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Abstract

We present a fully polynomial-time approximation scheme for the single-good multi-unit auc-
tion problem. Our scheme is both approximately efficient and approximately strategyproof. We
consider both a reverse auction variation (single buyer, multiple sellers), and a forward auction
variation (single seller, multiple buyers). The auction problems lead to a novel and interesting
generalization of the classical knapsack problem, for which we develop a fully polynomial-time
approximation algorithm. A secondary computational issue addressed in our paper is the compu-
tation of the payments to agents in the Vickrey-Clarke-Groves mechanism. Naively, computing
these payments for n agents requires n solutions of the original winner determination problem.
Instead, we give an scheme that computes these payments in worst-case time O(T log n), where
T is the time complexity to compute the solution to a single allocation problem.

1 Introduction

In this paper we present a fully polynomial-time approximation scheme for the single-good multi-unit

auction problem. Our scheme is both approximately efficient and approximately strategyproof. The

auctions settings considered in our paper are motivated by recent trends in electronic commerce; for

instance, corporations are increasingly using auctions for their strategic sourcing. We consider both

a reverse auction variation (single buyer, multiple sellers), and a forward auction variation (single

seller, multiple buyers). The bidding language in our auctions allows marginal-decreasing piecewise

constant curves, which are both compact and expressive.

In the forward auction, we consider a single seller with M units of a good and n buyers, each

with a marginal-decreasing piecewise-constant valuation function. A buyer can also express a lower

bound on the number of units she demands. The forward variation models, for example, an auction

to sell excess inventory in flexible-sized lots.

In the reverse auction, we consider a single buyer with a demand for M units of a good and

n suppliers, each with a marginal-decreasing piecewise-constant cost function. In addition, each
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supplier can also express an upper bound, or capacity-constraint on the number of units she can

supply. The reverse variation models, for example, a procurement auction to obtain raw materials

or other services (e.g. circuit boards, power suppliers, toner cartridges), with flexible-sized lots.

Even with marginal-decreasing bid curves, the resulting computational problem turns out to

(weakly) intractable—for instance, the classical 0/1 knapsack is a special case of this problem.1 Our

auction problems with piecewise-constant bids and volume constraints can be modeled by a novel and

interesting generalization of the classical knapsack problem, for which we develop a fully polynomial-

time approximation scheme. We implement an approximation scheme for the Vickrey-Clarke-Groves

[28, 3, 9] mechanism for the multi-unit auctions. The Vickrey-Clarke-Groves (VCG) mechanism has

a number of interesting economics properties in this setting, including strategyproofness, such that

truthful bidding is a dominant strategy for buyers, and allocative efficiency, such that the outcome

maximizes the total surplus in the system. The economic properties are discussed in more detail in

Section 2.

A straightforward computation of the VCG payments requires time O(nT ), where T is the time

complexity to compute the solution to a single allocation problem. Using our approximation scheme,

we show that the VCG payments to all n agents can be computed in worst-case time O(αT log n),

where T is the time complexity to compute the solution to a single allocation problem, and α is a

constant that quantifies a reasonable “no-monopoly” assumption. Specifically, in the reverse auction,

suppose that C(I) is the minimal cost for procuring M units with all sellers I, and C(I \ i) is the

minimal cost without seller i. Then, the constant α is defined as an upper bound for the ratio

C(I \ i)/C(I), over all sellers i.

Given an approximation to within (1 + ε) of the optimal allocation, our approximate VCG

mechanism is ( ε
1+ε)-strategyproof, which means that a bidder can gain at most ( ε

1+ε)V from a non-

truthful bid, where V is the total surplus from the efficient allocation. As such, this is an example

of a computationally-tractable ε-dominance result, but this is not an example of what Feigenbaum

& Shenker refer to as a tolerably-manipulable mechanism [6] because we have not bounded the effect

of such a manipulation on the efficiency of the outcome. Nevertheless, we can have good confidence

that bidders without good information about the bidding strategies of other participants will have

little to gain from attempts at manipulation.
1However, if we remove all capacity constraints from the seller and all minimum-lot size constraints from the buyers,

then the problem can be solved easily by a greedy scheme.
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There has been considerable interest in recent years in characterizing polynomial-time or approx-

imable special cases of the general combinatorial allocation problem, in which there are multiple

different items. The combinatorial allocation problem is both NP-complete and inapproximable [15].

Thus, the main contribution of this paper is to identify a non-trivial but approximable allocation

problem, in particular one in which bidders are provided with an expressive “exclusive-or” bidding

language. The bid taker is allowed to accept at most one point on the bid curve, but no more.

In comparison, all non-trivial polynomial time special cases of the general combinatorial allocation

require “additive-or” bidding languages in which the bid taker can accept any number of bids from

each bidder [5, 24].2

Section 2 formally defines the forward and reverse auctions, and defines the VCG mechanisms.

We also prove our claims about ε-strategyproofness. Section 3 provides the generalized knapsack

formulation for the multi-unit allocation problems and introduces the fully polynomial time approxi-

mation scheme. Section 4 defines the approximation scheme for the payments in the VCG mechanism.

Finally, Section ?? describes related work in algorithmic mechanism design, and Section 5 concludes.

2 Approximately-Strategyproof VCG Auctions

In this section, we first describe the marginal-decreasing piecewise bidding language that is used in

our forward and reverse auctions, and then introduce the VCG mechanisms for the problems and the

ε-dominant results for approximations to VCG outcomes. We also discuss the economic properties

of VCG mechanisms in these forward and reverse auction settings.

2.1 Marginal-Decreasing Piecewise Bid Curves

We provide a piecewise-constant and marginal-decreasing bidding language. This bidding language

captures a natural valuation or cost function: fixed unit prices over intervals of quantities. See

Figure 1 for an example. In addition, in the forward auction, the language allows a bidder to state

a minimal purchase amount , such that she has zero value for quantities smaller than that amount.

