a team of experts in social networks. In
Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 467–476, 2009.

[10] Patrick R. Laughlin and Andrea B. Hollingshead.
A theory of collective induction. Organizational
Behavior and Human Decision Processes, 61(1):94
– 107, 1995.

[11] C. Li and M. Shan. Team formation for generalized
tasks in expertise social networks. In 2010 IEEE
Second International Conference on Social Com-
puting, pages 9–16, Aug 2010.

[12] Somchaya Liemhetcharat and Manuela Veloso.
Modeling and learning synergy for team forma-
tion with heterogeneous agents. In Proceedings of
the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AA-
MAS ’12, 2012.

[13] Somchaya Liemhetcharat and Manuela Veloso.
Weighted synergy graphs for e↵ective team forma-
tion with heterogeneous ad hoc agents. Artificial
Intelligence, 208:41 – 65, 2014.

[14] Scott Page. The Di↵erence: How the Power of
Diversity Creates Better Groups, Firms, Schools,
and Societies. Princeton University Press, 2007.

[15] Habibur Rahman, Senjuti Basu Roy, Saravanan
Thirumuruganathan, Sihem Amer-Yahia, and
Gautam Das. Optimized group formation for
solving collaborative tasks. The VLDB Journal,
28(1):1–23, February 2019.

[16] Tuomas Sandholm, Kate Larson, Martin Anders-
son, Onn Shehory, and Fernando Tohmé. Coalition
structure generation with worst case guarantees.
Artif. Intell., 111(1-2):209–238, 1999.

[17] Travis C. Service and Julie A. Adams. Coalition
formation for task allocation: theory and algo-
rithms. Autonomous Agents and Multi-Agent Sys-
tems, 22(2):225–248, Mar 2011.

[18] Marjorie E. Shaw. A comparison of individuals and
small groups in the rational solution of complex
problems. The American Journal of Psychology,
44(3):491–504, 1932.

[19] I. D. Steiner. Group process and productivity. New
York: Academic Press, 1972.

[20] Anita Williams Woolley, Christopher F. Chabris,
Alex Pentland, Nada Hashmi, and Thomas W.
Malone. Evidence for a collective intelligence fac-
tor in the performance of human groups. Science,
330(6004):686–688, 2010.