Similarly, in the reverse auction, the language allows a seller to state a capacity constraint, such that

she has an effectively infinite cost to supply quantities in excess of a particular amount.

In detail, in a forward auction, a bid from buyer i can be written as a list of (quantity-range,

unit-price) tuples, ((u1
i , p

1
i ), (u

2
i , p

2
i ), . . . , (u

mi−1
i , pmi−1

i )), with an upper bound umi
i on the quantity.

2One exception is the simple assignment problem, in which agents submit exclusive-or bids across individual items.
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The interpretation is that the bidder’s valuation in the (semi-open) quantity range [uj
i , u

j+1
i ) is pj

i

for each unit. Additionally, it is assumed that the valuation is 0 for quantities less than u1
i as well as

for quantities more than um
i . This is implemented by adding two dummy bid tuples, with zero prices

in the range (0, u1
i ) or (umi

i ,∞). See Figure 1. We interpret the bid list as defining a price function,

pbid,i(q) = qpj
i , if uj

i ≤ q < uj+1
i , where j = 1, 2, . . . , mi − 1. In order to resolve the boundary

condition, we assume that the bid price for the upper bound quantity umi
i is pbid,i(u

mi
i ) = umi

i pmi−1
i .

Similarly, a bid from seller i in the reverse auction, can be written as a list of (quantity-range,

unit price) tuples, ((u1
i , p

1
i ), (u

2
i , p

2
i ), . . . , (u

mi−1
i , pmi−1

i )), with an upper bound umi
i on the quantity.

The interpretation is that the bidder’s cost in the (semi-open) quantity range [uj
i , u

j+1
i ) is pj

i for each

unit. Additionally, it is assumed that the cost is ∞ for quantities less than u1
i as well as for quantities

more than um
i . Equivalently, the unit prices in the ranges [0, u1

i ) and (um
i ,∞) are infinity. (Again,

see Figure 1.) We interpret the bid list as defining a price function, pask,i(q) = qpj
i , if uj

i ≤ q < uj+1
i .

Reverse Auction Bid
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Figure 1: Marginal-decreasing, piecewise constant bids. In the forward auction bid, the bidder offers
$10 per unit for quantity in the range [5, 10), $8 per unit in the range [10, 20), and $7 in the range
[20, 25]. Her valuation is zero for quantities outside the range [10, 25]. In the reverse auction bid, the
cost of the seller is ∞ outside the range [10, 25].

2.2 Forward VCG Auction

In the forward auction, there is a seller with M units to sell. The winner-determination problem is

to determine the allocation x∗ maximizing the revenue to the seller. We can write this as a mixed
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integer program:

max
x,y

∑

i

∑

j<mi

xj
ip

j
i [FAP]

s.t.
∑

i

∑

j<mi

xj
i ≤ M

xj
i ≤ Lyij , ∀i, ∀j < mi (1)

∑

j<mi

yij ≤ 1, ∀i (2)

yiju
j
i ≤ xj

i , ∀i,∀j < mi (3)

xj
i < uj+1

i , ∀i, ∀j < mi (4)

yij ∈ {0, 1}, xj
i integer

Variable xj
i is the quantity of items sold to buyer i, where xj

i > 0 ⇒ (uj
i ≤ xj

i < uj+1
i ) by (3) and

(4). By (1) and (2), the auction is constrained to choose items from at most one bid interval for each

bidder. Variable yj
i = 1 if and only if xj

i > 0, to indicate which interval is selected. Let V (I) denote

the value of the solution to FAP, where I denotes the set of all bidders. Similarly, V (I \ i) denotes

the solution to the same problem without agent i. We are interested in the VCG mechanism, which

is defined as follows:

1. Receive bids from all the buyers.

2. Solve FAP with all bidders, compute value V (I), and allocation, x∗.

3. For every successful bidder, i, solve FAP without that bidder, and compute value V (I \ i).

Compute the VCG payment by bidder i as pvcg,i = pbid,i(q∗i ) − [V (I) − V (I \ i)], where q∗i =
∑

j(x
j
i )
∗.

The approximate VCG mechanism, as defined by the approximation scheme presented in Section

4, implements an (1 + ε) approximation to the optimal solution x∗, in worst-case time T = O(n3/ε),

where n is the number of bidders, and we assume that the piecewise bid for each bidder has O(1)

pieces. (The dependence on the number of pieces is also polynomial: if each bid has a maximum

of c pieces, then the running time can be derived by substituting cn for each occurrence of n.) In

addition, if V (I)/V (I \i) ≤ α, then our approximation scheme computes an (1+ε) approximation to

the second-best solutions, without each buyer i in turn, in total time O(αT log(αn/ε)). A constant

upper bound, α, can be justified as a “no monopoly” condition, because it is a bound on the marginal

value that a single buyer brings to the auction.
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2.3 Reverse VCG Auction

In a reverse auction, there is a buyer with M units to buy, and n suppliers. We assume that the

buyer has value V > 0 to purchase all M units, but zero value otherwise. The winner-determination

problem in the reverse auction is to determine the allocation, x∗, that minimizes the cost to the

seller:

min
x,y

∑

i

∑

j<mi

xj
ip

j
i [RAP]

s.t.
∑

i

∑

j<mi

xj
i ≥ M

(1),(2), (3), (4)

yj
i ∈ {0, 1}, xj

i integer

If xj
i > 0, then xj

i units of the item are purchased from seller i at per-item price pj
i . Let C(I) denote

the value of the solution to RAP, and let C(I \ i) denote the value of the solution to RAP without

seller i. We are interested in the VCG mechanism. It is convenient to assume that whenever there

is a surplus-increasing trade, such that C(I) < V , then we also have C(I \ i) < V for all i ∈ I,

where V is the value of the buyer. As discussed below, this is a necessary, although not sufficient,

condition for budget-balance. The VCG mechanism is defined as follows:

1. Receive bids from all the sellers.

2. Solve RAP with all sellers, compute C(I) and allocation x∗.

3. For every successful seller, i, solve RAP without that seller, and compute cost C(I\i). Compute

the VCG payment to seller i as pvcg,i = pask,i(q∗i ) + [C(I \ i)− C(I)], where q∗i =
∑

j(x
j
i )
∗.

Just like in the forward auction, we can compute an (1+ε) approximation of the optimal solution

x∗, in worst-case time T = O(n3/ε), for n bids, each bid with a constant number of pieces. The

approximate-VCG payments to all the buyers can be determined in time O(αT log(αn/ε)), where α

bounds the ratio C(I \ i)/C(I) for all i.

2.4 Economic Analysis

In this section, we discuss the economic properties of the VCG mechanisms, and prove the fact that

our approximate VCG mechanism is ε-strategyproof. We assume that all agents have quasilinear

utility functions; that is, ui(q, p) = vi(q)− p, for a buyer i with valuation vi(q) for q units at price p,
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and ui(q, p) = p− ci(q) for a seller i with cost ci(q) at price p. This is a standard assumption in the

auction literature, equivalent to assuming risk-neutral agents.

Let us first discuss the exact VCG mechanisms. We assume in the reverse auction case that the

value, V , of the buyer, is known to the mechanism.

Forward auction. The VCG auction is strategyproof and efficient. Moreover, it is unique amongst

the efficient auctions, in that it maximizes the expected revenue to the seller [14].3 In addition,

the payments made by the buyers in the forward VCG auction are always non-negative, and

the seller receives an expected positive payoff from participation in the auction.

Reverse auction. The VCG auction is strategyproof for sellers; it is efficient; and it is unique

amongst the efficient auctions, in that it minimizes the expected payment by the buyer. How-

ever, as discussed below, the reverse auction setting there is often a budget-balance problem,

which limits the applicability of the mechanism.

The total payments collected by the sellers can easily exceed the value of the buyer in the reverse

VCG auction. The following condition is required for budget-balance in the reverse VCG auction:

V − C(I) ≥
∑

i

(C(I \ i)− C(I))

In words, the surplus of the efficient allocation must be greater than the total marginal product of

each of the sellers. Considering an example with 3 agents {1, 2, 3}, the stated condition holds for

V = 100, C(123) = 50, C(12) = 80, C(23) = 80, C(13) = 100, but not for V = 100, C(123) = 50,

C(12) = 70, C(23) = 70, C(13) = 100. The problem occurs because the valuation function of the

buyer is marginal-increasing : the buyer has zero value for less than M items, and then value V . The

problem would not occur if the buyer’s valuation were linear, however, in many settings of interest,

a linear valuation function is too restrictive. 4

The payment minimizing property of the VCG mechanism implies a general impossibility result

whenever there is a budget balance problem in the VCG: in such a case there can be no efficient

and balanced mechanism. Moreover, we are aware of no mechanism in the economic literature that

is payoff-maximizing for the buyer in settings in which budget-balance is a problem and the buyer

needs a fixed quantity, M , of units of an item.5
3Although not discussed here, a related result shows that with the possibility of resale amnesty buyers, the VCG

with reserve prices for the seller also maximizes the revenue across all mechanisms [1].
4A similar budget-balance problem occurs in the forward auction, at least when the seller has a marginal-decreasing

cost function, but not when the seller has a linear cost function subject to a capacity constraint, as in our model.
5The analysis of Ausubel & Cramton [2] suggests that VCG mechanisms with reserve prices are payoff maximizing
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2.5 ε-Strategyproofness

We now state an ε-strategyproofness property for a VCG mechanism in which there is a PTAS for

the allocation problem. It is convenient to abstract away from our problem, and describe the result

in quite general terms. Let K denote a finite set of choices, and let θi ∈ Θi denote the type of agent

i, such that agent i has value vi(k, θi) ≥ 0 for choice k. In the standard VCG mechanism, the choice

k is computed by a social choice function, f : Θ → K, where Θ is the joint space of agent types. In

other words, the function f(θ) solves

max
k∈K

∑

i

vi(k, θi)

Let V (θ) denote the value of this solution. In a VCG mechanism, with worst-case approximation

error (1 + ε), the choice k is computed by a social choice function, f̂ : Θ → K with value V̂ (θ), such

that

(1 + ε)V̂ (θ) ≥ V (θ), ∀θ

Let f̂(θ) = k̂, and let k̂−i denote the choice selected by f̂ without agent i. The utility to agent i in

the approximate VCG mechanism is

vi(k̂, θi) +
∑

j 6=i

vj(k̂, θj)−
∑

j 6=i

vj(k̂−i, θj) (5)

The final term is independent of agent i’s reported type, but agent i can increase its utility by

announcing a reported type, θ̂i, that corrects for the approximation f̂ , and sets

f̂(θ̂i, θ−i) = f(θi, θ−i)

The maximal gain occurs when the initial approximation, k̂, has value V (θ)/(1+ε), and the maximal

gain from manipulation to agent i is

V (θ)− V (θ)
1 + ε

=
ε

1 + ε
V (θ)

Thus, given a (1+ ε) approximation scheme to the allocation problem in the auction schemes, no

agent can manipulate her gain by more than ε/(1+ ε) factor. Thus, we have our ε-strategyproofness

result.

Notice that we did not need to use the approximation results for the “second-best allocation

problems”. The strategyproofness results are derived from the basic Groves mechanism, and do not

when there is a perfect resale market, but it is not clear how to integrate reserve prices into our setting in which the
buyer requires a fixed quantity, M , of units.
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rely on the particular form of the final term in (5). However, the approximation to the second-

best allocation problems is important to make claims about the expected revenue properties of the

mechanism given that agents follow truthful strategies.6

3 The Generalized Knapsack Problem

In this section, we formulate our auction problems as a generalized knapsack problem, and design a

fully polynomial approximation scheme for solving the generalized knapsack. Since our formulations

for the forward and reverse auctions are completely symmetric, we will describe all our results in the

framework of a reverse auction—a buyer who wants to procure M units of some good at minimum

cost from a set of n sellers.

Before we begin, let us recall the classical 0/1 knapsack problem: we are given a set of n items,

where the item i has value vi and size si, and a knapsack of capacity M ; all sizes are integers. The

goal is to determine a subset of items of maximum value with total size at most M . Since we want

to focus on a reverse auction, the equivalent knapsack problem will be to choose a set of item with

minimum value (cost) whose size exceeds M . The generalized knapsack problem of interest to us can

be defined as follows:

Generalized Knapsack:

Instance: A target M , and a set of n lists, where the ith list has the form

Bi = 〈(u1
i , p

1
i ), (u

2
i , p

2
i ), . . . , (u

mi−1
i , pmi−1

i ), (umi
i (i),∞)〉,

where u1
i < u2

i < · · · < umi
i , p1

i > p2
i > · · · > pmi−1

i , and uj
i , p

j
i ,M are positive integers.

Problem: Determine a set of integers xj
i such that

1. (One per list) At most one xj
i is non-zero for any i,

2. (Membership) xj
i 6= 0 implies xj

i ∈ [uj
i , uj+1

i ),

3. (Target)
∑

i

∑
j xj

i ≥ M , and

4. (Objective)
∑

i

∑
j pj

ix
j
i is minimized.

6We also suggest that a practical implication of the approximate VCG mechanisms would, for each agent i, adjust
the estimate of V (θ) to be the maximum of V̂ (θ) and V̂ (θ−i), to ensure individual-rationality without affecting ε-
strategyproofness.
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Generalized knapsack is a clear generalization of the classical 0/1 knapsack—in the latter, each

list consists of a single point (si, vi). In fact, because of the “one per list” constraint, the generalized

problem is closer in spirit to the multiple choice knapsack problem [7], where the underling set of items

is partitioned into disjoint subsets U1, U2, . . . , Uk, and one can choose at most one item from each

subset. Indeed, one can convert our problem into a huge instance of the multiple choice knapsack

problem, by creating one group for each list—put a (quantity, price) point tuple (x, p) for each

possible quantity for a bidder into his group (subset). However, this conversion explodes the problem

size, making it infeasible for all but the most trivial instances. In fact, one of the major appeals

of our piecewise bidding language is its compact representation of the bidder’s valuation functions,

and we want to preserve that. In our approximation schemes, the problem size will depend only on

the number of bidders, not the maximum quantity, which can be unboundedly large, especially in

procurement settings.

The connection between the generalized knapsack and our auction problems is transparent: each

list encodes a bid, representing multiple mutually exclusive quantity intervals; one can choose any

quantity in an interval, but at most one interval can be selected. Choosing interval [uj
i , u

j+1
i ) has

cost pj
i per unit. The goal is to procure at least M units of the good at minimum possible cost.

In a given interval, we are free to choose any quantity, and so this problem has some flavor of the

continuous knapsack. But there are two major differences that make the problem significantly more

difficult: (1) Intervals have boundaries, and so to choose interval [uj
i , u

j+1
i ] requires that at least uj

i

and at most uj+1
i units must be taken; (2) Unlike the classical knapsack, we cannot sort the items

(bids) by value/size, since different intervals in one list have different unit costs.

4 Generalized Knapsack Polynomial Approximation Scheme

We begin with a simple property of an optimal knapsack solution; then use this property to de-

velop an O(n2) time 2-approximation for the generalized knapsack; and then finally use this basic

approximation to develop our fully polynomial approximation scheme. We begin with a definition.

Given an instance of the generalized knapsack, we call each tuple tji = (uj
i , p

j
i ) an anchor . Recall

that these tuples represent the breakpoints in the piecewise constant curve bids. We say that the

size of an anchor tji is uj
i , the minimum number of units available at this anchor’s price pj

i . The

cost of the anchor tji is defined to be the minimum total price associated with this tuple, namely,

cost(tji ) = pj
iu

j
i if j < mi, and cost(tmi

i ) = pmi−1
i umi

i .
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In a feasible solution {x1, x2, . . . , xn} of the generalized knapsack, we say that an element xi 6= 0

is an anchor if xi = uj
k, for some anchor uj

k. Otherwise, we say that xi is midrange. We observe

that an optimal knapsack solution can always be constructed so that at most one solution element

is midrange. This follows simply because if there are two midrange elements x and x′, then we can

increment one (with the lower price) and decrement the other (with the higher price) until one of

them becomes an anchor. We state this observation for future reference. See Figure 2 for an example.

Lemma 1 [Anchor Property] There exists an optimal solution of the generalized knapsack problem

with at most one midrange element. All other elements are anchors.

      1 midrange bid
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1

P
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Quantity
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P
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Quantity

(i) Optimal solution with
     2 midrange bids

(ii) Optimal soltution with

Figure 2: The left figure shows an optimal solution, where two of the three elements are midrange.
The right figure shows an alternative optimal solution, where only one element (corresponding to
bidder 3) is midrange; the other two are anchors.

4.1 A 2-Approximation Scheme

We use the anchor property to first obtain a polynomial-time 2-approximation scheme. We do

this by solving several instances of a restricted knapsack, which we call iKnapsack, where one el-

ement is forced to be midrange. Specifically, suppose element x` is forced to lie in its jth range,

[uj
` , u

j+1
` ), while all other (non-zero) elements are required to be anchors. We create n − 1 groups

U1, . . . , U`−1, U`+1, . . . , Un, where group Ui contains all the anchors of the list i in the generalized

knapsack. The group U` is special ; it contains the interval [0, uj+1
` −uj

`), and the associated price pj
` ;

(Note that since element xl is midrange it has to contribute at least uj
` units, the interval represents

the excess that can be taken from it.) In any other group Ui, we can choose at most one anchor.
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The goal is to obtain at least M − uj
` units with minimum cost. (Note that element x` has already

contributed uj
` units) The following pseudo-code describes our algorithm for this special version of

the generalized knapsack problem.

Algorithm iKnapsack (`, j)

1. Let U be the union of all the tuples in Ui’s.

2. Sort all the tuples of U in the ascending order of unit price; in case of ties, sort in ascending

order of unit quantities.

3. Set mark(i) = 0, for all lists i = 1, 2, . . . , n.

Initialize R = M − uj
` , S = Best = Skip = ∅. (R is the target quantity that remains to be

acquired; S is the set of tuples accepted in the current tentative solution; Best maintains the

best solution seen so far; Skip is the current set of rejected tuples).

4. Scan the tuples in the sorted order. Suppose the next tuple is tki .

If mark(i) = 1, ignore this tuple; otherwise, set mark(i) = 1 and do the following steps:

• if size(tki ) > R and i = `

return min {cost(S) + Rpk
i , cost(Best)};

• if size(tki ) > R and cost(tki ) ≤ cost(S)

return min {cost(S) + cost(tki ), cost(Best)};

• if size(tki ) ≤ R then

add tki to S; subtract size(tki ) from R.

• else set Best to S∪{tki } if current Best has a higher cost. Add tki to Skip. (∗ The variable

Skip is only used in the proof of correctness. ∗)

In the algorithm described above, S is the set of tuples accepted in current tentative solution,

and R is number of units that remain to be acquired. If the size of tuple tki is smaller than R, then

we add it to S; update R; and delete from U all the tuples that belong to the same group as tki ). If

size(tki ) is greater than R, then S along with tki forms a feasible solution, however, this solution can

be far from optimal if size of tji is much larger than R. We, therefore, use Best to maintain the best

solution found so far. If total cost of S and tki is smaller than the current best solution, we update

Best. One exception to this rule is the tuple tj` . Since this tuple can be taken fractionally, we update
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Best if the sum of S’s cost and fractional cost of tj` is smaller than the current best solution. The

algorithm terminates whenever we find a tji such that size(tki ) is greater than R but cost(tki ) is less

than cost(S).

Due to lack of space, we have moved the proof of the following lemma to the appendix.

Lemma 2 Suppose O∗ is an optimal solution of the generalized knapsack, where element x` ∈
[uj

` , u
j+1
` ) is the midrange element; all others are anchors. If the cost returned by the algorithm

iKnapsack (`, j) is V (`, j), then

V (`, j) + cost(tj`) ≤ 2O∗

Proof: Please see the appendix. 2

It is easy to see that, after an initial sorting of the tuples in U , the algorithm iKnapsack takes

O(n) time. We have our first polynomial approximation algorithm.

Theorem 1 A 2-approximation of the generalized knapsack problem can be found in time O(n2),

where n is number of item lists (each of constant length).

4.2 A FPTAS for Generalized Knapsack

We now use the 2-approximation algorithm presented in the preceding section to develop a fully

polynomial approximation for the generalized knapsack problem. The high level idea is fairly stan-

dard, but the details require technical care. We use the 2-approximation algorithm to get an upper

bound on the value of the solution; then use scaling on the cost dimension to reduce the size of the

dynamic programming (DP) table.

Once again, our dynamic program will actually solve O(n) instances of the iKnapsack problem.

Suppose the midrange element is x`, which falls in the range [uj
` , u

j+1
` ). We will construct a dynamic

programming table to compute the minimum cost at which M−uj+1
` units can be obtained using the

remaining n− 1 lists in the generalized knapsack. Suppose A[i, c] denotes the maximum number of

units that can be obtained at cost at most c using only the first i−1 lists in the generalized knapsack.

Then, the following recurrence relation describes how to construct the dynamic programming table:

A[i, c] = max
{

A[i− 1, c]
max1≤j≤mi{A[i− 1, c− cost(tji )] + uj

i if cost(tji ) ≤ c }
}

13



The dynamic programming algorithm described above is only pseudo-polynomial, since it depends

on the total cost. We convert it into a fully-polynomial approximation scheme by scaling the cost

dimension, as follows. Suppose V is the upper bound on the total cost given by our 2-approximation

algorithm, and ε is the approximation factor we are aiming for. Then, the scaled cost of a tuple tji ,

denoted scost(tji ), is given as

scost(tji ) = dn cost(tji )
V ε

e

As a prelude to our approximation guarantee, we first show that if two different solutions to the

iKnapsack problem have equal scaled cost, then their original (unscaled) costs cannot differ by more

than εV .

Lemma 3 Let x and y be two distinct feasible solutions of iKnapsack (`, j), excluding their midrange

elements. If x and y have equal scaled costs, then their unscaled costs cannot differ by more than

V ε.

Proof: See the appendix.

Given the dynamic programming table for iKnapsack (`, j), we consider all the entries in the last

row of this table that have a value greater than M − uj+1
` , which is the minimum size that the lists

other than ` must contribute. Among all these entries A[n− 1, c], we choose the one that minimizes

the total cost, defined as follows:

cost(A[n− 1, c]) + max {uj
` , M −A[n− 1, c]} × pj

` ,

where cost() is the original, unscaled cost associated with the DP entry A[n − 1, c]. That is, we

obtain A[n−1, c] units from the lists i 6= `, and the remaining units from the midrange tuple tj` . The

following theorem shows that we achieve a (1 + ε)-approximation.

Lemma 4 Suppose O∗ is an optimal solution of the generalized knapsack; where element x` ∈
[uj

` , u
j+1
` ) is the midrange element; all others are anchor. If O is the solution from running FP-

TAS on iKnapsack (`, j) then

O ≤ (1 + 2ε)O∗

Proof: See the appendix.
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Our approximation scheme for the generalized knapsack problem will iterate the scheme described

above for each choice of the midrange element, and choose the best solution from among these O(nc)

solutions. Also for a fixed midrange, the most expensive step in the algorithm is the construction

of dynamic programming table, which can be done in O(n2/ε) time assuming constant intervals per

list. Thus, we have the following result.

Theorem 2 We can compute an (1 + ε) approximation to the solution of a generalized knapsack

problem in worst-case time O(n3/ε).

4.3 Computing VCG Payments

We now consider the related problem of computing the VCG payments for all the agents. A naive

approach requires solving the allocation problem n times, removing each agent in turn. In this

section, we show that our approximation scheme for the generalized knapsack can be extended to

determine all n payments in time roughly O(T log n), where T is the complexity of solving the

allocation problem once. This result depends on a natural “no monopoly” assumption, which says

that removing one agent does not increase the allocation cost by more than a factor α; that is,

C(I \ i)/C(I) is at most α, for any agent i. We summarize the main result in the following theorem.

Theorem 3 There is an O(α
ε n3 log nα

ε ) time fully polynomial approximation scheme for computing

the VCG payments for all n agents in a forward or reverse auction using our marginal-decreasing,

piecewise constant bidding language.

Proof: See the appendix.

5 Related Work

The idea of using approximations within mechanisms, while retaining either full-strategyproofness

or ε-dominance has received some previous attention. Lehmann et al. [15] propose a greedy and

strategyproof approximation to a single-minded combinatorial auction problem. Nisan & Ronen [17]

discussed approximate VCG-based mechanisms, but either appealed to particular maximal-in-range

approximations to retain full strategyproofness, or to resource-bounded agents with information or

computational limitations on the ability to compute strategies. Feigenbaum & Shenker have recently

revisited this topic of strategically-faithful approximations [6]. Schummer [26] and Parkes et al [20]
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have previously considered ε-dominance, in the context of economic impossibility results, for example

in combinatorial exchanges.

The works most similar to ours are [11, 4, 8]. The focus and contributions of these papers,

however, are very different from ours. For instance, the procurement problem studied in [11] is similar

to ours, but for a different volume discount model. Moreover, this paper contains no algorithmic

results: it simply formulates the problem as a general mixed integer linear program, and give some

empirical results on synthetic data. Kalagnanam & Davenport [4] addresses double auctions, where

multiple buyers and sellers trade a divisible good . The focus of this paper is also different: it

investigates the equilibrium prices using the demand and supply curves, whereas our focus is on

cost minimization for the buyer (reverse auctions) or revenue maximization for the seller (forward

auctions). The work [8] addresses double auctions with a more general discount model than us but

uses heuristics to solve the optimization problem. The heuristics are analyzed using experiments

without any theoretical bounds.

6 Conclusions

We presented a fully polynomial-time approximation scheme for the single-good multi-unit auction

problem, using marginal decreasing piecewise constant bidding language. Our scheme is both ap-

proximately efficient and approximately strategyproof within any specified factor ε > 0. As such

it is an example of computationally tractable ε-dominance result, as well as an example of a non-

trivial but approximable allocation problem in which bidders can use the expressive “exclusive-or”

bidding language. A secondary computational issue addressed in our paper is the computation of the

payments to agents in the Vickrey-Clarke-Groves mechanism. Naively, computing these payments

for n agents requires n solutions of the original winner determination problem. Instead, we give an

scheme that computes these payments in worst-case time O(T log n), where T is the time complexity

to compute the solution to a single allocation problem.

The techniques developed in our paper can be extended to also incorporate another constraint

that is commonly used in markets: bounding the number of different winning bidders. That is, in

a reverse auction, a buyer can put a minimum and a maximum bound on the number of winning

sellers.
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A Proof of Lemma 2

Let V (`, j) be the value returned by iKnapsack (`, j) and let O be an optimal solution for iKnapsack

(`, j). Consider the set Skip at the termination of iKnapsack (`, j). There are two cases to consider:

either some tuple t ∈ Skip is also in O, or no tuple in Skip is in O. In the first case, let St be the

tentative solution set S at the time t was added to Skip. Since St together with t forms a feasible

solution, we have

V (`, j) ≤ cost(Best) ≤ cost(St) + cost(t).

This implies that V (`, j) < 2cost(t), because t ∈ Skip and cost(t) ≥ cost(St). On the other hand,

since t is included in O, we have cost(O) ≥ cost(t). These two inequalities imply the desired bound:

cost(O) ≤ V (`, j) < 2cost(O).

In the second case, imagine a modified instance of iKnapsack, which excludes all the tuples of

the set Skip. Since none of these tuples were included in O, the optimal solution for the modified
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problem should be the same as the one for the original. Suppose our approximation algorithm returns

the value V ′(`, j) for this modified instance. Let t′ be the last tuple considered by the approximation

algorithm on the modified instance, and let St′ be the corresponding tentative solution set. Since we

consider tuples in order of increasing per unit price, and none of the tuples are going to be placed in

the set Skip, we must have cost(St′) < cost(O).

Since t′ was the last tuple considered, by our early termination condition, we have cost(t′) ≤
cost(St′). Therefore, we have the following inequalities:

V (`, j) ≤ V ′(`, j)

≤ cost(St′) + cost(t′)

< 2cost(O)

The preceding argument has shown that the value returned by our approximation algorithm is

within a factor 2 of the optimal for iKnapsack (`, j). We now show that the value V (`, j) plus cost(tj`)

is a 2-approximation of the original generalized knapsack problem. Let x be an optimal solution of

the generalized knapsack, in which element xj
` is midrange. Let x−` to be set of the remaining

elements (i.e. anchors) in this solution. Furthermore, define x′` = xj
` − uj

` . Thus,

cost(x) = cost(x′l) + cost(tjl ) + cost(x−l)

It is easy to see the (x−`, x
′
`) is also an optimal solution for iKnapsack (`, j). Since V (`, j) is a

2-approximation for this optimal solution, we have the following inequalities:

V (`, j) + cost(tj`) ≤ cost(tj`) + 2(cost(x′`) + cost(x−`))

≤ 2(cost(x′`) + cost(tj`) + cost(x−`))

≤ 2cost(x)

This completes the proof of Lemma 2. 2
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B Proof of Lemma 3

Let Ix and Iy, respectively, denote the indicator functions associated with the anchor vectors x and

y—there is 1 in position Ix[i, k] if the xk
i > 0. Since x and y has equal scaled cost,

∑

i6=`

∑

k

scost(tki )Ix[i, k] =
∑

i6=`

∑

k

scost(tki )Iy[i, k] (6)

However, the scaled costs satisfy the following inequalities:

(scost(tki )− 1)εV
n

≤ cost(tki ) ≤
scost(tki )εV

n
(7)

These two sets of inequalities imply that

cost(x)− cost(y) ≤ εV

n

∑

i6=`

∑

k

Iy[i, k] ≤ εV,

where the last inequalities uses the fact that at most n components of an indicator vector are non-zero;

that is, any feasible solution contains at most n tuples. 2

C Proof of Lemma 4

Suppose the optimal solution has cost O∗; assume that the only midrange element in this solution

is xj
` ∈ [uj

` , uj+1
` ). Let x−` denote the vector of the remaining (anchor) elements in this solution.

Then, by definition, O∗ = cost(x−`) + pj
`x

j
` .

Let c = scost(x−`) be the scaled cost associated with the vector x−`. Now consider the dynamic

programming table constructed for the iKnapsack instance (`, j), and consider its entry A[n− 1, c].

Suppose y−` is the solution associated with this entry in our dynamic program; the components of

the vector y−` are the quantities from different lists. Since both x−` and y−` have equal scaled costs,

by Lemma 3, their unscaled costs are within εV of each other; that is, cost(y−`)− cost(x−`) ≤ εV .

Now, define yj
` = max{uj

` , M −∑
i6=`

∑
j yj

i }; this is the contribution needed from ` to make

(y−`, y
j
` ) a feasible solution. Among all the equal cost solutions, our dynamic programming tables

chooses the one with maximum units. Therefore,

∑

i6=`

∑

j

yj
i ≥

∑

i6=`

∑

j

xj
i

Therefore, it must be the case that yj
` ≤ xj

` . Because (yj
` , y−`) is also a feasible solution, if our

algorithm returns a solution with cost O, then we must have
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O ≤ cost(y−`) + pj
` yj

`

≤ cost(x−`) + εV + pj
` xj

`

≤ (1 + 2ε)O∗,

where the last inequality uses the fact that V ≤ 2O∗. 2

D A FPTAS for VCG Payments

Our overall strategy will be to build the dynamic programming tables once, and then determine the

VCG payments by combining answers from these tables. By Lemma 1, we can limit ourselves to

those allocations in which at most one agent is cleared in midrange. We will fix one particular tuple,

say, tj` , and compute all VCG payments under the constraint that only the element xj
` is midrange.

As in our approximation scheme for the generalized knapsack, we will iterate over all O(n) choices of

tj` . So, in the following, let us concentrate on computing the allocation values with xj
` being midrange

and each agent removed in turn.

We begin with a simple scheme, which is computationally inefficient but it helps illustrate the

main idea of our final scheme.

D.1 A Simple Approximation Scheme

We begin by solving two instances of RAP(I), one with sellers ordered 1, 2, . . . , ` − 1, ` + 1, . . . , n,

and the other with sellers ordered n, n − 1, . . . , ` + 1, ` − 1, . . . , 1. (The agent ` is ignored while

building these tables because she is already forced to be cleared in midrange.) We use our fully

polynomial approximation scheme of Section 4.2 and build a dynamic programming table for each of

these instances. We call the first table, with sellers listed in order 1, 2, . . . , n, the forward table, and

denote it F`; the other table is called the backward table, and denoted B`; the subscript ` reminds

us that the agent ` is midrange; To be technically precise, we should index the tables with both `

and j, since the jth tuple of the list ` is forced to be midrange. But to avoid additional clutter in

our notation, we have omitted the reference to j.

In building these tables, we use the same scaling factor as before; namely, the cost of a tuple tj`

is scaled as follows:
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scost(tji ) = dn cost(tji )
V ε

e

where V is the upper bound given by our 2-approximation scheme. However, because C(I \ i) can

be α times C(I), the cost dimension of our dynamic program’s table will be nα/ε.

1 2 3 m 1 2 m3

i

1

n−1

n−1

n−2

1

g h

Table Table

m−1 m−1

2

n−i

F B

F (i−1) B (n−i)

l l

ll

Figure 3: Computing VCG payments.

Recall that the ith row of our DP table stores the best solution possible using only the first i

agents (all of them cleared at anchors); the first here means according to the order of sellers.

Now, suppose we want to compute a (1+ε)-approximation of C(I\i). Consider the (i−1)th row of

F`, denoted F`(i−1), and the (n−i)th row of B`, denoted B`(n−i). These rows, respectively, contain

the quantities that can be acquired from agents {1, 2, . . . , i− 1}, and agents {i + 1, i + 2, . . . , n}; the

(scaled) costs for acquiring these units are the column indices for these entries. In order to compute

C(I \ i), we need to choose one entry from F`(i− 1) and one from B`(n− i) such that their quantity

sum exceeds M − uj+1
` and their combined cost is minimum over all such combinations; recall that

M is the original target and uj+1
` is the maximum amount the agent ` can provide in the range

[uj
` , u

j+1
` ). Given an entry g ∈ F`(i − 1), let size(g) and cost(g), resp., denote the number of units

and the unscaled cost associated with this (partial) solution. Similarly, let size(h) and cost(h) be the

size and costs for an entry h ∈ B`(n − i). Then, we minimize the following subject to the condition

that size(g) + size(h) > M − uj+1
` :

min
g∈F`(i−1), h∈B`(n−i)

{
cost(g) + cost(h) + pj

` max{uj
` , M − size(g)− size(h)}

}
(8)

Lemma 5 The expression in Eq. 8 computes the (1 + ε)-approximation of C(I \ i), for any agent i,

under the constraint that agent ` is cleared midrange.
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Proof: Let x be an optimal solution for C(I \ i) with xj
l being the midrange element. We split x

into three disjoint parts: xl corresponds to the midrange seller, xi corresponds to first i − 1 sellers

and x−i corresponds to last n− i sellers.

C(I \ i) = cost(xi) + cost(x−i) + pj
`x

j
` (9)

Let ci = scost(xi) and c−i = scost(x−i). Let yi and y−i be the solution vectors corresponding to

scaled cost ci and c−i in F`(i− 1) and Bl(n− i), respectively. From lemma 3 we conclude that,

cost(yi) + cost(y−i)− cost(xi)− cost(x−i) ≤ V ε

Among all equal scaled cost solutions, our dynamic program chooses the one with maximum

units. Therefore we also have,

size(yi) ≥ size(xi) & size(y−i) ≥ size(x−i)

where we use shorthand size(x) to denote total number of units in all tuples in x. Now, define

yj
l = max(uj

l ,M − size(yi) − size(y−i)). From the preceding inequalities, we have yj
l ≤ xj

l . Since

(yj
l , yi, y−i) is also a feasible solution, the value returned by equation 8 is at most

cost(yi) + cost(y−i) + pj
l y

j
l ≤ C(I \ i) + V ε

≤ C(I \ i) + 2C(I)ε

≤ C(I \ i) + 2C(I \ i)ε

This completes the proof. 2.

A naive implementation of this scheme will be inefficient because it might check (nα/ε)2 pairs

for each C(I \ i). In the next section, we present an efficient way of computing Eq. 8.

D.1.1 Improved Approximation Scheme

We use the key property that elements in F`(i − 1) and B`(n − i) are sorted; specifically, both,

unscaled cost(cost) and quantity(size), increases from left to right. Recall our goal is to compute

min
g∈F`(i−1), h∈B`(n−i)

{
cost(g) + cost(h) + pj

` max{uj
` , M − size(g)− size(h)}

}
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For rest of the discussion, we use g as a generic entry in F`(i − 1) and h as a generic entry in

B`(n − i). To efficiently compute Eq. 8, we break the problem into two parts: one where uj
l ≥

M − size(g)− size(h) and one where it is not.

In the first case, assuming size(g) + size(h) ≥ M − uj
l , the problem reduces to

min
g∈F`(i−1), h∈B`(n−i)

{
cost(g) + cost(h) + pj

l u
j
`

}
(10)

We can compute it by doing a forward and backward walk on F`(i−1) and B`(n− i) respectively.

Call a pair (g, h) feasible if size(g)+size(h) ≥ M−uj
l . Let (g, h) be the current pair being considered.

If (g, h) is feasible, we decrement B’s pointer( that is, move backward) otherwise we increment F ’s

pointer. We compute Eq. 10 using the feasible pairs found during the walk. The complexity of this

step is linear in size of F`(i− 1), which is O(nα/ε).

In the second case, assuming M − uj+1
l ≤ size(g) + size(h) ≤ M − uj

l , the problem reduces to

min
g∈F`(i−1), h∈B`(n−i)

{
cost(g) + cost(h) + pj

l (M − size(g)− size(h))
}

(11)

We consider a new problem with modified cost which is defined as

mcost(g) = cost(g)− pj
l size(g) & mcost(h) = cost(h)− pj

l size(h)

The new problem will compute

min
g∈F`(i−1), h∈B`(n−i)

{
mcost(g) + mcost(h) + pj

l M)
}

(12)

Though using modified cost simplifies the problem but unfortunately the elements are no longer

sorted, with respect to mcost, in F`(i − 1) and B`(n − i). Still the elements are sorted in quantity

and we use this property to compute Eq. 12 efficiently.

Call a pair (g, h) feasible if M −uj+1
l ≤ size(g)+ size(h) ≤ M −uj

l . Define feasible set of g to be

all the elements in B`(n− i) which are feasible with it. As the elements are sorted by quantity, the

feasible set of g is a contiguous subset of B`(n− i) and shifts left as g increases. Therefore, we can

compute Eq. 12 by doing a forward and backward walk on F`(i− 1) and B`(n− i) respectively. We

walk on B`(n − i) using two pointers, Begin and End, to indicate the start and end of the current

feasible set. We maintain the feasible set as a min heap, where the key is modified cost. To update

the feasible set, when we increment F ’s pointer(move forward), we walk left on B, first using End
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Figure 4: Feasible Set for g = 3 is {2, 3, 4} when M − uj+1
l = 50 and M − uj

l = 60. Begin and End
are used as start and end pointers of feasible set.

to remove elements from feasible set which are no longer feasible and then using Begin to add new

feasible elements. To compute Eq. 12, for a given g, the only element which we need to consider in

g’s feasible set is one with minimum modified cost which can be computed in constant time. So, the

main complexity of the computation lies in heap updates. Since, any element is added or deleted at

most once, there are O(nα
ε ) heap updates and the time complexity of this step is O(nα

ε log nα
ε ).

For a seller, i, the time complexity to compute Eq. 8 for a fixed midrange, tjl , is O(nα
ε log nα

ε ).

To compute C(I \ i), we will iterate over all O(n) choices of tjl . Therefore, the time complexity of

computing C(I \ i) is O(n2α
ε log nα

ε ). In worst case, we might need to compute C(I \ i) for all n

sellers in which case the final complexity of the algorithm will be O(n3α
ε log nα

ε ).
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